
LQF: Linear Quadratic Fine-Tuning

Alessandro Achille1 Aditya Golatkar2,1 Avinash Ravichandran1 Marzia Polito1 Stefano Soatto1

1Amazon Web Services 2UCLA

{aachille,ravinash,mpolito,soattos}@amazon.com aditya29@cs.ucla.edu

Abstract

Classifiers that are linear in their parameters, and trained

by optimizing a convex loss function, have predictable be-

havior with respect to changes in the training data, initial

conditions, and optimization. Such desirable properties are

absent in deep neural networks (DNNs), typically trained by

non-linear fine-tuning of a pre-trained model. Previous at-

tempts to linearize DNNs have led to interesting theoretical

insights, but have not impacted the practice due to the sub-

stantial performance gap compared to standard non-linear

optimization. We present the first method for linearizing a

pre-trained model that achieves comparable performance to

non-linear fine-tuning on most of real-world image classifica-

tion tasks tested, thus enjoying the interpretability of linear

models without incurring punishing losses in performance.

LQF consists of simple modifications to the architecture, loss

function and optimization typically used for classification:

Leaky-ReLU instead of ReLU, mean squared loss instead of

cross-entropy, and pre-conditioning using Kronecker factor-

ization. None of these changes in isolation is sufficient to

approach the performance of non-linear fine-tuning. When

used in combination, they allow us to reach comparable per-

formance, and even superior in the low-data regime, while

enjoying the simplicity, robustness and interpretability of

linear-quadratic optimization.

1. Introduction

Deep neural networks (DNNs) are powerful but finicky.

They can carve complex decision boundaries through high

dimensional data such as images, but even small changes

in the training set, regularization method, or choice of hy-

perparameters can lead to vastly different outcomes. This

phenomenon, typical of highly non-linear optimization, is ob-

served even when fine-tuning a pre-trained model, which is

the most common modus operandi in practice: Starting from

a DNN trained on some dataset, a few steps of stochastic

gradient descent (SGD) are used to minimize a loss func-

tion computed on a another dataset. This is unlike models

whose parameters are found via convex optimization, such

as support-vector machines: They have a global optimum,

found from any initial condition, and small changes in the

data, the regularization scheme, and hyperparameters yield

small and interpretable changes in the final solution.

Lack of robustness to training conditions, and opaque-

ness of the resulting model, appear to be the price to pay for

more performing and expressive classifiers such as a DNNs.

This price is measured in time and cost of hyperparameter

optimization (HPO). For example, simply changing the mul-

tiplier for weight decay requires retraining from scratch, as

optimizing the new loss starting from the previous solution

gives suboptimal results [11]. The complex relation between

training data and final model makes it impossible to predict

the effect of individual data, renders most generalization

bounds vacuous, and makes it hard to impose even simple

constraints, such as those arising from fairness criteria [20]

or backward compatibility [44].

The desire to make their training more robust and inter-

pretable has led some to linearize DNN models around an

initial set of weights [28]. But while this has led to inter-

esting theoretical insights, the analysis has failed to yield

improvements in the practice. In particular, Figure 1 shows

that linearized models perform large-scale image classifica-

tion marginally better than simply training a linear classifier

on a fixed pre-trained embedding. Non-linear fine-tuning

with exhaustive HPO remains the performance paragon. The

trade-off between performance and robustness, typical of

many complex systems, is a manifestation of the classic bias-

variance tradeoff: By reducing the sensitivity of the trained

model to perturbations in the parameters or training data

(variance, Figure 1, right), we incur a decrease in average

performance (bias, left). While we do not expect linearized

models to outperform non-linear fine-tuned ones – except in

cases where the latter fails to optimize correctly (Section 4.5)

– in this paper we explore how far we can push their accuracy,

so we can enjoy the robustness and interpretability of linear

models without punishing performance loss.

Our contribution, Linear Quadratic Fine-Tuning (LQF), is

a method to linearize and train deep neural networks that

achieves comparable performance to non-linear fine-tuning
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Figure 1: Linear vs. nonlinear fine-tuning (NLFT). (Left)

Box-plot of the distribution of test errors achieved by dif-

ferent linearization methods on the datasets in Table 1, rela-

tive to the error achieved by NLFT (dashed line at origin).

