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Abstract

While recent studies on semi-supervised learning have

shown remarkable progress in leveraging both labeled and

unlabeled data, most of them presume a basic setting of the

model is randomly initialized. In this work, we consider

semi-supervised learning and transfer learning jointly,

leading to a more practical and competitive paradigm that

can utilize both powerful pre-trained models from source

domain as well as labeled/unlabeled data in the target do-

main. To better exploit the value of both pre-trained weights

and unlabeled target examples, we introduce adaptive con-

sistency regularization that consists of two complementary

components: Adaptive Knowledge Consistency (AKC) on

the examples between the source and target model, and

Adaptive Representation Consistency (ARC) on the target

model between labeled and unlabeled examples. Examples

involved in the consistency regularization are adaptively

selected according to their potential contributions to the

target task. We conduct extensive experiments on popular

benchmarks including CIFAR-10, CUB-200, and MURA, by

fine-tuning the ImageNet pre-trained ResNet-50 model. Re-

sults show that our proposed adaptive consistency regular-

ization outperforms state-of-the-art semi-supervised learn-

ing techniques such as Pseudo Label, Mean Teacher, and

FixMatch. Moreover, our algorithm is orthogonal to

existing methods and thus able to gain additional im-

provements on top of MixMatch and FixMatch. Our

code is available at https://github.com/Walleclipse/Semi-

Supervised-Transfer-Learning-Paddle.

1. Introduction

Deep neural networks have achieved great success in su-

pervised learning tasks especially in computer vision [21,

15]. Yet, this heavily relies on a large amount of labeled

data. As data annotation is usually expensive and time-

*Equal contributions and by alphabetical order. † Correspondence.

consuming, Semi-Supervised Learning (SSL), which pur-

sues the goal of effectively leveraging both labeled and

unlabeled data, is widely studied. Recent state-of-the-art

methods can be roughly summarized in three categories,

which are consistency based regularization [22, 42], entropy

minimization [12] and pseudo label [23].

While most works focus on the general setting that train-

ing a randomly initialized model from scratch, we consider

a more realistic setting utilizing the powerful pre-trained

model which is adequately fit on large-scale datasets for

general purposes such as ImageNet [6] and Places365 [54].

These pre-trained models are empirically proven to have ex-

cellent transferability on various down-streaming tasks [49]

and can significantly improve the generalization capacity

of target tasks especially when the sample size is relatively

small. Moreover, they are free to fetch and can be efficiently

fine-tuned to adapt to new tasks. A recent study [55] points

out that the benefit of semi-supervised learning sometimes

may be marginal when fine-tuning a pre-trained model on

the target dataset. However, the investigation of a system-

atic solution on DNN-based semi-supervised transfer learn-

ing has rarely been delved into.

In this work, we propose a semi-supervised transfer

learning framework beyond a simple combination of these

two kinds of algorithms. We extend the effective idea of

consistency regularization in semi-supervised learning to

adapt to inductive transfer learning, where the pre-trained

weight learned by the source task is available. Specifi-

cally, our method is composed of two essential components:

(1) Adaptive Knowledge Consistency (AKC) on the exam-

ples between the source and target model. We utilize tar-

get examples to transfer knowledge from the pre-trained

model and help generalize the target model inspired by re-

cent studies about knowledge distillation [51] and transfer

learning [24]. To cope with the risk of negative transfer [43]

caused by the discrepancy between the source and target

task, we use the knowledge adaptive sample importance for

proper cross-task knowledge consistency regularization. In-

tuitively, we are inclined to select examples lying in the
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trusted region of the source model. (2) Adaptive Represen-

tation Consistency (ARC) on the target model between la-

beled and unlabeled examples. In transfer learning applica-

tions, labeled examples are often insufficient and thus they

are prone to be projected onto an inappropriate representa-

tion with only the supervision of their labels. To tackle this

problem we utilize ample unlabeled examples to adjust the

representation produced by supervised learning to the real

target domain. This is achieved by minimizing their Max-

imum Mean Discrepancy (MMD) distance. Furthermore,

we adaptively decide the sample set used for restricting the

representation distance. An intuitive explanation about the

motivation of ARC is showed in supplementary A.

We evaluate our method on several semi-supervised

transfer learning settings considering various typical scenar-

ios. We use popular datasets CIFAR-10, CUB-200-2011,

MIT Indoor 67, and MURA,covering domains including

objects, animals, scenes and, radiographs.

