
ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows

Jie An1∗ Siyu Huang2∗ Yibing Song3 Dejing Dou2 Wei Liu4 Jiebo Luo1

1University of Rochester 2Baidu Research 3Tencent AI Lab 4Tencent Data Platform

{jan6,jluo}@cs.rochester.edu {huangsiyu,doudejing}@baidu.com

yibingsong.cv@gmail.com wl2223@columbia.edu

Abstract

Universal style transfer retains styles from reference

images in content images. While existing methods have

achieved state-of-the-art style transfer performance, they

are not aware of the content leak phenomenon that the im-

age content may corrupt after several rounds of stylization

process. In this paper, we propose ArtFlow to prevent con-

tent leak during universal style transfer. ArtFlow consists

of reversible neural flows and an unbiased feature transfer

module. It supports both forward and backward inferences

and operates in a projection-transfer-reversion scheme. The

forward inference projects input images into deep features,

while the backward inference remaps deep features back to

input images in a lossless and unbiased way. Extensive ex-

periments demonstrate that ArtFlow achieves comparable

performance to state-of-the-art style transfer methods while

avoiding content leak.

1. Introduction

Neural style transfer aims at transferring the artistic

style from a reference image to a content image. Start-

ing from [11, 13], numerous works based on iterative op-

timization [12, 44, 30, 34] and feed-forward networks [23,

53, 3, 63] improve style transfer from either visual qual-

ity or computational efficiency. Despite tremendous efforts,

these methods do not generalize well for multiple types

of style transfer. Universal style transfer (UST) is pro-

posed to improve this generalization ability. The represen-

tative UST methods include AdaIN [20], WCT [32], and

Avatar-Net [45]. These methods are continuously extended

by [15, 22, 60, 1, 45, 33, 40, 31, 2, 56]. While achieving

favorable results as well as generalizations, these methods

are limited to disentangling and reconstructing image con-

tent during the stylization process. Fig. 1 shows some ex-

amples. Existing methods [32, 20, 45] effectively stylize

∗J. An and S. Huang contribute equally. This work is done when J.

An is an intern in Tencent AI Lab. The code is available at https://

github.com/pkuanjie/ArtFlow.

A
d

aI
N

W
C

T

(a) Content (c) Round 1 (d) Round 20(b) Style

A
v

at
ar

-N
et

Figure 1. Content leak visualization. Existing style transfer meth-

ods are not effective to preserve image content after several rounds

of stylization process as shown in (d), although their performance

is state-of-the-art in the first round as shown in (c).

content images in (c). However, image contents are cor-

rupted after several rounds of stylization process where we

send the reference image and the output result into these

methods. We define this phenomenon as content leak and

provide an analysis in the following:

Content leak appears due to the design of UST methods

that usually consist of three parts: the first part is a fixed en-

coder for image embedding, the second part is a learnable

decoder to remap deep features back to images, and the third

part is a style transfer module based on deep features. We

observe that the first part is fixed. The appearance of content

leak indicates the accumulated image reconstruction errors

brought by the decoder, or the biased training process of ei-

ther the decoder or the style transfer module. Specifically,

the content leaks of WCT [32] and its variants [31, 40, 56]

is mainly caused by the image reconstruction error of the

decoder. The content leak of AdaIN series [20, 22, 60] and

Avatar-Net [45] are additionally caused by the biased de-

coder training and a biased style transfer module, respec-

tively. Sec. 3 shows more analyses.

In this work, we propose an unbiased style transfer

framework called ArtFlow to robustify exisiting UST meth-

ods upon overcoming content leak. Different from the

prevalent encoder-transfer-decoder structure, ArtFlow in-

862

https://github.com/pkuanjie/ArtFlow
https://github.com/pkuanjie/ArtFlow


Encoder T Decoder

<latexit sha1_base64="b9hFIKv11REtT+yoCRluE9Oj0gY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi94q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4a7HeuWKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1b0/r9Su8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QMRMI2n</latexit>

Ic
<latexit sha1_base64="eIhn9OZP49FeRz0Ek6p8+vDZTm8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi94q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4a6ne+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1b0/r9Su8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QMpcI23</latexit>

Is
Out PFN T

<latexit sha1_base64="b9hFIKv11REtT+yoCRluE9Oj0gY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi94q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4a7HeuWKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1b0/r9Su8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QMRMI2n</latexit>