Whiskers show best/worst results, boxes extend from lower

to upper quartiles (the results on half of the datasets are

concentrated in the box), the central line represents the me-

dian increase in error. GaF [36] (green, 47% median er-

ror increase) is better than training a linear classifier on a

fixed embedding (red, 71% increase), but slightly worse

than LQF applied just to that linear classifier (LQF FC,

orange, 42% increase). LQF is the closest linear method

to the non-linear paragon (blue, 12% increase). (Right)

We show the distribution of best effective learning rates as

the task varies. While for NLFT we need to search in a wide

range to find the optimal training parameters for a task (wide

dashed box), for LQF the same learning rate works almost

equally well for all tasks (narrow solid box).

(NLFT) on real-world image classification, while enjoying

all the benefits of linear-quadratic optimization. LQF per-

forms fine-tuning without optimizing hyper-parameters such

as learning rate or batch size, enables predicting the effect of

even individual training samples on the trained classifier, and

easily allows incorporating linear constraints during training.

LQF achieves performance comparable to NLFT, and better

in the low-data regime which is the most relevant to many

real applications.

The key enablers of LQF are simple and known in the

literature, although not frequently used: (i) We replace the

cross-entropy loss with the mean-squared error loss, making

the optimization problem quadratic [13, 18, 3], (ii) we re-

place ReLU with Leaky-ReLU [33], and (iii) we perform pre-

conditioning using Kronecker factorization (K-FAC) [35].

Individually, these changes bring limited improvements to

standard training of non-linear models. However, we show

that their combined use has a much larger impact on the

performance of linearized models (Figure 2).

2. Related Work

Network linearization uses a standard first-order Taylor ex-

pansion of a pre-trained model (eq. 1). Work on the Neural

Tangent Kernel (NTK) showed that linear models approxi-

mate the dynamics of randomly initialized deep networks

[19, 28], at least when the number of filters goes to infinity,

although [36] argue the analysis is valid for finite networks in

the case of fine-tuning when the weights w are close to those

of the pre-trained model w0. Using the linearized model

amounts to training a linear model using the gradients of

the original network as features, which is challenging given

their dimension. However, [36] shows that this can be done

efficiently with a modified forward pass using the Jacobian-

Vector product algorithm. But while the training cost of

the linear model is comparable to that of the original one,

performance is not (Figure 1). [2] extends the approximation

to higher orders and show increased fidelity, but loses the

linearity of the model.

Loss function. We use the mean squared error (MSE) for

fine-tuning instead of the more common cross-entropy (CE)

loss, even when pre-training was performed with the latter.

This may seem counter-intuitive, but there is growing evi-

dence that the MSE can be competitive to train classifiers

[13, 3, 18] and is just as well grounded theoretically [5].

There is also evidence that the standard cross-entropy loss

learns representations that are more transferable [26], and

hence it is better suited for pre-training, even if it is not nec-

essarily the best performing loss in terms of test accuracy.

Our use of CE for pretraining and MSE for fine-tuning fits

in this paradigm.

Pre-conditioning is important to converge on badly condi-

tioned convex problem. We use Kronecker-factorized (K-

FAC) approximation of the Fisher [35, 8, 15] to efficiently

approximate the curvature of the loss function. Since cur-

vature is constant in LQF, we only need to compute the

preconditioning matrix once, sensibly reducing its cost.

Hyper-parameters can significantly affect performance in

NLFT, which requires careful optimization (HPO) of learn-

ing rate, momentum and batch size based on the source and

target task [29]. A linear model does not require extensive

HPO (Figure 1). Being strongly convex, LQF has a unique

global minimum to which SGD will provably converge, as-

suming a proper learning rate schedule is used [38].

Interpretability. We study how a given training sample

affects the learned model and its predictions. This analysis

is similar to that of influence functions [25, 4], but in our

case can be done without approximation since our loss is

quadratic. Unlike influence functions, we can also efficiently

compute the change of activations on a validation set, which

we use to compute informativeness (Section 3.4).

Applications. Having a linear model that performs on-par

with NLFT makes it possible to tackle open issues in large-

scale DNNs, such as (i) backward-compatibile training with-

out model distillation [44], (ii) leave-one-out test error es-

timation without a test set [9] (iii) measuring the influence
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of individual samples on the trained model [25, 17] to en-

able active learning and enforce privacy guarantees [7], (iv)

integrating the model in a continual learning framework

(Section 4.5).