Our main contributions can be summarized in the fol-

lowing points.

• To the best of our knowledge, we are the first to pro-

pose an advanced end-to-end semi-supervised transfer

learning framework for deep neural networks. Consid-

ering incorporating inductive transfer learning, our re-

search is closer to the actual problems in practice. Pre-

vious empirical study [55] provided observations and

understandings by directly combining SSL with fine-

tuning, but did not develop effective algorithms.

• We introduce adaptive consistency regularization to

improve semi-supervised transfer learning by exploit-

ing the characteristics of both semi-supervised learn-

ing and transfer learning, including cross-task knowl-

edge distillation with adaptive sample importance

named Adaptive Knowledge Consistency and repre-

sentation adaptation for supervised learning using se-

lected unlabeled data as the reference named Adaptive

Representation Consistency.

• We conduct extensive experiments and show that the

proposed adaptive consistency regularization is su-

perior to classic semi-supervised learning algorithms

such as Pseudo Label, Mean Teacher, and MixMatch

on various semi-supervised transfer learning tasks.

Furthermore, our method is shown orthogonal to exist-

ing methods and can obtain additional improvements

even on top of MixMatch and FixMatch, which com-

bine several state-of-the-art SSL techniques.

2. Related Work

2.1. Deep Transfer Learning

Previous research [34] proposed a comprehensive survey

dividing transfer learning into three categories, which are

inductive transfer learning, transductive transfer learning,

and unsupervised transfer learning, according to the rela-

tionship between the source and target domain, and whether

examples are labeled in either domain. In the deep learning

community, most concerned transfer learning tasks include

fine-tuning, domain adaptation, and few-shot learning. In

this paper, we focus on fine-tuning as the main method,

which belongs to inductive transfer learning according to

[34].

Fine-tuning. Previous research pointed out that deep

neural networks well-trained on large scale datasets for gen-

eral purpose show great transferability on various down-

stream tasks [49]. Thus fine-tuning a pre-trained model

to adapt new tasks has become a popular paradigm for

many real world applications [18]. To further improve the

effectiveness, some methods are investigated to improve

the knowledge exploitation of the pre-trained model during

fine-tuning, instead of merely treating it as a better start-

ing point than random initialization. For example, [24] ar-

gued that the starting point should be used as the reference

to regularize the learned weight. [51] demonstrated that

knowledge distillation through attention map can be applied

to different tasks and useful to enhance the performance of

transfer learning. [26] proposed a channel level attention

for knowledge distillation from the source to target task.

Besides the idea of utilizing the pre-trained model, there

are studies from other perspective, such as sample selec-

tion [10, 5, 31], dynamic fine-tuning path selection [53, 14]

and suppressing negative transfer [46, 25].

Domain Adaption. Different from fine-tuning, domain

adaptation [38] copes with the problem of sample selection

bias between the training and test data. An important con-

cept in classic domain adaptation methods is to generate do-

main invariant representation over the training set. Some

earlier studies [11, 17] proposed sample re-weighting algo-

rithms to adjust the decision boundary learned by the train-

ing examples to adapt to the target domain. Another use-

ful idea is to explicitly minimize the distribution distance

between the source and target domain. This kind of meth-

ods [33, 28, 47] intend to learn a proper feature transfor-

mation that can simultaneously project both domains into

a shared representation space. Our work is highly inspired

by the critical ideas developed for domain adaptation such

as sample re-weighting and representation adaptation, while

the task is rather different.

Few-shot Learning. Few-shot learning has been paid

to increasing attention in recent years as it aims at imitat-

ing human intelligence by which knowledge can be gener-

alized provided only several examples. The mainstream re-

search direction is related to meta learning [7, 40]. It is quite

different from regular transfer learning paradigms that the

transferred knowledge is how to learn rather than what (e.g.

model parameter) has learned. Recent work [50] designed a

semi-supervised few-shot learning framework TransMatch
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by incorporating Imprinting and MixMatch. They demon-

strated that utilizing unlabeled examples makes their frame-

work surpass the purely supervised few-shot learning com-

petitors.

2.2. Semi­Supervised Learning

There exist a vast number of classic works on semi-

supervised learning, and most of them fall into one of the

three main mechanisms[32]: consistency based regulariza-

tion, entropy minimization, and pseudo label. All these

methods share an intuition to use additional unlabeled data

to exploit the underlying structure, which usually could hint

the separation of samples whose labels we want to distin-

guish. We only briefly discuss the branch of consistency

based regularization, which is the most related to our work.

