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Abstract

We present a novel large-scale dataset and accompa-

nying machine learning models aimed at providing a de-

tailed understanding of the interplay between visual con-

tent, its emotional effect, and explanations for the latter in

language. In contrast to most existing annotation datasets

in computer vision, we focus on the affective experience

triggered by visual artworks and ask the annotators to in-

dicate the dominant emotion they feel for a given image

and, crucially, to also provide a grounded verbal explana-

tion for their emotion choice. As we demonstrate below, this

leads to a rich set of signals for both the objective content

and the affective impact of an image, creating associations

with abstract concepts (e.g., “freedom” or “love”), or ref-

erences that go beyond what is directly visible, including

visual similes and metaphors, or subjective references to

personal experiences. We focus on visual art (e.g., paint-

ings, artistic photographs) as it is a prime example of im-

agery created to elicit emotional responses from its viewers.

Our dataset, termed ArtEmis, contains 455K emotion attri-

butions and explanations from humans, on 80K artworks

from WikiArt. Building on this data, we train and demon-

strate a series of captioning systems capable of expressing

and explaining emotions from visual stimuli. Remarkably,

the captions produced by these systems often succeed in re-

flecting the semantic and abstract content of the image, go-

ing well beyond systems trained on existing datasets. The

collected dataset and developed methods are available at

https://artemisdataset.org.

1. Introduction

Emotions are among the most pervasive aspects of hu-

man experience. While emotions are not themselves lin-

guistic constructs, the most robust and permanent access

we have to them is through language [44]. In this work,

we focus on collecting and analyzing at scale language that

explains emotions generated by observing visual artworks.

Specifically, we seek to better understand the link between

the visual properties of an artwork, the possibly subjective

affective experience that it produces, and the way such emo-

tions are explained via language. Building on this data and

recent machine learning approaches, we also design and test

neural-based speakers that aim to emulate human emotional

responses to visual art and provide associated explanations.

Why visual art? We focus on visual artworks for two rea-

sons. First and foremost because art is often created with the

intent of provoking emotional reactions from its viewers. In

the words of Leo Tolstoy,“art is a human activity consisting

in that one human consciously hands on to others feelings

they have lived through, and that other people are infected

by these feelings, and also experience them” [55]. Second,

artworks, and abstract forms of art in particular, often defy

simple explanations and might not have a single, easily-

identifiable subject or label. Therefore, an affective re-

sponse may require a more detailed analysis integrating the

image content as well as its effect on the viewer. This is un-

like most natural images that are commonly labeled through

purely objective content-based labeling mechanisms captur-

ing the objects or actions they include [14, 13]. Instead, by

focusing on art, we aim to initiate a more nuanced percep-

tual image understanding which, downstream, can also be

applied to richer understanding of ordinary images.

We begin this effort by introducing a large-scale dataset

termed ArtEmis [Art Emotions] that associates human emo-

tions with artworks and contains explanations in natural lan-

guage of the rationale behind each triggered emotion.
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Something Else 

“The white bird stands out in the dark 

background giving a sense of hope.”

Sadness 

“This woman of higher  

status looks sad, like a bird 

 who lives in a golden cage.”

Awe 

“The woman’s ability to handle  

the bird so calmly inspires 

a sense  of bewilderment.”

Fear 

“This looks like a bird that has been  

injured and is bleeding taking a flight.”

Amusement 

“His mustache looks  

like a bird soaring  

through the clouds.”

Excitement 

“The brushstrokes of blues  

resemble an exotic  

bird that is nested in the ocean.”

Anger 

“The large black bird  

has stolen the life  

from the helpless rabbit.”

Contentment 

“The pale color palette of this painting is 

very relaxing. I can imagine myself sitting 

by the water listening to the birds.”

Figure 1. Examples of affective explanations mentioning the word ‘bird’. In ArtEmis the annotators expose a wide range of abstract

semantics and emotional states associated with the concept of a bird when attempting to explain their primary emotion (shown in boldface).

The exposed semantics include properties that are not directly visible: birds can be listened to, they fly, they can bring hope, but also can

be sad when they are in ‘golden cages’.