Ic
<latexit sha1_base64="eIhn9OZP49FeRz0Ek6p8+vDZTm8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi94q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4a6ne+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1b0/r9Su8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QMpcI23</latexit>

Is
Out

(a) Universal Style Transfer Framework (b) ArtFlow Framework

Figure 2. A comparison between the auto-encoder based style

transfer framework and the proposed ArtFlow framework.

troduces both forward and backward inferences to formu-

late a projection-transfer-reversion pipeline. This pipeline

is based on neural flows [5] and only contains a Projection

Flow Network (PFN) in conjunction with an unbiased fea-

ture transfer module. The neural flow refers to a number

of deep generative models [5, 18] which estimate density

through a series of reversible transformations. Our PFN

follows the neural flow model GLOW [28] which consists

of a chain of revertible operators including activation nor-

malization layers, invertible 1 × 1 convolutions, and affine

coupling layers [6]. Fig. 2 shows the structure of ArtFlow.

It first projects both the content and style images into latent

representations via forward inference. Then, it makes unbi-

ased style transfer upon deep features and reconstructs the

stylized images via reversed feature inference.

The proposed PFN avoids the image reconstruction er-

ror and image recovery bias which usually appear in the

encoder-decoder framework. PFN allows unbiased and

lossless feature extraction and image recovery. To this end,

PFN facilitates the comparison of style transfer modules

in a fair manner. Based on PFN, we perform theoretical

and empirical analyses of the inherent biases of style trans-

fer modules adopted by WCT, AdaIN, and Avatar-Net. We

show that the transfer modules of AdaIN and WCT are un-

biased, while the transfer module of Avatar-Net is biased

towards style. Consequently, we adopt the transfer modules

of AdaIN and WCT as the transfer modules for ArtFlow to

achieve an unbiased style transfer.

The contributions of this work are three-fold:

• We reveal the Content Leak issue of the state-of-the-

art style transfer algorithms and identify the three main

causes of the Content Leak in AdaIN [20], WCT [32],

and Avatar-Net [45].

• We propose an unbiased, lossless, and reversible net-

work named PFN based on neural flows, which allows

both theoretical and empirical analyses of the inherent

biases of the popular style transfer modules.

• Based on PFN in conjunction with an unbiased style

transfer module, we propose a novel style transfer

framework, i.e., ArtFlow, which achieves comparable

style transfer results to state-of-the-art methods while

avoiding the Content Leak issue.

2. Related Work

Image Style Transfer. Image style transfer is a long-

Figure 3. Loss curves of AdaIN [20] training: Using both content

and style losses vs. only using the content loss.

standing research topic. Before deep neural networks [49,

37, 59, 57] are applied to the style transfer, several algo-

rithms based on stroke rendering [16], image analogy [17,

46, 10, 48, 35, 51, 50], and image filtering [61] are pro-

posed to make artistic style transfer. These methods usu-

ally have to trade-off between style transfer quality, gen-

eralization, and efficiency. Gatys et al. [11, 13] introduce

a Gram loss upon deep features to represent image styles,

which opens up the neural style transfer era. Inspired by

Gatys et al., numerous neural style transfer methods have

been proposed. We categorize these methods into one style

per model [29, 54, 23, 53, 55, 58, 44, 30], multi-style per

model [7, 3, 19, 14], and universal style transfer meth-

ods [4, 32, 20, 45, 15, 2, 56, 38, 60, 1] with respect to their

generalization abilities. In this paper, our ArtFlow belongs

to universal style transfer and it consists of reversible neural

flows. The forward and backward inferences are utilized for

lossless and unbiased image recovery.

Neural flows. Neural flows refer to a subclass of deep gen-

erative models, which learns the exact likelihood of high

dimensional observations (e.g., natural images, texts, and

audios) through a chain of reversible transformations. As

a pioneering work of neural flows, NICE [5] is proposed

to transform low dimensional densities to high dimensional

observations with a stack of affine coupling layers. Fol-

lowing NICE, a series of neural flows, including RealNVP

[6], GLOW [28], and Flow++ [18], are proposed to improve

NICE with more powerful and flexible reversible transfor-

mations. The recently proposed neural flows [28, 18, 39]

are capable of synthesizing high-resolution natural/face im-

ages, realistic speech data [43, 26], and performing make-

up transfer [8]. In this work, the proposed ArtFlow consists

of a reversible network PFN and an unbiased feature trans-

fer module. The content leak can be addressed via loss-

less forward and backward inferences and unbiased feature

transfer. In comparison, BeautyGlow [8] shares the similar

spirits but is not applicable for unbiased style transfer.