Consistency regularization is based on the hypothesis

that the decision boundary is not likely to pass through high-

density areas. This hypothesis results in a specific principle

that a sample and its close neighbours are expected to have

the same label. This forms the basic motivation of consis-

tency based methods, as well as many self-supervised learn-

ing approaches, which all care about the utilization of unla-

beled data. For example, the Π model [22] arguments the

input sample with different noises, and adds a regulariza-

tion term to reduce the discrepancy between outputs with

respect to the original input and its perturbed peers. Tempo-

ral Ensembling [22] and Mean Teacher [42] involve ensem-

ble learning to promote the quality of labels of the perturbed

samples. Specifically, they use the moving average weights

or predictions. Recently, Interpolation Consistency Train-

ing (ICT) [44] improved the perturbation method by using

Mixup with another unlabeled sample instead of adding ran-

dom noise. This is regarded as a more efficient transforma-

tion when dealing with low-margin unlabeled points. Mix-

Match [2] further proposed artificial label sharpening for

unlabeled data and mixing both labeled and unlabeled data

in Mixup. FixMatch [41] continued the trend to combine

diverse mechanisms for exploiting unlabeled examples.

Our work does not pursue to search for the best choice

among those general semi-supervised learning algorithms

in the transfer learning setting. Instead, we intend to de-

velop more targeted strategies utilizing the properties of the

combination of semi-supervised and transfer learning prob-

lems.

2.3. Semi­Supervised Transfer Learning

Semi-supervised transfer learning can be regarded as a

natural extension of regular semi-supervised learning by

taking a related auxiliary task into consideration or as an

extension of regular transfer learning with only a propor-

tion of the labeled target examples. There are few works

targeting this sort of problem. Early work [39] investi-

gated this problem under the setting of the traditional ma-

chine learning framework. They proposed an improved co-

training method for inductive transfer learning with instance

re-weighting according to the training error. Two diverse k-

Nearest-Neighbour (kNN) learners with different values of

k are trained collaboratively. Recently, [55] presented an

empirical study showing that the gains from state-of-the-

art SSL techniques decrease or sometimes even disappear

compared with a fully-supervised baseline when we fine-

tune the target task starting from a pre-trained model. While

these observations pointed out the necessity of considering

this more competitive and practice baseline, they did not

aim at inventing a solution. [19] imposed the Lautum reg-

ularization with which they improved the pre-training stage

using examples from both the source and target task. Al-

though the accuracy outperforms several baselines, the re-

quirements of accessing the source dataset and an extra pre-

training for every target task are usually unrealistic.

Some recent studies investigated semi-supervised trans-

fer learning on specific tasks. [48] discussed the task of

rain removal with a framework of semi-supervised trans-

fer learning. [47] introduced a semi-supervised domain

adaptation method for semantic segmentation. [8] studied

pseudo-labeling method on unsupervised domain adapta-

tion for person re-identification.

Different from those works, this paper introduces a novel

framework for general semi-supervised transfer learning.

3. The Proposed Framework

The flowchart of the proposed semi-supervised transfer

learning is illustrated in Figure 1. Please check the more

detailed illustration of the proposed framework in supple-

mentary A.

Problem definition: In inductive transfer learning, we

have the source dataset Ds and the target dataset Dt cor-

responding to different tasks. A typical deep neural net-

work f can be split into two parts: a representation function

Fθ and a task-specific function Gφ. Fθ is able to contain

general knowledge if trained over a dataset with diverse se-

mantics and thus is transferable. While Gφ has the partic-

ular architecture with respect to the task attribute such as

the number of classes. We denote the parameters of the

representation function (called feature extractor in our task)

and task-specific function (called classifier in our task) pre-

trained over the source dataset as θ0 and φ0 respectively.