Novelty of ArtEmis. Our dataset is novel as it concerns

an underexplored problem in computer vision: the forma-

tion of linguistic affective explanations grounded on visual

stimuli. Specifically, ArtEmis exposes moods, feelings,

personal attitudes, but also abstract concepts like freedom

or love, grounded over a wide variety of complex visual

stimuli (see Section 3.2). The annotators typically explain

and link visual attributes to psychological interpretations

e.g., ‘her youthful face accentuates her innocence’, high-

light peculiarities of displayed subjects, e.g., ‘her neck is

too long, this seems unnatural’; and include imaginative or

metaphorical descriptions of objects that do not directly ap-

pear in the image but may relate to the subject’s experience;

‘it reminds me of my grandmother’ or ‘it looks like blood’

(over 20% of our corpus contains such similes).

Subjectivity of responses. Unlike existing captioning

datasets, ArtEmis welcomes the subjective and personal an-

gle that an emotional explanation (in the form of a caption)

might have. Even a single person can have a range of emo-

tional reactions to a given stimulus [41, 50, 10, 51] and, as

shown in Fig. 2, this is amplified across different annota-

tors. The subjectivity and rich semantic content distinguish

ArtEmis from, e.g., the widely used COCO dataset [14].

Figure 1 shows different images from ArtEmis with cap-

tions including the word bird, where the imaginative and

metaphorical nature of ArtEmis is apparent (e.g., ‘bird gives

hope’ and ‘life as a caged bird’). Interestingly, despite this

phenomenon, as we show later (Section 3.2), (1) there is of-

ten substantial agreement among annotators regarding their

dominant emotional reactions, and (2) our collected expla-

nations are often pragmatic – i.e., they also contain refer-

ences to visual elements present in the image (see Section

3.3).

Difficulty of emotional explanations. There is debate

within the neuroscience community on whether human

emotions are innate, generated by patterns of neural activity,

or learned [53, 4, 8, 9]. There may be intrinsic difficulties

with producing emotion explanations in language – thus the

task can be challenging for annotators in ways that tradi-

tional image captioning is not. Our approach is informed

by significant research that argues for the central role of

language in capturing and even helping to form emotions

[36], including the Theory of Constructed Emotions [6, 7]

by Lisa Feldman Barrett. Nevertheless, this debate suggests

that caution is needed when comparing, under various stan-

dard metrics, ArtEmis with other captioning datasets.

Affective neural speakers. To further demonstrate the

potential of ArtEmis, we experimented with building a
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Figure 2. Examples of different emotional reactions for the

same stimulus. The emotions experienced (in bold font) for the

shown painting vary across annotators and are reasonably justified

(next to each emotion, the annotator’s explanation is given). We

note that 61% of all annotated artworks have at least one positive

and one negative emotional reaction. See Section 3.2 for details.

number of neural speakers, using deep learning language

generation techniques trained on our dataset. The best of

our speakers often produce well-grounded affective expla-

nations, respond to abstract visual stimuli, and fare reason-

ably well in emotional Turing tests (Section 6).

In summary, we make the following key contributions:

• We introduce ArtEmis, a large scale dataset of emo-

tional reactions to visual artwork coupled with expla-

nations of these emotions in language (Section 3).

• We show how the collected corpus contains utter-

ances that are significantly more affective, abstract,

and rich with metaphors and similes, compared to ex-

isting datasets (Sections 3.1-3.2).

• Using ArtEmis, we develop machine learning mod-

els for dominant emotion prediction from images or

text, and neural speakers that can produce plausible

grounded emotion explanations (Sections 4 and 6).

2. Background and related work

Emotion classification. Following previous studies [39,

62, 67, 48], we adopt throughout this work the same dis-

crete set of eight categorical emotion states. Concretely,

we consider: anger, disgust, fear, and sadness as negative

emotions, and amusement, awe, contentment, and excite-

ment as positive emotions. The four negative emotions are

considered universal and basic (as proposed by Ekman in

[22]) and have been shown to capture well the discrete emo-

tions of the International Affective Picture System [11]. The

four positive emotions are finer grained versions of happi-

ness [21]. We note that while awe can be associated with a

negative state, following previous works ([41, 48]), we treat

awe as a positive emotion in our analyses.