3. Linear-Quadratic Fine-tuning

Linearized model. LQF addresses the lack of robustness

and interpretability of non-linear deep models by replacing

the network itself with a first-order linear approximation. Let

fw(x) denote the output of a deep network with weighs w
on an input image x, let w0 denotes an initial set of weights,

for example obtained after pre-training on ImageNet. We

consider the linearization f lin
w (x) of the network fw(x) given

by the first-order Taylor expansion of fw(x) around w0:

f lin
w (x) = fw0

(x) +rwfw0
(x) · (w � w0). (1)

Note that f lin
w (x) is linear with respect to the weights w;

however, due to the non-linear activation functions, it is still

a highly non-linear function of the input x. If the approxi-

mation is accurate, ideally we want the linearized f lin
w and

the original fw to reach similar accuracy when trained:

accuracy(f lin
ŵ ,Dtest) ⇡ accuracy(fw,Dtest) (2)

where ŵ and w are obtained by minimizing, respectively,

the loss of the linear and non-linear model on a training

set D. The obvious advantage of the linear model is that,

for strongly convex loss functions, the global optimum w̄
is unique and, for a quadratic loss functions, can even be

written in closed form. So, if eq. (2) was satisfied, we would

stand to gain in terms of speed of fine-tuning, performance

(convergence is guaranteed to the global optimum), and

interpretability (the effect of a training sample on the test

prediction can be computed exactly).

Training a linearized model requires computing the prod-

uct of the Jacobian rwfw0
(x) with the weights w, which

would require a separate backward pass for each sample.

However, [36] shows that using Gradients as Features (GaF)

the Jacobian-Vector product of eq. (1) can be computed with

a modified forward pass, at a cost comparable to that of the

running the original network.

Accuracy of linearized models. In Figure 1 and Table 1

we show that the accuracy of linearized models suffers com-

pared to the paragon of NLFT. In most datasets, even the

simple linear baseline obtained by fine-tuning just the lin-

ear classifier (fully-connected, or FC, layer) is only slightly

worse than GaF, violating (2). We now analyze the causes

of these differences between the dynamics of fine-tuning a

non-linear network and its linearized version, and propose a

set of changes that lead to LQF.

Disabling 

Disabling

Disabling 

Figure 2: Ablation study. Box plot showing relative error

increase on the datasets in Table 1 when removing consiti-

tutive components of LQF. Removing MSE in favor of the

standard CE loss yields the largest increase in error (blue).

Removing K-FAC pre-conditioning, leaving standard SGD

(orange), has also a sizeable effect. Finally, on most datasets,

Leaky-ReLU performs better than standard ReLU (green).

3.1. Loss function

We use a regularized mean-squared error (MSE) loss,

even if the original model is pre-trained by minimizing the

regularized cross-entropy loss:

LMSE(f ;D) =
X

(xi,yi)∈D

kαyi � f(xi)k2 +
λ

2
kw � w0k2,

(3)

where yi is the one-hot vector encoding the class label and α

is a scaling factor for the targets (we set α = 15 as in [18]).1

There are several reasons to make this change. First, while

standard DNNs have several normalization layers (such as

batch normalization) that keep the output bounded, the lin-

ear model f lin
w (x) in eq. (1) directly outputs the dot product

rwfw0
(x) · w, which involves tens of millions of weights.

This product can easily grow large and saturate the softmax

of the cross-entropy loss, making the training process unsta-

ble. When that happens, we observe that only the last layer

features are effectively trained. On the other hand, the MSE

loss does not saturate and forces the output to remain close

to the target one-hot vectors, and hence bounded. We also

note that using MSE gives better results even for standard

non-linear training (see Appendix), especially when training

on small datasets.

A secondary effect of using the MSE loss in conjunction

with a linear model is that we can write the unique global

optimum in closed form:

w∗ = (JTJ + λI)−1J(Y � f0(X)) (4)

where J ⌘ rwfw0
(X)T is the matrix of the Jacobians of all

the samples in the training set and Y is the matrix of all target

1Note that we penalize the distance of the weights w from the pretraining

w0. This is more natural than the weight decay penalty λ

2
kwk2 in our

setting, since we are optimizing for the perturbation w � w0. It may also

lead to better transfer results on some tasks [30].
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vectors. While w∗ cannot be computed directly using this

formula due to large size of the matrices, in Section 3.4 we

show that eq. (4) allows us to easily compute the influence

of a given training sample on the test predictions, enhancing

interpretability of the training process.