For the target dataset, we denote Dl
t = {x1,2. . . n

l } as the

labeled examples and Du
t = {x1,2. . . ,m

u } as the unlabeled

examples. Here we ignore the subscript s or t for a spe-

cific example x as we will only use the target dataset after

the pre-training stage. We then define the complete target

dataset Dt = Dl
t ∪ Du

t and its size is n + m. To solve the

target task, we formalize the general form of the optimizing
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Figure 1. The framework of adaptive consistency regularization for semi-supervised and transfer learning.

objective as

θ∗, φ∗ = argmin
θ,φ

n∑

i=1

LCE(θ, φ;x
i
l) +R(θ) (1)

, where LCE is the commonly used cross-entropy loss indi-

cating the prediction error and R refers to additional regu-

larization related to the pre-trained parameter θ0, φ0 and the

target dataset Dt. Note that since a labeled example can be

regarded as unlabeled if we ignore its label, we actually use

Dt when we need a set of unlabeled examples.

3.1. Pre­training and Imprinting

We adopt a popular strategy to implement inductive

transfer learning, which is to sequentially learn from the

source and the target dataset. The first step is pre-training.

The representation parameter of the target model is initial-

ized with θ0. We do not discuss other paradigms of utiliz-

ing the source dataset in this paper such as co-training the

source and target dataset like [10].

Although the task-specific function G can not be shared

directly, we borrow the idea of Imprinting from recent low-

shot learning research [35]. Imprinting performs an infor-

mative initialization on G instead of random initialization.

Such knowledge derived from the feature extractor F of

the source model provides a much better starting point to

the target model with immediate good classification perfor-

mance.

3.2. Adaptive Knowledge Consistency

Knowledge distillation is widely studied with the orig-

inal motivation of compressing complex ensembling mod-

els [16]. While recent studies reveal that knowledge distil-

lation can also help improve the identical model [9] over the

same task and even generalize a different task [51, 27, 26].

We adopt the method to distill the knowledge of the source

model through the representation rather than the task-

specific logits output, as the latter is not suitable for han-

dling different tasks. While different from previous studies,

we employ both labeled and unlabeled data as the bridge

of knowledge transfer and impose adaptive sample impor-

tance to prevent negative transfer cause by the discrepancy

between the two datasets. Specifically, we constrain the

weighted Kullback–Leibler divergence (or mean square er-

ror) of outputs between the pre-trained feature extractor Fθ0

and the target feature extractor Fθ using the entire target

dataset Dt. In our setting, we denote L = {xi
l}

Bl ⊂ Dl
t as a

mini-batch of Bl labeled examples, and U = {xi
u}

Bu ⊂ Du
t

as a mini-batch of Bu unlabeled examples. Formally, the

regularization term of a mini-batch can be written as

RK =
1

Bl +Bu

∑

xi∈L∪U

wi
K KL(Fθ0(xi), Fθ(x

i)) (2)

To calculate the sample importance wi
K

, we leverage the

pre-trained source model with the parameter θ0 and φ0. In

detail, a target example xi is fed forward the pre-trained

model and we obtain the final output post-processed by the

softmax operation, marked as pi
s = Gφ0(Fθ0(xi)). pi

s is

a 1-dimensional vector with the length equal to the number

of source classes Cs. We get the weight of sample xi by

calculating the entropy of pi
s as:

wi
K = G(H(pi

s)) = G(−

Cs∑

j=1

pi
s,j log(p

i
s,j)). (3)

Where G is an entropy-gate function, which projects calcu-

lated entropy to a value of sample importance. Intuitively,
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the entropy of the output as a probability on different classes

indicates the confidence of the recognition with respect to

the input. In other words, higher output confidence implies

that the input sample is more likely to fall into the source

model’s trust region and consequently the knowledge about

this sample is reliable to the target model. In our imple-

mentation, we perform a hard filter according to the sample

importance with a pre-determined threshold value ǫK so as

to reduce the extra computation burden. Sample importance

wi
K

can be written as a binary value of:

wi
K = I(H(pi

s) ≤ ǫK) (4)

The sample importance wi
K
= 1, only if the corresponding

entropy is lower than pre-determined threshold H(pi
s) ≤

ǫK.

3.3. Adaptive Representation Consistency

In this part, we introduce another imposed regularizer

named adaptive representation (distribution) consistency,

by which we intend to tackle the problem of over-fitting

the insufficient labeled target samples. Motivated by the

fact that unlabeled samples themselves contain potential

information about the data structure, we utilize unlabeled

target samples to help labeled samples learn representa-

tions with stronger generalization ability. Different from

knowledge distillation incorporating the alignment at the

sample level, the representation consistency affects train-

ing at the distribution level. Specifically, we use the clas-

sical metric Maximum Mean Discrepancies (MMD) [3] to

measure the distance between the representations of labeled

and unlabeled data. Denoting V = {v1,v2, ...,vn} and

U = {u1,u2, ...,um} as random variable sets with dis-

tributions Qv and Qu, an unbiased estimate of the MMD

between Qv and Qu compares the square distance between

the empirical kernel mean embeddings as

MMD(Qv, Qu) = ‖
1

m

m∑

i=1

κ(vi)−
1

n

n∑

j=1

κ(uj)‖2,

(5)

where κ refers to the kernel, as which a Gaussian radial

basis function (RBF) is usually used in practice [13, 29].