Deep learning, emotions, and art. Most existing works

in Computer Vision treat emotions as an image classifi-

cation problem, and build systems that try to deduce the

main/dominant emotion a given image will elicit [39, 62,

67, 33]. An interesting work linking paintings to textual de-

scriptions of their historical and social intricacies is given in

[24]. Also, the work of [30] attempts to make captions for

paintings in the prose of Shakespeare using language style

transfer. Last, the work of [59] introduces a large scale

dataset of artistic imagery with multiple attribute annota-

tions. Unlike these works, we focus on developing machine

learning tools for analyzing and generating explanations of

emotions as evoked by artworks.

Captioning models and data. There is a lot of work and

corresponding captioning datasets [64, 31, 54, 34, 40, 47]

that focus on different aspects of human cognition. For in-

stance COCO-captions [14] concern descriptions of com-

mon objects in natural images, the data of Monroe et al. [42]

include discriminative references for 2D monochromatic

colors, Achlioptas et al. [1, 2] collects discriminative ut-

terances for 3D objects, etc. There is correspondingly also

a large volume on deep-net based captioning approaches

[38, 40, 56, 66, 43, 65, 43]. The seminal works of [58, 29]

opened this path by capitalizing on advancements done in

deep recurrent networks (LSTMs [27]), along with other

classic ideas like training with Teacher Forcing [60]. Our

neural speakers build on these ‘standard’ techniques, and

ArtEmis adds a new dimension to image-based captioning

reflecting emotions.

Sentiment-driven captions. There exists significantly

less captioning work concerning sentiments (positive

vs. negative emotions). Radford and colleagues [49] discov-

ered that a single unit in recurrent language models trained

without sentiment labels, is automatically learning concepts

of sentiment; enabling sentiment-oriented manipulation by

fixing the sign of that unit. Other early work like Senti-

Cap [46] and follow-ups like [63], provided explicit sen-

timent supervision to enable sentiment-flavored language

generation grounded on real-world images. These studies

focus on the visual cues that are responsible for two emo-

tional reactions (positive and negative) and, most impor-

tantly, they do not produce emotion-explaining language.
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(c)(b)(a)

Figure 3. Key properties of ArtEmis. Histograms comparing ArtEmis to COCO-captions [14] along the axes of (a) Concreteness, (b)

Subjectivity, and (c) Sentiment. ArtEmis has significantly more abstract, subjective and sentimental language than COCO-captions.

3. ArtEmis dataset

The ArtEmis dataset is built on top of the publicly

available WikiArt1 dataset which contains 80,031 unique

and carefully curated artworks from 1,119 artists (as down-

loaded in 2015). The artworks cover 27 art-styles (ab-

stract, baroque, cubism, impressionism, etc.) and 45 genres

(cityscape, landscape, portrait, still life, etc.), constituting

a very diverse set of visual stimuli [52]. In ArtEmis we

annotated all artworks of WikiArt by asking at least 5 an-

notators per artwork to express their dominant emotional

reaction along with an explanation for their response.

Specifically, after observing an artwork, an annotator

was asked first to indicate their dominant reaction by se-

lecting among the eight emotions mentioned in Section 2,

or a ninth option, listed as ‘something-else’. This latter op-

tion allows the annotators to express emotions not explic-

itly listed, or to explain why they might not have had any

strong emotional reaction, e.g., why they felt indifferent to

the shown artwork. In all cases, after the first step, the an-

notator was asked to provide a detailed explanation for their

choice in free text that would include specific references to

visual elements in the artwork. See Figures 1, 2 for exam-

ples of collected annotations.

In total, we collected 454,684 explanatory utterances and

emotional responses. The resulting corpus contains 37,250

distinct words and it includes the explanations of 6,788 an-

notators who worked in aggregate 11,138 hours to build

it. The annotators were recruited via Amazon’s Mechani-

cal Turk (AMT) services. In what follows we analyze the

key characteristics of ArtEmis, while pointing the interested

reader to the Supplemental Material [3] for further details.

3.1. Linguistic analysis

Richness & diversity. The average length of the captions

of ArtEmis is 15.9 words which is significantly longer than

the average length of captions of many existing captioning

datasets as shown in Table 1. In the same table, we also

show results of analyzing ArtEmis in terms of the average

1https://www.wikiart.org/

number of nouns, pronouns, adjectives, verbs, and adposi-

tions. ArtEmis has a higher occurrence per caption for each

of these categories compared to many existing datasets, in-

dicating that our annotations use rich natural language in

connection to the artwork and the emotion they explain.