3.2. Pre-conditioning with K-FAC

The MSE loss in eq. (3) is strictly convex, so SGD is guar-

anteed to converge to the unique global minimum, provided

an appropriate learning rate decaying schedule is used [38].

However, different directions in the loss landscape may have

different curvature, slowing convergence: the same learning

rate may be too fast high-curvature directions and too small

for flat ones. Convergence speed is governed by the condi-

tion number of the Hessian matrix (ratio between the largest

and smallest eigenvalues, i.e., maximum and minimum cur-

vature), which can be modified by multiplying the update

with a pre-conditioning matrix At

wt+1 = wt � ηAtgt, (5)

where gt is the batch gradient computed at step t and η is

the learning rate. The matrix At allows training at different

speed in each direction. In a quadratic problem with constant

preconditioning At = A, the expected distance from the

optimum w∗ at time t using adaptive SGD is given by:

E[wt � w∗] = (I � ηAH)t(w0 � w∗), (6)

where H is the (constant) Hessian of the loss function. In

particular, the fastest convergence is obtained when A =
H−1 is the inverse of the hessian. For this reason, most

adaptive methods try to approximate H−1.

Adaptive methods are commonplace in convex optimiza-

tion and some [23] are widely used in deep learning. How-

ever, for large-scale visual classification, standard SGD with

momentum performs comparably or better than adaptive

methods. We hypothesize that this may be due to the chang-

ing curvature during training, which causes the condition

number to decrease, making the problem well-conditioned

even without adaptation (see Figure 3). However, this can-

not happen when training a linearized network, since the

curvature of eq. (3) is constant and fully determined in pre-

training. For this reason, we add a pre-conditioner for eq. (3)

in LQF.

In our case, since the problem is quadratic, the Hessian

coincides with the Fisher Information Matrix (FIM). We thus

use the Kronecker-Factorized (K-FAC) approximation of the

FIM as pre-conditioner [35]. Unlike diagonal approxima-

tions, K-FAC allows us to estimate off-diagonal terms while

remaining tractable.

K-FAC is efficient for LQF. On standard non-linear net-

works, K-FAC may make the weights converge too quickly

to suboptimal sharp minima that do not generalize well and,

Figure 3: Unlike SGD, LQF requires pre-conditioning.

Histogram of the eigenvalues of the Hessian loss function

at initialization (blue) and at the end of optimization of a

non-linear network (orange). Note that at initialization a few

directions have very large eigenvalues while many directions

have much smaller eigenvalues, resulting in a high condition

number κ = 1482.4. However, SGD naturally moves to

areas of the loss landscape that are better conditioned, with

κ = 179.7 at the end of training (note that the largest eigen-

values decrease), thus making convergence easier. This “au-

tomatic conditioning” makes pre-conditioning un-necessary

in non-linear networks. On the other hand, since in LQF

the Hessian is fixed throughout the training, we need to use

K-FAC pre-conditioning to facilitate convergence.

since the curvature changes over time, the approximation of

the Hessian needs to be updated. However, in LQF there

is a unique minimizer and the curvature is constant. This

makes the use of K-FAC especially efficient in our setting.

Compared to other adaptive methods like Adam [23], in our

setting K-FAC provides an accurate estimation of the Hes-

sian inverse which can be used to interpret the effect of a

training sample (Section 3.4) and to easy select an appropri-

ate learning rate.

Learning rate selection. From eq. (6) it follows that, to

guarantee convergence, the norm of the eigenvalues of I �
ηAH should be smaller than one. In particular, if A is

a good approximation of H , the eigenvalues of AH are

centered around 1 and η = 1 is optimal. In our case A will

not be a perfect approximation of H−1, however since we

expect λmax(A
−1H) ⇡ 1 and we need η < 2/λmax(A

−1H)
to guarantee convergence, we choose a conservative η =
0.1, which we observe gives consistent performance on all

datasets without further tuning (Figure 1, right).