In our case, we need to measure the MMD between la-

beled representation {Fθ(x
i
l)|x

i
l ∈ L} distribution and un-

labeled representation {Fθ(x
i
u)|x

i
u ∈ U} distribution. Nev-

ertheless, this restrain raises a severe risk because the tar-

get model is progressively learned. Thus even the repre-

sentation distribution obtained by sufficient unlabeled ex-

amples is inaccurate at earlier stages of the training pro-

cedure. To overcome this kind of problem, we involve an

adaptive sample selection method similar to that in adap-

tive knowledge consistency. Specifically, we compute the

entropy of the softmax output given a sample as the input

and regard the entropy as the target model’s confidence on

this sample. Only confident samples will be employed to

regularize the representation of labeled data. In detail, a

labeled example xi
l (and an unlabeled example xi

u) is fed

forward the target model and we obtain the final output as

pi
l = Gφ(Fθ(x

i
l)) (and pi

u = Gφ(Fθ(x
i
u))), then we get

the gate state (whether selection or not) of the example by

calculating the entropy of prediction as H(pi
l) (and H(pi

u))
considering predefined threshold value ǫR. Denoting set of

selected labeled representation as Fl and set of selected un-

labeled representation as Fu:

Fl = {Fθ(x
i
l)|x

i
l ∈ L and H(pi

l) ≤ ǫR}

Fu = {Fθ(x
i
u)|x

i
u ∈ U and H(pi

u) ≤ ǫR}
(6)

Note that the sample selection result is adaptively chang-

ing as the target model progressively fits more training ex-

amples. Considering that the number of selected samples in

a mini-batch may not be adequate to calculate a convinced

distribution, we impose a replay buffer to save recent se-

lected confident examples. The replay buffer enables us to

calculate MMD with more data, and which is helpful to ap-

proximate full representation distribution with recent some

mini-batches representation distribution. The pseudo-code

of the replay buffer is quite straightforward, as following:

Labeled Buffer.update(Fl)

Unlabeled Buffer.update(Fu)

F⋆
l = Labeled Buffer.get last k()

F⋆
u = Unlabeled Buffer.get last k()

(7)

Denoting QF⋆

l
and QF⋆

u
as the representation distribu-

tion generated from F⋆
l and F⋆

u , we give the adaptive rep-

resentation consistency as the following form:

RR = MMD(QF⋆

l
, QF⋆

u
). (8)

3.4. Summarization of the Framework

We finally present the complete adaptive consistency

regularization consisting of AKC and ARC as

R(θ) = λKRK + λRRR. (9)

Where λK and λR are weighted factors for AKC and ARC.

If we incorporate cross-entropy loss LCE for labeled data

and semi-supervised consistency loss LS for unlabeled data

(just like MixMatch, FixMatch, Pseudo-labeling ...), then

the final loss function would become:

L(θ, φ) =
1

n

n∑

i=1

LCE(θ, φ;x
i
l) + λSLS({x

i
u})+

λKRK({xi
l}, {x

i
u}) + λRRR({xi

l}, {x
i
u})
(10)

Where λS is a weighted factor for semi-supervised consis-

tency loss. After initializing with the pre-trained source

model and imprinting, the remaining fine-tuning is per-

formed in an end-to-end manner.
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4. Experiments

4.1. Experimental setup

4.1.1 Dataset configuration

We evaluate our proposed adaptive consistency regular-

ization methods and compare with state-of-the-art semi-

supervised learning methods on several public datasets

including the commonly used semi-supervised learning

dataset CIFAR-10 [20] and transfer learning benchmarks

CUB-200-2011[45], MIT Indoor-67[36] and musculoskele-

tal radiographs dataset MURA[37]. ImageNet[6] is used as

the source task. Note that CIFAR-10, Indoor-67 and CUB-

200-2011 have some classes semantically overlaps with Im-

ageNet, while MURA is a medical image dataset with a

large domain mismatch from ImageNet. Detailed descrip-

tions about these datasets are listed in supplementary B.1.