This fact becomes even more pronounced when we look at

unique, say adjectives, that are used to explain the reactions

to the same artwork among different annotators (Table 2).

In other words, besides being linguistically rich, the col-

lected explanations are also highly diverse.

Sentiment analysis. In addition to being rich and diverse,

ArtEmis also contains language that is affective. We use

a rule-based sentiment analyzer (VADER [28]) to demon-

strate this. The analyzer assigns only 16.5% of ArtEmis to

the neutral sentiment, while for COCO-captions it assigns

77.4%. Figure 3 (c) shows the histogram of VADER’s es-

timated valences of sentimentality for the two datasets. Ab-

solute values closer to 0 indicate neutral sentiment.

Dataset Words Nouns Pronouns Adjectives Adpositions Verbs

ArtEmis 15.9 4.0 0.9 1.6 1.9 3.0

COCO Captions [14] 10.5 3.7 0.1 0.8 1.7 1.2

Conceptual Capt. [54] 9.6 3.8 0.2 0.9 1.6 1.1

Flickr30k Ent. [64] 12.3 4.2 0.2 1.1 1.9 1.8

Google Refexp [40] 8.4 3.0 0.1 1.0 1.2 0.8

Table 1. Richness of individual captions of ArtEmis vs. previous

works. We highlight the richness of captions as units and thus

show word counts averaged over individual captions.

Dataset Nouns Pronouns Adjectives Adpositions Verbs

ArtEmis 18.7 (3.4) 3.1 (0.6) 8.3 (1.5) 6.5 (1.2) 13.4 (2.4)

COCO Captions [14] 10.8 (2.2) 0.6 (0.1) 3.3 (0.7) 4.5 (0.9) 4.5 (0.9)

Conceptual Capt. [54] 3.8 (3.8) 0.2 (0.2) 0.9 (0.9) 1.6 (1.6) 1.1 (1.1)

Flickr30k Ent. [64] 12.9 (2.6) 0.8 (0.2) 4.0 (0.8) 4.9 (1.0) 6.4 (1.3)

Google Refexp [40] 7.8 (2.2) 0.4 (0.1) 2.8 (0.8) 2.9 (0.8) 2.3 (0.6)

Table 2. Diversity of captions per image of ArtEmis vs. previous

works. Shown are unique word counts for various parts-of-speech

averaged over individual images. To account for discrepancies in

the number of captions individual images have, we also include

the correspondingly normalized averages inside parentheses.
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Figure 4. Histogram of emotions captured in ArtEmis . Pos-

itive emotions occur significantly more often than negative emo-

tions (four left-most bars contain 62.0% of all responses vs. 5th-

8th bars contain 26.3%). The annotators use a non-listed emotion

(‘something-else’ category) 11.7% of the time.

3.2. Emotion­centric analysis.

In Figure 4 we present the histogram over the nine op-

tions that the users selected, across all collected annotations.

We remark that positive emotions are chosen significantly

more often than negative ones, while the “something-else”

option was selected 11.7%. Interestingly, 61% of artworks

have been annotated with at least one positive and one nega-

tive emotion simultaneously (this percent is 79% if we treat

something-else as a third emotion category). While this

result highlights the high degree of subjectivity w.r.t. the

emotional reactions an artwork might trigger, we also note

that that there is significant agreement among the annota-

tors w.r.t. the elicited emotions. Namely, 45.6% (36,534) of

the paintings have a strong majority among their annotators

who indicated the same fine-grained emotion.