3. Pre-analysis

Before introducing the proposed ArtFlow, we first make

a pre-analysis to uncover the Content Leak phenomenon of

the state-of-the-art style transfer algorithms and analyze the

863



(a) Input (b) Round 1 (c) Round 20 (d) Round 40

Figure 4. Multiple rounds of image encoding and decoding using

the auto-encoder of AdaIN [20].

causes of Content Leak. We make the aforementioned pre-

analysis by answering two questions: What Content Leak is

and why Content Leak happens.

3.1. What is Content Leak?

For a style transfer algorithm, Content Leak occurs be-

cause the stylization results lose some content information.

Although the existing state-of-the-art style transfer algo-

rithms, e.g., AdaIN [20], WCT [32], and Avatar-Net [45],

can produce good style transfer results, they still suffer from

the Content Leak issue. Since it is hard to directly extract

the content information from the stylized image and com-

pare it with the input content image, we adopt an alterna-

tive way to show empirical evidence of the Content Leak

phenomenon. More specifically, we first perform the style

transfer with an input content-style pair based on a style

transfer algorithm. We then take the stylized image as the

new content and repeatedly perform the style transfer pro-

cess for 20 times. Fig. 1 shows the results of our exper-

iments for AdaIN (row 1), WCT (row 2), and Avatar-Net

(row 3). According to Fig. 1, when we perform style trans-

fer for 20 rounds, we can hardly recognize any detail of the

content image. Such an empirical evidence indicates that

the Content Leak phenomenon occurs in all AdaIN, WCT,

and Avatar-Net. In the following, we discuss the causes of

the Content Leak, which imply that the Content Leak issue

also exists in other state-of-the-art style transfer algorithms.

3.2. Why Does Content Leak Happen?

Taking AdaIN [15], WCT [32], and Avatar-Net [45] as

three representatives of style transfer algorithms, we study

the causes of the Content Leak phenomenon.

Reconstruction error. A straightforward explanation to

Content Leak is that the decoder of existing style transfer

algorithms cannot achieve lossless image reconstruction of

the input content image. For example, all AdaIN, WCT,

and Avatar-Net adopt VGG19 [47] as the encoder and train

a structurally symmetrical decoder to invert the features of

VGG19 back to the image space. Although an image recon-

struction loss [32] or a content loss [20] is used to train the

decoder, Li et al. [32] acknowledge that the decoder is far

from perfect due to the loss of spatial information brought

by the pooling operations in the encoder. Consequently, the

accumulated image reconstruction error may gradually dis-

turb the content details and lead to the Content Leak.

Biased decoder training. The above-mentioned recon-

struction error can only partially explain the Content Leak

phenomenon. In addition, biased decoder training is an-

other cause. We take the training scheme of AdaIN as an

example to explain how its loss function settings lead to

Content Leak. AdaIN trains the decoder with a weighted

combination of a content loss Lc and a style loss Ls, where

Lc = ‖F (G(t))− t‖2, (1)

Ls =
∑

i=1...L

‖µ(φi(G(t)))− µ(φi(s))‖2 (2)

+
∑

i=1...L

‖σ(φi(G(t)))− σ(φi(s))‖2.

Here t denotes the output of the adaptive instance normal-

ization, F and G represent the encoder and the decoder,

respectively, φi denotes a layer in VGG19 used to com-

pute the style loss, and µ, σ represent the mean and stan-

dard deviation of feature maps, respectively. Due to Ls, the

decoder is trained to trade off between Lc and Ls, rather

than trying to reconstruct images perfectly. Fig. 3 shows

the training loss curves of AdaIN with and without Ls.

When we train the decoder of AdaIN with only Lc, the con-

verged value of Lc (cyan curve) is significantly smaller than

training with the weighted combination of Lc and Ls (blue

curve). Consequently, the auto-encoder of AdaIN is biased

towards rendering more artistic effects, which causes Con-

tent Leak. Fig. 4 shows the image reconstruction results

by propagating through the auto-encoder of AdaIN for 50

rounds. We take the output of the auto-encoder in the previ-

ous round as the input of the next round and perform image

reconstruction repeatedly. With the increase of the infer-

ence rounds, weird artistic patterns gradually appear in the

produced results, which indicates that the auto-encoder of

AdaIN may memorize image styles in training and bias to-

wards the training styles in inference.