4.1.2 Baseline

We compare proposed adaptive consistency regularization

methods with the following state-of-the-art semi-supervised

learning methods. In order to make a fair comparison

in semi-supervised transfer learning tasks, we incorpo-

rate these semi-supervised learning methods with the same

strategies including initialization with imprinting and fine-

tuning all layers.

• Standard fine-tuning on labeled dataset: This is equiv-

alent to a pure supervised manner where unlabeled ex-

amples are not used.

• Pseudo-labeling [23]: It proceeds by producing

“pseudo-labels” for unlabeled training set using the

prediction function itself over the course of training.

• Mean-teacher [42]: It obtains more stable target pre-

dictions for unlabeled training set. Specifically, it sets

the target labels using an exponential moving average

of parameters from previous training steps. The rep-

resentation consistency between the original and per-

turbed unlabeled samples is encouraged, as well as the

standard cross-entropy minimization for labeled sam-

ples.

• MixMatch [2]: In addition to the consistency regu-

larization, it proposes artificial label sharpening for

pseudo-labeling on unlabeled data and mixing both la-

beled and unlabeled data in Mixup during the process

of fine-tuning.

• FixMatch [41]: FixMatch further improves on top of

the above techniques. It computes an artificial label

given a weakly augmented version of a given unla-

beled image. Then it uses the pseudo-label to enforce

the cross-entropy loss against the model’s output for a

strongly-augmented version of the unlabeled image.

It should be noted that our proposed adaptive consis-

tency regularization techniques are theoretically compatible

with other semi-supervised methods. Thus, we also evalu-

ate our proposed regularization techniques integrated with

MixMatch or FixMatch.

4.1.3 Training strategy

On the transfer learning benchmarks, we use ImageNet as

our source dataset and use ResNet-50[15] pre-trained model

as our source model by default unless explicitly specified.

We fine-tune the ImageNet pre-trained model on CUB-200-

2011, Indoor-67, and MURA datasets with labeled and un-

labeled samples. We use SGD with momentum as the opti-

mizer to train the target model 200 epochs. The momentum

rate is set to be 0.9, the initial learning rate is 0.001 (ex-

cept that the initial learning rate is 0.01 for CUB-200-2011)

and the mini-batch size is 64 for both labeled and unlabeled

dataset. For a learning rate schedule, we use a cosine learn-

ing rate decay[30] which sets the learning rate to

ηt = η0cos(
7πt

16T
) (11)

where η0 is the initial learning rate, t is the current train-

ing step, and T is the total number of training steps. For

our semi-supervised fine-tuning method, we set the param-

eters of AKC and ARC as follows. We set the regulariza-

tion weight factors as λK = 1 and λR = 30, and adaptive

thresholds as ǫK = 0.7 · log(Cs) and ǫR = 0.7 · log(Ct).
Where Cs and Ct refer to the class number of source dataset

and target dataset.

On the CIFAR-10 experiment, following the experiment

setting by [41], we use the same network architecture Wide

ResNet-28-2 [52] and training protocol, including the op-

timizer, learning rate schedule, data preprocessing, across

all SSL methods. In the pre-training procedure, we train

our Wide ResNet-28-2 model on ImageNet downsampled

to 32 × 32 [4] (the native image size of CIFAR-10). The

top-1 classification error rate is reported for clear demon-

stration.

4.2. Results

4.2.1 Results on CUB-200-2011

The results of adaptive knowledge consistency (AKC),

adaptive representation consistency (ARC), and baseline

methods on CUB-200-2011 dataset are listed in Table 1.

The method of combining AKC with ARC achieved best

or comparable performance among previous-best baseline

methods, especially in the case that labeled samples are

fewer. For example, when the size of the labeled dataset

is 200, the AKC+ARC method relatively improves the ac-

curacy by 27.8% compared to MixMatch. One of the advan-

tages of our proposed method is its compatibility. AKC and
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Methods \#label 2000 1000 400 200

Supervised labeled 68.29 53.26 28.82 17.90

Pseudo label 71.38 49.50 25.65 10.42

Mean teacher 70.19 51.78 27.01 13.79

MixMatch 73.84 60.56 32.79 22.66

FixMatch 72.76 58.30 31.03 21.86

AKC 71.33 58.42 38.71 28.57

ARC 72.95 61.01 41.13 28.47

AKC+ARC 73.65 62.01 41.69 28.96

MixMatch+AKC+ARC 77.51 67.26 43.80 29.55

FixMatch+AKC+ARC 75.59 63.36 40.83 28.25

Table 1. Classification accuracy of proposed AKC, ARC, and

baselines on CUB-200-2011 dataset.