Idiosyncrasies of language use. We also explore the de-

gree to which ArtEmis contains language that is abstract

vs. concrete, subjective vs. objective, and estimate the ex-

tent to which annotators use similes and metaphors in their

explanations. For measuring the abstractness or concrete-

ness, we use the lexicon in Brysbaert et al. [12] which pro-

vides for 40,000 word lemmas a rating from 1 to 5 reflect-

ing their concreteness. For instance, banana and bagel are

maximally concrete/tangible objects, getting a score of 5,

but love and psyche are quite abstract (with scores 2.07 and

1.34, resp.). A random word of ArtEmis has 2.81 concrete-

ness while a random word of COCO has 3.55 (p-val signif-

icant, see Figure 3 (a)). In other words, ArtEmis contains

on average references to more abstract concepts. Next, to

measure the extent to which ArtEmis makes subjective lan-

guage usage, we apply the rule-based algorithm provided by

TextBlob [37] which estimates how subjective a sentence is

by providing a scalar value in [0,1]. E.g., ‘The painting is

red’ is considered a maximally objective utterance (scores

1), while ‘The painting is nice’, is maximally subjective

(scores 0). We show the resulting distribution of these es-

timates in Figure 3 (b). Last, we curated a list of lemmas

that suggest the use of similes with high probability (e.g.,

‘is like’, ‘looks like’, ‘reminds me of’). Such expressions

appear on 20.9% of our corpus and, as shown later, are also

successfully adopted by our neural-speakers.

3.3. Maturity, reasonableness & specificity.

Finally, we investigated the unique aspects of ArtEmis

by conducting three separate user studies. Specifically we

aim to understand: a) what is the emotional and cognitive

maturity required by someone to express a random ArtEmis

explanation?, b) how reasonable a human listener finds a

random ArtEmis explanation, even when they would not use

it to describe their own reaction?, and last, c) to what extent

the collected explanations can be used to distinguish one

artwork from another? We pose the first question to Turkers

in a binary (yes/no) form, by showing to them a randomly

chosen artwork and its accompanying explanation and ask-

ing them if this explanation requires emotional maturity

higher than that of a typical 4-year old. The answer for

1K utterances was ‘yes’ 76.6% of the time. Repeating the

same experiment with the COCO dataset, the answer was

positive significantly less (34.5%). For the second ques-

tion, we conducted an experiment driven by the question

“Do you think this is a realistic and reasonable emotional

response that could have been given by someone for this

image?”. We elaborate on the results in Supp. Mat.; in sum-

mary, 97.5% of the utterances were considered appropriate.

To answer the final question, we presented Turkers with one

piece of art coupled with one of its accompanying explana-

tions, and placed it next to two random artworks, side by

side and in random order. We asked Turkers to guess the

‘referred’ piece of art in the given explanation. The Turkers

succeeded in predicting the ‘target’ painting 94.7% of the

time in a total of 1K trials.

4. Neural methods

4.1. Auxiliary classification tasks

Before we present the neural speakers we introduce two

auxiliary classification problems and corresponding neural-

based solutions. First, we pose the problem of predicting

the emotion explained with a given textual explanation of

ArtEmis. This is a classic 9-way text classification problem

admitting standard solutions. In our implementations we

use cross-entropy-based optimization applied to an LSTM

text classifier trained from scratch, and also consider fine-

tuning to this task a pretrained BERT model [20].

Second, we pose the problem of predicting the ex-

pected distribution of emotional reactions, given an art-

work. To address this problem we fine-tune a ResNet-32

encoder [26] pretrained on ImageNet [18] by minimizing

the KL-divergence between its output and the empirical user

distributions of ArtEmis. Having access to these two clas-

sifiers, which we denote as Cemotion|text and Cemotion|image re-

spectively, is useful for our neural speakers as we can use

them to evaluate, and also, steer, the emotional content of
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their output (Sections 5 and 4.2). Of course, these two prob-

lems have also intrinsic value and we explore them in detail

in Section 6.

4.2. Affective neural speakers

Baseline with ANPs. In order to illustrate the impor-

tance of having an emotion-explanation-oriented dataset

like ArtEmis for building affective neural speakers; we bor-

row ideas from previous works [63, 46] and create a base-

line speaker that does not make any (substantial) use of

ArtEmis. Instead, and similar to what was done for the

baseline presented in [46], we first train a neural speaker

with the COCO-caption dataset and then we inject senti-

ment to its generated captions by adding to them appro-

priately chosen adjectives. Specifically we use the inter-

section of Adjective Noun Pairs (ANPs) between ArtEmis

and the ANPs of [46] (resulting in 1,177 ANPs, with

known positive and negative sentiment) and capitalize on

the Cemotion|image to decide what sentiment we want to em-

ulate. If the Cemotion|image is maximized by one of the four

positive emotion-classes of ArtEmis, we inject the adjec-

tive corresponding to the most frequent (per ArtEmis) pos-

itive ANP, to a randomly selected noun of the caption. If

the maximizer is negative, we use the corresponding ANP

with negative sentiment; last, we resolve the something-

else maximizers (<10%) by fair coin-flipping among the

two sentiments. We note that since we apply this speaker

to ArtEmis images and there is significant visual domain

gap between COCO and WikiArt, we fine-tune the neural-

speaker on a small-scale and separately collected (by us)

dataset with objective captions for 5,000 wikiArt paintings.