3.3. Leaky-ReLU activations

Rectified linear units (ReLUs) [37, 46] leave the positive

component of the input unchanged and replace the negative

component with zero, which blocks information from certain

weights. This is not harmful during normal training, since
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batch normalization helps avoiding dead filters. However, in

linearized models only the gradient of the filter at initializa-

tion matters in computing the Jacobian-Vector Product. If

this is zero, it will stunt training for that filter. To prevent this,

we simply replace ReLU with Leaky-ReLu [33], which does

not annihilate the negative component but simply replaces it

with a value proportional to the input. Another advantage of

Leaky-ReLU is that its first order approximation near zero

is more accurate than that of ReLU, making the first-order

approximation in eq. (1) more accurate.

Performance of LQF. After accounting for these changes,

we repeat the previous experiments on different datasets

and report the overall results in Figure 1 and detailed in

Table 1. LQF outperforms other linearization methods on all

the datasets, and achieves performance comparable to non-

linear fine-tuning on most. In the low data regime, the strong

inductive bias of the linear model acts as a regularizer and

the linearized model outperforms the non-linear fine-tuned

one (Figure 4). We discuss the results in detail in Section 4.

3.4. Interpretability

LQF gives us an efficient way of estimating the influence,

or “effect” of a given training sample on the final weights

and on the test predictions of the DNN, as well as measuring

the informativeness to the training process. This can be used

for dataset summarization (Sect. 4.6) and to interpret model

predictions: Had a particular sample (cause) not been used

for training, how would the final model (effect) differ? Using

eq. (4) we have the following expression for the weights w−i

we would have obtained if training without the sample xi:

w∗

−i = w∗ + (F−i + λI)−1gi. (7)

where gi ⌘ rw∗fw(x) is the Jacobian of the i-th sample,

ei ⌘ 1
N
(y � w∗gi) is the weighted prediction error on the

sample xi, N is the number of training samples, and F−i is

the hessian (or, equivalently, the FIM) computed without xi.

Using eq. (7) we can estimate how much the prediction

fw(xtest) on a test sample xtest would change had we not

seen the training sample xi. That is, we can measure which

training sample has contributed more to a correct or incorrect

decision of the network. Using eq. (7), in the Appendix we

show that

fw∗(xtest)� fw∗

−i
(xtest) ⇡

⇣

1� αi

N � 1 + αi

⌘

eig
T
test(F + λI)−1gi, (8)

where αi ' gi(F + λI)−1gTi . Since K-FAC already pro-

vides an approximation of (F + λI)−1, we can estimate the

expression efficiently.

More generally, one can define the unique functional

information [17] of a training sample xi as the expected

influence that the sample has on the network output on a

validation set:

F-SI((xi, yi)) = Ex∼Dval

⇥

kfw(x)� fw−i
(x)k2

⇤

(9)

This measure – which can be used for dataset summariza-

tion and to interpret what the network learn from a training

samples (Section 4.6) – is also easily estimated using eq. (8).

4. Results

We test LQF on several standard vision classification

tasks used to benchmark fine-tuning learning [30, 29] and

additional tasks to test cross-domain transfer (see Appendix

for details on the datasets). We find that LQF outperforms

other linearization methods on almost all tasks. LQF also

outperforms standard non-linear training (NLFT) in tasks

such as few-shot learning and on-line learning, where scarce

data causes training instabilities. We also illustrate the bene-

fits of interpretability.

Architecture and training. As the base model for lineariza-

tion we use a ResNet-50 with Leaky-ReLU pre-trained on

ImageNet. We implement the forward pass of eq. (1) us-

ing [36], and minimize the MSE loss, with K-FAC pre-

conditioning (using the implementation of [8]). For NLFT,

we also use a pre-trained ResNet-50 with ReLU activations,

and minimize the cross-entropy loss. All experiments are

conducted with SGD with momentum 0.9, learning rates

η 2 {0.01, 0.001}, weight decay 2 {10−4, 10−5} and re-

port the best results. We discuss further training details in

the Appendix.

4.1. Comparison

Ideally, LQF should achieve close performance to NLFT

on all tasks. We also compare with two other linearization

methods: Standard FC, which uses the pre-trained network

as a feature and only retrains the last FC layer, and Gradients

as Features (GaF) [36] which linearizes the network without

any of the changes described in Section 3. We also intro-

duce a further baseline, LQF FC, which uses the changes in

Section 3, but only to train the final FC layer.