ARC regularization terms could be combined with other

semi-supervised learning methods, like MixMatch and Fix-

Match. By utilizing AKC and ARC regularization tech-

niques in MixMatch, the performance increased notably.

For the fine-tuning with 2000 (and 200) labeled sample,

the performance of MixMatch is increased by 5.0% (and

30.40%) than vanilla MixMatch. We speculate that one ma-

jor reason for the effectiveness of AKC and ARC is that

AKC and ARC could effectively prevent severe over-fitting

when the number of labeled examples is small. *

Results on Indoor-67 are presented in supplementary B.2

.

4.2.2 Results on MURA

The results of MURA dataset are listed in Table 2. Al-

though MURA is a medical image dataset with a large do-

main mismatch from ImageNet, the AKC and ARC can

also improve the performance. By utilizing AKC and ARC

regularization techniques in FixMatch, the method of Fix-

Match+AKC+ARC achieves the best performance in both

cases of 1000 and 400 labeled samples.

4.2.3 Results on CIFAR-10

The results of adaptive knowledge consistency (AKC),

adaptive representation consistency (ARC), and baseline

methods on CIFAR-10 dataset are listed in Table 3. By

utilizing AKC and ARC regularization techniques in Fix-

Match, the method of FixMatch+AKC+ARC achieves the

best performance in both cases of 4000, 250, and 40 labeled

samples. By utilizing AKC and ARC regularization tech-

niques in MixMatch, the performance increases notably.

When fine-tuning with 250 labeled samples, the error rate

of MixMatch is decreased by 10.59% if we impose AKC

*We notice that FixMatch is not superior to MixMatch on CUB-200-

2011. This observation is partially consistent with the empirical investiga-

tion that the benefit of SSL algorithms may be marginal when we transfer

the source model to a similar target task [55].

Methods \#label 1000 400

Supervised labeled 71.95 67.54

Pseudo label 73.99 67.56

Mean teacher 72.20 65.53

MixMatch 73.85 68.94

FixMatch 75.10 69.43

AKC 73.78 70.44

ARC 73.91 71.19

AKC+ARC 73.94 71.34

MixMatch +AKC+ARC 74.72 70.94

FixMatch +AKC+ARC 76.60 72.14

Table 2. Classification accuracy of proposed AKC, ARC, and

baselines on MURA dataset.

Method \#label 4000 250 40

Supervised labeled 7.85 15.92 27.75

Pseudo label 7.04 12.92 25.62

Mean teacher 6.43 14.03 24.67

MixMatch 5.52 10.01 21.50

FixMatch 4.24 5.04 9.05

AKC 6.72 14.49 24.51

ARC 7.07 15.19 25.13

AKC+ARC 6.55 13.93 24.17

MixMatch +AKC+ARC 4.92 8.95 18.90

FixMatch +AKC+ARC 4.19 4.99 7.62

Table 3. Comparison of error rate using proposed AKC, ARC, and

baselines on CIFAR-10 dataset.

and ARC in it. For the previous-best method FixMatch, the

proposed method still improves the performance, especially

in very few labeled data training.

Note that when 4000 examples (only 8% of labeled data)

are labeled, FixMatch achieves even lower top-1 error rate

(4.24%) than fully supervised learning from scratch using

all 50000 examples (5.01%), indicating that FixMatch em-

ploys advanced techniques beyond the mere utilization of

unlabeled data. Therefore, it’s reasonable that additional

improvements will not be remarkable on top of such a com-

petitive baseline. We presented the effectiveness of transfer

learning in low-data semi-supervised learning on CIFAR-10

in supplementary B.5.

4.2.4 Ablation Study

Adaptiveness of our proposed AKC and ARC regulariza-

tion methods is affected by threshold value ǫK and ǫR. If

ǫK = 0 (and ǫR = 0), the AKC (and ARC) equals to being

removed since non of the sample was selected to calculate

the regularization term. If ǫK = max(H(ps)) = log(Cs)
(and ǫR = max(H(pt)) = log(Ct)), the AKC (and ARC)

degenerates to non-adaptive regularization terms with cal-

culating consistency on all samples.