We stress that this new dataset was collected following the

AMT protocol used to build COCO-captions, i.e., asking

only for objective (not affective) descriptions of the main

objects, colors etc. present in an artwork.

Basic ArtEmis speakers. We experiment with two pop-

ular backbone architectures when designing neural speak-

ers trained on ArtEmis: the classic Show-Attend-Tell (SAT)

approach [61], which combines an image encoder with

a word/image attentive LSTM; and the recent line of

work of top-down, bottom-up meshed-memory transform-

ers (M2) [15], which replaces the recurrent units with trans-

former units and similarly to Andersen et al. [5] relies on

separately computed object-bounding-box detections (com-

puted using Faster R-CNN [25]). We also include a much

simpler baseline that uses ArtEmis: for a testing image we

find its nearest visual neighbor in the training set (using fea-

tures from a ResNet-32 pretrained on ImageNet) and output

one of the latter’s human ground-truth captions at random.

Emotion grounded speaker. We additionally tested neu-

ral speakers that make use of the emotion classifier, i.e.,

Cemotion|image. At training time, in addition to grounding

the a neural-speaker with the visual stimulus and apply-

ing teacher forcing with the captions of ArtEmis, we fur-

ther provide at each time step a feature (extracted via a

fully-connected layer) of the emotion-label in that particular

training example. This extra signal promotes the decoupling

of the emotion conveyed by the linguistic generation, from

the underlying image. In other words, this variant allows us

to independently set the emotion we wish to explain for a

given image. At inference time (to keep things fair) we de-

ploy first the Cemotion|image over the test artwork, and use the

output maximizing emotion, to first ground and then sample

the generation of this variant.

Details. To ensure a meaningful comparison between

neural speakers, we use the same image-encoders, learning-

rate schedules, LSTM hidden-dimensions, etc. across

all of them. When training with ArtEmis we use

an [85%,5%,10%] train-validation-test data split and do

model-selection (optimal epoch) according to the model

that minimizes the negative-log-likelihood on the validation

split. For the ANP baseline, we use the Karpathy splits [29]

to train the same (SAT) backbone network we used else-

where. When sampling a neural speaker, we keep the test

generation with the highest log-likelihood resulting from a

greedy beam-search with beam size of 5 and a soft-max

temperature of 0.3. An exception to the above (uniform) ex-

perimental protocol was made for the speakers trained with

Meshed Transformers. In this case we used the publicly

available implementation [16] with minimal adaptation.

5. Evaluation

In this section we describe the evaluation protocol we

follow to quantitatively compare our trained neural net-

works. First, for the auxiliary classification problems we

report the average attained accuracy per method. Second,

for the evaluation of the neural speakers we use three cate-

gories of metrics that assess different aspects of their qual-

ity. To measure the extent to which our generations are lin-

guistically similar to held-out ground-truth human captions,

we use various popular machine-based metrics: e.g., BLEU

1-4 [45], ROUGE-L [35], METEOR [19].

We highlight that CIDEr-D [57] which requires a gener-

ation to be semantically close to all human-annotations of

an artwork, is not a metric well-suited for ArtEmis, due to

the large diversity and inherent subjectivity of our dataset.

We also evaluate the novelty of the captions of our neural

speakers; here we report the average maximum length of the

longest common subsequence for a generation and (a sub-

sampled version) of all training utterances. The smaller this

metric is, the farther away one can assume that the genera-

tions are from the training data [23]. We also report the fast

to compute number (fraction) of unique generations made

over an input set of images. The third axis of evaluation
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concerns two unique properties of ArtEmis and affective

explanations in particular. First, we report the fraction of a

speaker’s productions that contain similes, i.e., generations

that have lemmas like ‘thinking of’, ‘looks like’ etc. This

fraction is a proxy for how often a neural speaker chooses to

utter metaphorical-like content. Secondly, by tapping on the

Cemotion|text , we can compute which emotion is most likely

explained by the generated utterance; this estimate allows

us to measure the extent to which the deduced emotion is

‘aligned’ with some ground-truth. Specifically, for test art-

works where the emotion annotations form a strong major-

ity, we define the emotional-alignment as the percent of the

grounded generations where the argmax(Cemotion|generation)
agrees to the emotion made by the majority.