We train each model on several “coarse-grained” datasets,

covering different tasks and domains and report the results

in Table 1. In Figure 1 we show the distribution of error

of each methods relative to the NLFT paragon. We see

that GaF improves only marginally over the FC baseline,

and is usually far from the non-linear performance. On the

other hand, LQF performs comparably with NLFT on all

the coarse-grained datasets. Surprisingly, training only the

final classifier using LQF (LQF FC) improves over Standard

FC, suggesting that the changes discussed in Section 3 are

helpful in broader scenarios.
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NLFT LQF∗ LQF FC∗ GaF FC

Caltech-256 [14] 14.1 14.5 17.4 15.4 15.7

Chest X-Ray [21] 4.6 7.1 8.3 9.5 11.2

Malaria Cells [43] 3.2 4.1 5.5 4.8 6.4

MIT-67 [42] 20.5 20.7 24.7 23.1 24.3

Oxford Pets [41] 6.7 6.9 7.7 7.4 7.7

Fine-grained datasets (sorted by ImageNet distance)

Stanf. Dogs [22] 13.8 12.4 12.9 10.5 9.9

Ox. Flowers [40] 7.1 7.1 9.7 13.3 13.6

CUB-200 [47] 19.6 24.0 29.1 28.4 29.2

Aircrafts [34] 14.5 34.5 43.8 48.4 54.2

Stanf. Cars [27] 9.6 27.1 39.2 39.4 47.3

Table 1: Test error of linear and non-linear fine-tuning

on coarse-and fine-grained classification. On almost all

datasets LQF outperforms all other linear methods. More-

over, on most coarse datasets LQF is within 0.5% absolute

error from standard non-linear fine-tuning. Linear methods

performs worse than NLFT on fine-grained machine clas-

sification tasks that have a large domain gap with respect

to ImageNet pretraining – e.g., Stanford Cars and FGVC

Aircrafts. However, even in this case LQF reduces the error

by up to 20% with respect to competing methods.

4.2. Fine-grained classification and Bilinear Pooling

Since LQF is based on a first-order Taylor expansion,

it has an implicit bias toward remaining close to the pre-

training (ImageNet in our case). [29] notes that such a bias

may improves accuracy on tasks that are easier or nearby

(e.g., Stanford Dogs, Caltech-256), but it is detrimental on

fine-grained tasks with a large domain gap from ImageNet

(e.g., CUB-200, Aircrafts, Cars). We expect the same to hold

LQF. Indeed, in Table 1 we show that while performance

is close or better on similar tasks, it degrades for farther

tasks (sorted as in [29]). However, even in this case, we ob-

serve that LQF significantly outperforms other linearization

techniques.

B-LQF. These results suggest that finding a pre-training

closer to the target task may help improve the linearizaion

performance [1, 39, 6], which is indeed an intereting di-

rection of research. On the other hand, [32] suggests that

even for generic ImageNet pretraining, the covariance of the

last-layer features, rather than their mean, is more suited as

a feature for fine-grained visual classification. Following

this intuition, we replace the last layer global spatial mean

pooling with square root bilinear pooling: if zi,j are the fea-

tures of the last-layer feature map, instead of feeding their

mean µ = Ei,j [zi,j ] to the fully connected layer, we feed

the square root
p
Σ of their covariance matrix Σ [32, 31, 8].

In Table 2 we see that – while bilinear pooling does not

improve the performace of NLFT too much – combining

NLFT MPN-COV B-LQF∗ LQF∗ GaF

CUB-200 19.6 17.0 17.1 24.0 29.2

Aircrafts 14.5 15.4 29.2 34.5 54.2

Cars 9.6 9.1 16.3 27.1 47.3

Table 2: Fine-grained classification and bilinear pooling.

Normalized bilinear pooling (MPN-COV) [31, 8] does not

significantly improve ordinary classification results (NLFT)

in our setting. However, LQF with bilinear pooling (B-LQF)

significantly improves test accuracy compared to average

pooling (LQF).

bilinear-pooling with LQF (B-LQF) significantly boosts its

performance on fine-grained tasks.