We investigate the performance of AKC under differ-
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ǫK/log(Cs) 0 0.3 0.5 0.7 1.0

2000 labels 68.29 70.33 70.74 71.33 70.70

400 labels 28.82 31.27 33.51 38.71 34.62

Table 4. Performance of proposed AKC under different ǫK on

CUB-200-2011 dataset with 2000 and 400 labeled samples.

ent ǫK on CUB-200-2011 dataset, as shown in Table 4.

As can be seen, AKC achieves better performance with

ǫK = 0.7 · log(Cs). This shows the effectiveness of ”adap-

tive” method , especially for the case of 400 labeled sample,

adaptive knowledge consistency (with ǫK = 0.7 · log(Cs)
) outperformed standard ”non-adaptive” knowledge consis-

tency (with ǫK = log(Cs) ) by 11.8%.

We also investigate the performance of ARC under dif-

ferent ǫR on CUB-200-2011 dataset and get similar obser-

vations as AKC, as shown in Table 5. Thanks to adap-

tiveness, adaptive representation consistency performs bet-

ter than non-adaptive representation consistency which uses

all samples. In the case of 400 labeled sample, ARC with

ǫR = 0.5 · log(Ct) outperforms non-adaptive representation

consistency by 5.7%.

ǫR/log(Ct) 0 0.3 0.5 0.7 1.0

2000 labels 68.29 69.57 71.73 72.95 71.77

400 labels 28.82 34.01 41.88 41.13 39.63

Table 5. Performance of proposed ARC under different ǫR on

CUB-200-2011 dataset with 2000 and 400 labeled samples.

The actual sample selected ratio in ARC and AKC is

shown in Figure 2 on CUB-200-2011 dataset experiment

with 2000 labeled samples. As can be seen, the sample se-

lected ratio for ARC is gradually increasing in the first 10

epochs from 0.3 to 0.9. Which can be regarded as a kind

of curriculum learning[1]. In the earlier stage of training,

only a few high confident samples were used for labeled

and unlabeled distribution consistency regularization. Af-

ter 10 epochs of training, the sample ratio converges to near

0.9, indicating that some of the low-confident samples are

never used for ARC regularization. This process would be

beneficial for training since some ”very hard” or abnormal

samples might be harmful for generalization. The sample

selected rate of AKC is stable during training as the source

model is frozen during fine-tuning.

Additional experiments on increased accuracy after uti-

lizing AKC and ARC are presented in supplementary B.3.

4.3. Beyond semi­supervised transfer learning

Albeit the proposed Adaptive Knowledge Consistency

(AKC) and Adaptive Representation Consistency (ARC)

regularization methods are targeted at the semi-supervised

transfer learning scenario, the application of those two regu-

larization methods is not merely limited to semi-supervised

transfer learning tasks.
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Figure 2. Effective sample ratio used in calculating ARC and

AKC.

Method Standard AKC ARC ARC+AKC

Accuracy 81.77 82.79 82.54 83.52

Table 6. Results of AKC and ARC on CUB-200-2011 supervised

transfer learning.

The AKC regularization can be incorporated with other

supervised or unsupervised transfer learning methods since

it does not require any label of the target data. Additionally,

it is also suitable for tasks which involves multiple models,

such as knowledge distillation from a big teacher model to

a small student model.

The ARC regularization is also applicable for semi-

supervised learning tasks training from scratch. Addition-

ally, it can also be used in fully supervised learning, where

we can easily regard the labeled set as the unlabeled set.

Table 6 shows the result of the AKC and ARC regulariza-

tion methods in fully supervised transfer learning in CUB-

200-2011 dataset. Both AKC and ARC improve the perfor-

mance of standard transfer learning.

5. Conclusion

In this paper, we propose two regularization meth-

ods: Adaptive Knowledge Consistency (AKC) between the

source and target model and Adaptive Representation Con-

sistency (ARC) between labeled and unlabeled examples.

We show that AKC and ARC are competitive among state-

of-the-art SSL methods. Furthermore, by incorporating

AKC and ARC with other SSL methods, we achieve the

best performance among several baseline methods on vari-

ous transfer learning benchmarks. Additionally, our adap-

tive consistency regularization methods could be used for

more general transfer learning and (semi-) supervised learn-

ing frameworks.
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