The above metrics are algorithmic, i.e., they do not in-

volve direct human judgement, which is regarded as the

golden standard for quality assessment [17, 32] of synthetic

captions. The discrepancy between machine and human-

based evaluations can be exacerbated in a dataset with sub-

jective and affective components like ArtEmis. To ad-

dress this, we evaluate ArtEmis-trained basic and emotion-

grounded speaker variants, via user studies that emulate a

Turing test; i.e., they assess the extent to which the synthetic

captions can be ‘confused’ as being made by humans.

6. Experimental results

Estimating emotion from text or images alone. We

found experimentally that predicting the fine-grained emo-

tion explained in ArtEmis data is a difficult task (see ex-

amples where both humans and machines fail in Table 3).

In a small-scale study with experts (authors of this paper),

humans could infer the explained emotion from the text

alone 61.2% accurately (in 500 trials). Interestingly, the

neural networks of Section 4.1 attained 63.3% and 64.8%

(LSTM, BERT respectively) on the entire test split used

by the neural-speakers (39,850 utterances). Crucially, both

humans and neural-nets failed gracefully in their predic-

tions and most confusion happened among subclasses of

the same, positive or negative category (we include confu-

sion matrices in the Supp. Mat.). For instance, if we bi-

narize the predictions made on the 9-way problem and the

ground-truth labels into positive vs. negative emotion sen-

timent (ignoring the something-else class); the experts, the

LSTM-based, and the BERT-based models, guess correctly

85.9%, 89.4%, 91.5% of the time, respectively.

Since we train our image classifiers to predict a distri-

bution of emotions, we select the maximizer of their output

and compare it with the ‘dominant’ emotion of the test im-

ages for which the emotion distribution is unimodal with

a mode covering more than 50% of the mass (38.1% of

the split). The attained accuracy for this sub-population is

60.2%.

ArtEmis Utterance Guess GT

“The scene reminds me of a perfect
Contentment (H) Awe

summer day.”

“This looks like me when I don’t want to
Something-Else (M) Amusement

get out of bed on Monday morning.”

“A proper mourning scene, and the
Sadness (H) Contentment

mood is fitting.”

Table 3. Examples showcasing the difficulty of emotion-

deduction from text. The first two examples’ interpretation de-

pends highly on personal experience (first & middle row). The

third example uses language that is emotionally subtle. (H):

human-guess, (M): neural-net guess, GT: ground-truth.

Neural speakers. In Table 4 we report the machine-

induced metrics described in Section 5. First, we observe

that on metrics that measure the linguistic similarity to held-

out utterances (BLEU, METEOR, etc.) our speakers fare

noticeably worse as compared to how these architectures

fare when trained and tested with objective datasets like

COCO-captions; e.g., BLEU-1 with SOTA [15] is 82.0.

This is expected given the analysis of Section 3 that shows

how ArtEmis is a significantly more diverse and subjective

dataset. Second, there is a noticeable difference in all met-

rics in favor of the four models trained with ArtEmis (de-

noted as Basic or Grounded) against the simpler baselines

that do not. This implies that we cannot simply reproduce

ArtEmis with ANP injection on objective data. It further

demonstrates how even among similar images the annota-

tions can be widely different, limiting the Nearest-Neighbor

(NN) performance. Third, on the emotion-alignment metric

the emotion-grounded variants fare significantly better than

their non-grounded version. These variants also produce a

percent of similes closer to the ground-truth’s percentage of

20.9. However, as seen by the Longest Common Subse-

quence (denoted as LCS) and the fraction of unique gener-

ations these variants also tend to create less novel captions.

Qualitative results of the emotion-grounded SAT speaker

are shown in Figure 5. As seen in Figure 5 this speaker can

create pragmatic explanations that can include visual analo-

gies, or nuanced associations in support of the grounding

emotion. More examples, including typical failure cases

and generations from other variants, are provided in the

Supplemental Material.