4.3. Ablation study

We measure the effect of each component of LQF on its

final accuracy. In Figure 2 we show the relative increase in

error when we ablate the changes discussed in Section 3. Us-

ing the MSE loss instead of cross-entropy yields the largest

improvement. Using K-FAC also carries significant weight

in the final solution. This is interesting since, in principle,

SGD without pre-conditioning should recover the same mini-

mum. This reinforces the point that the optimization problem

is badly conditioned (Figure 3), and proper pre-conditioning

is necessary. Using Leaky-ReLU activations instead of Re-

LUs also improve the final results on average, even if by

a lesser margin than the other two changes. However, in

additional ablation studies where we ablate pairs of compo-

nents, we observe that using Leaky ReLU makes a larger

difference if K-FAC is not present, possibly because Leaky

ReLU simplifies the optimization of the linear model and is

more useful when K-FAC is disabled.

4.4. Low-shot data regime

LQF, like any linearization, cannot be expected to outper-

form NLFT in general. However, there may be scenarios

where it does systematically. In the low-data regime, non-

linear networks can easily memorize samples using spurious

correlation without having a chance to converge to fit rele-

vant features. On the other hand, LQF should have a strong

inductive bias arising from the existence of a unique global

minimum. To test this, in Figure 4 we plot the test error

of LQF relative to the NLFT paragon. In the k-shot sce-

nario (i.e., training using only k samples per class) LQF

outperforms NLFT systematically. This suggests that LQF

may be a better base model than NLFT in few-shot learning,

also because it facilitates the incorporation of any convex

regularizer.
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Figure 4: Efficiency of LQF at different data regimes.

Comparison of LQF and standard fine-tuning for different

number of training samples per category (“shots”) in the

same datasets as Table 1. On average, LQF performs better

than standard fine-tuning when the datasets are relatively

small. The single outlier (diamond) is FGVC Aircraft, where

NLFT tends to perform better (see Section 4.2).

4.5. On-line learning

In many applications, training data is not all available

at the outset. Instead, it trickles in continuously and trig-

gers re-training upon reaching a sufficiently large volume.

This protocol engenders tradeoffs between cost and obsoles-

cence. Fine-tuning with relatively small batches is a typical

compromise, but can lead to suboptimal solutions when the

network memorizes the new samples or catastrophically for-

gets old ones. LQF is not subject to this tradeoff as it has a

unique minimum that is adjusted incrementally as new data

is received.

In Figure 5, we compare incremental LQF incremental

re-training with incremental NLFT training and with the

paragon of re-training from scratch every time we obtain

more data on the MIT-67 dataset. Let Dt be the dataset

containing all the samples seen up to step t; we train on

Dt starting from the weights wt−1 obtained at the previous

step and stop training when the train error on Dt is below

0.5% for 5 consecutive epochs. In Figure 5, we split all

the samples of MIT-67 in 30 incremental steps (each step

containing 178 samples sampled uniformly from all classes)

and show the test accuracy of the model at different steps. As

expected, incremental NLFT performs substantially worse

than the paragon, as it gets stuck in suboptimal local minima.

On the other hand, LQF is always close to the paragon even

if trained incrementally while being much cheaper to train

since we do not need to retrain from scratch.

4.6. Informativeness of samples

LQF is interpretable in that it allows measuring the effect

of individual data on the trained model, which can be used

to summarize a dataset. We use eq. (9) to measure how

informative a training sample is for the predictions of the

final model. In Figure 6, we display the most and least

informative samples: Qualitatively, we observe that easy

samples and near-duplicates are not informative. On the

other hand, samples of classes that are easy to confuse are

considered very informative by the model, since they affect

the decision boundary. To test this, in Figure 6 (right) we plot

the test error of the model when the most/least informative

training samples are removed. As we expect, removing

informative samples degrades the performance more than

removing uninformative samples.

4.7. Robustness to optimization hyper-parameters

Non-linear fine-tuning is highly sensitive to the choice of

hyperparameters (Figure 1, right). This has a direct impact

on cost, as training requires broad hyper-parameter search.

