-
[pdf]
[supp]
[arXiv]
[bibtex]@InProceedings{Liu_2021_CVPR, author = {Liu, Jun and Liu, Wen and Sun, Jianing and Zeng, Tieyong}, title = {Rank-One Prior: Toward Real-Time Scene Recovery}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {14802-14810} }
Rank-One Prior: Toward Real-Time Scene Recovery
Abstract
Scene recovery is a fundamental imaging task for several practical applications, e.g., video surveillance and autonomous vehicles, etc. To improve visual quality under different weather/imaging conditions, we propose a real-time light correction method to recover the degraded scenes in the cases of sandstorms, underwater, and haze. The heart of our work is that we propose an intensity projection strategy to estimate the transmission. This strategy is motivated by a straightforward rank-one transmission prior. The complexity of transmission estimation is O(N) where N is the size of the single image. Then we can recover the scene in real-time. Comprehensive experiments on different types of weather/imaging conditions illustrate that our method outperforms competitively several state-of-the-art imaging methods in terms of efficiency and robustness.
Related Material