Turing test. For our last experiment, we performed a

user study taking the form of a Turing Test deployed in

AMT. First, we use a neural-speaker to make one expla-

nation for a test artwork and couple it with a randomly cho-

sen ground-truth for the same stimulus. Next, we show to

a user the two utterances in text, along with the artwork,

and ask them to make a multiple choice among 4 options.

These were to indicate either that one utterance was more

likely than the other as being made by a human explain-

ing their emotional reaction; or, to indicate that both (or
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Sadness 

“the woman looks like she is in  

pain and is suffering”

Fear 

“the sky looks like it is boiling fire” 

Disgust 

“the man 's body is contorted and  

the body parts are very pronounced”

Contentment 

“the green trees and grass makes 

me feel calm and meditative”

Something Else 

“I feel confused because i do not 

know what this is”

Awe 

“the mountain looks like it is floating in the water”

Excitement 

“the colors are bright and bold and 

the lines are very dynamic”

Amusement 

“the way the face is drawn is 

funny”

Figure 5. Examples of a neural speaker productions on unseen artworks. The produced explanations reflect a variety of dominant

emotional-responses (shown above each utterance in bold font). The top row shows examples where the deduced grounding emotion was

positive; the bottom row shows three examples where the deduced emotion was negative and an example from the something-else category.

Remarkably, the neural speaker can produce pragmatic explanations that include visual analogies: looks like it is floating, like it is boiling

fire, and nuanced explanations of affect: calm and meditative, pain and suffering. Examples sampled from the SAT-based variant.

none) were likely made by a human. We deploy this ex-

periment with 500 artworks, and repeat it separately for the

basic and the emotion-grounded (SAT) speakers. Encour-

agingly, 50.3% of the time the users signaled that the ut-

terances of the emotion-grounded speaker were on-par with

the human groundtruth (20.6%, were selected as the more

human-like of the pair, and 29.7% scored a tie). Further-

more, this variant also achieved significantly better results

than the basic speaker, which surpassed or tied to the hu-

man annotations 40% of the time (16.3% with a win and

and 23.7% as a tie). To explain this differential, we hypoth-

esize that grounding with the most likely emotion steered

the better-performing variant to create more commonplace

explanations which thus were harder to discriminate as non-

human plausible.

7. Conclusion

Human cognition has a strong affective component that
has been relatively undeveloped in AI systems. Language
that explains emotions generated at the sight of a visual
stimulus gives us a way to analyze how image content is
related to affect, enabling learning that can lead to agents
emulating human emotional responses through data-driven
approaches. In this paper, we take the first step in this direc-
tion through: (1) the release of the ArtEmis dataset that fo-

metric NN ANP M2(Basic/Grounded) SAT (Basic/Grounded)

BLEU-1 0.364 0.396 0.507 / 0.511 0.536 / 0.520

BLEU-2 0.139 0.134 0.282 / 0.282 0.290 / 0.280

BLEU-3 0.054 0.042 0.159 / 0.154 0.155 / 0.146

BLEU-4 0.022 0.014 0.095 / 0.090 0.087 / 0.079

METEOR 0.102 0.088 0.140 / 0.137 0.142 / 0.134

ROUGE-L 0.210 0.202 0.280 / 0.286 0.297 / 0.294

max-LCS 7.513 6.299 8.286 / 8.141 7.955 / 7.632

Unique-fraction 0.960 0.730 0.250 / 0.230 0.480 / 0.460

Emo-Alignment 0.327 0.406 0.410 / 0.521 0.406 / 0.519

Similes-fraction 0.200 0.001 0.709 / 0.437 0.481 / 0.268

Table 4. Neural speaker machine-based evaluations. NN: Near-

est Neighbor baseline, ANP: baseline-with-injected sentiments,

M2: Meshed Transformer, SAT: Show-Attend-Tell. The Basic

models use for grounding only the underlying image, while the

Grounded variants also input an emotion-label.

cuses on linguistic explanations for affective responses trig-
gered by visual artworks with abundant emotion-provoking
content; and (2) a demonstration of neural speakers that can
express emotions and provide associated explanations. The
ability to deal computationally with images’ emotional at-
tributes opens an exciting new direction in human-computer
communication and interaction.
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