It would be desirable if one could fix hyperparameters once

for fine-tuning. In Section 3.2 we argued that, due to the

use of MSE loss and K-FAC pre-conditioning, the optimal

learning rate is independent of the task for LQF. When using

SGD with momentum, the situation is slightly more complex,

as we also need to select batch size b and the momentum

m. As already noted by [29], when fine-tuning, different

runs typically have the same test accuracy as long as the

effective learning rate ELR = η

(1−m)b is the same. We claim

that, for LQF, there is a single ELR which is optimal for

most tasks. To test this, we search the best learning rate

η 2 {0.05, 0.01, 0.005, 0.001, 0.0001} and batch size b 2
{16, 32, 64}, and compute the ELR of the best combination

for each task. In Figure 1 (right) we report the distribution of

Figure 5: Comparison of on-line learning methods. Stan-

dard non-liner networks may converge to a bad local mini-

mum when trained incrementally, and consequently have a

sub-optimal performance compared to a non-linear network

re-trained from scratch every time more data is obtained

(paragon). On the other hand, LQF has a unique minimum

to which it is guaranteed to converge, ensuring that the per-

formance will be close to the paragon at all steps.
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Figure 6: Informativeness of samples. (Top row) Seven representative examples from the 25 most informative images for a

network trained on Oxford Flowers (complete set in appendix). The network considers more informative samples of flowers

that are hard to distinguish, such as English Marigold and Barbeton Daisy, or Hibiscus, Petunia and Pink Primrose. On the

other hand, images of flowers that have a distinctive shape (e.g., Orchid) or near duplicated images are not informative for the

training (bottom row). (Right) Dataset summarization. We plot the final test accuracy when training LQF after dropping

the N most informative training examples (blue line) and the N less informative (orange line). The test performance decreases

faster when dropping informative examples, as we would expect, validating our informativeness measure.

effective learning rates that yield the best performance. The

interval of optimal ELRs for LQF is small, so one choice

of ERL is nearly optimal for all tasks. Moreover, we do

not observe significant changes in test accuracy for minor

variations of ELR. On the other hand, for NLFT the ELR

can vary by orders of magnitude depending on the task, and

test performance can vary widely within that interval. Thus,

fine-grained search of the ELR is necessary for NLFT but

not for LQF. This robustness comes at the cost of a slight

decrease in performance (Section 4.1, left), as expected due

to the linearization.

5. Discussion

Usage of deep neural networks in practice often involves

fine-tuning pre-trained models followed by heavy hyper-

parameter optimization (HPO). This method can achieve

good performance, but even minor variations of hyper-

parameters can spoil performance. The low-data regime

is also treacherous, as models can easily memorize the sam-

ples provided. It is difficult for non-expert to predict the

effect of regularizers and hyper-parameters beyond trying

it and seeing. Linear models, on the other hand, are sup-

ported by decades of theory that allows to predict the effect

of changes in the data, or in the parameters, and bounds on

the generalization error. However, their performance has not

been comparable to that of black-box DNNs. LQF is a linear

model that gets closer, to the point of making linearization vi-

able beyond a theoretical analysis tool, as a practical method.

The small drop in performance is offset by improved ease

of training, interpretability, and cheaper hyper-parameter

search.

LQF is not the solution to all fine-tuning problems. Being

a first-order approximation, it can realistically be expected

to work well when the task on which we wish to fine-tune

is sufficiently close to the task on which the model was pre-

trained. In practice, this limitation may be circumvented

by a “zoo” of different pretrained models, together with

a selection technique to find the best initialization for the

task [1]. Better understanding of the distance between tasks

may also help characterizing the range in which linearization

can be expected to work well.

Linearization can be made more flexible with architecture

changes. For example, fine-grained classification tasks are

typically far from generic models pre-trained on ImageNet.

Indeed we observe that LQF drops in performance in fine-

grained tasks, which have been noted to be further from

ImageNet [29]. However, we have shown in Section 4.2, that

for this specific case, simply replacing average pooling with

bilinear pooling can stretch the performance of LQF in the

fine-grained setting.

There are many possible uses for LQF, like any other lin-

ear model. Rather than providing an exhaustive list of all pos-

sibilities, we showed some illustrative examples. We leave

various applications of LQF to future work, including its use

in (i) uncertainty quantification, (ii) backward compatibility

[44], (iii) leave-one-out cross validation without a validation

set [9], (iv) active/online learning [45], (v) counterfactual

analysis in the first order, (vi) continual learning [24], (vii)

selective forgetting or machine unlearning [10, 12, 16], (viii)

training including privacy or fairness constraints [7, 20], .
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