Biased style transfer module. Biased style transfer mod-

ule is another cause of the Content Leak. We take the Style

Decorator in Avatar-Net as an example. For the normalized

content feature fc and style feature fs, the key mechanism

of the Style Decorator is motivated by the deep image anal-

ogy [35], which is composed of two steps. In the first step,

the algorithm finds a corresponding patch in fs for every

patch in fc according to the content similarity between two

patches. In the next step, fcs is formed by replacing patches

in fc with the corresponding patches in fs. Since such a

patch replacement is irreversible, fc cannot be recovered

from fcs, which makes fcs be biased towards style and con-

sequently causes the Content Leak phenomenon.

We summarize and illustrate three main causes of Con-

tent Leak in Fig. 5. While the reconstruction error may dis-

turb the content information in the output image, the biased

864



<latexit sha1_base64="W/41vBkDcdn/twQMk+7h3EZPSv8=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoo10EYwLJEfY2m2TJ3u6xOyeEIz/CxkIRW3+Pnf/GTXKFJj4YeLw3w8y8KJHCou9/e4WV1bX1jeJmaWt7Z3evvH/waHVqGG8wLbVpRdRyKRRvoEDJW4nhNI4kb0ajm6nffOLGCq0ecJzwMKYDJfqCUXRS866b6RQn3XLFr/ozkGUS5KQCOerd8lenp1kac4VMUmvbgZ9gmFGDgkk+KXVSyxPKRnTA244qGnMbZrNzJ+TEKT3S18aVQjJTf09kNLZ2HEeuM6Y4tIveVPzPa6fYvwozoZIUuWLzRf1UEtRk+jvpCcMZyrEjlBnhbiVsSA1l6BIquRCCxZeXyeNZNbio+vfnldp1HkcRjuAYTiGAS6jBLdShAQxG8Ayv8OYl3ov37n3MWwtePnMIf+B9/gCXdI+8</latexit>

Iout

<latexit sha1_base64="djRhg0G2LUAFch7eeP0VDknmiDo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVtXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzEOM7g==</latexit>

f

F

G

<latexit sha1_base64="izKm7+vwrVDURZIXw1pnbDyYoJU=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWZE0WXRje4q2Ae0Q8mkmTY2kwxJRihD/8GNC0Xc+j/u/BvTdhbaeiBwOOdecs8JE8GN9bxvVFhZXVvfKG6WtrZ3dvfK+wdNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0M/VbT0wbruSDHScsiMlA8ohTYp3UvOtlXE565YpX9WbAy8TPSQVy1Hvlr25f0TRm0lJBjOn4XmKDjGjLqWCTUjc1LCF0RAas46gkMTNBNrt2gk+c0seR0u5Ji2fq742MxMaM49BNxsQOzaI3Ff/zOqmNrgKXJ0ktk3T+UZQKbBWeRsd9rhm1YuwIoZq7WzEdEk2odQWVXAn+YuRl0jyr+hdV7/68UrvO6yjCERzDKfhwCTW4hTo0gMIjPMMrvCGFXtA7+piPFlC+cwh/gD5/AKxljzE=</latexit>

Iin

<latexit sha1_base64="W/41vBkDcdn/twQMk+7h3EZPSv8=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoo10EYwLJEfY2m2TJ3u6xOyeEIz/CxkIRW3+Pnf/GTXKFJj4YeLw3w8y8KJHCou9/e4WV1bX1jeJmaWt7Z3evvH/waHVqGG8wLbVpRdRyKRRvoEDJW4nhNI4kb0ajm6nffOLGCq0ecJzwMKYDJfqCUXRS866b6RQn3XLFr/ozkGUS5KQCOerd8lenp1kac4VMUmvbgZ9gmFGDgkk+KXVSyxPKRnTA244qGnMbZrNzJ+TEKT3S18aVQjJTf09kNLZ2HEeuM6Y4tIveVPzPa6fYvwozoZIUuWLzRf1UEtRk+jvpCcMZyrEjlBnhbiVsSA1l6BIquRCCxZeXyeNZNbio+vfnldp1HkcRjuAYTiGAS6jBLdShAQxG8Ayv8OYl3ov37n3MWwtePnMIf+B9/gCXdI+8</latexit>

Iout

<latexit sha1_base64="djRhg0G2LUAFch7eeP0VDknmiDo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVtXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzEOM7g==</latexit>

f

F

G

<latexit sha1_base64="izKm7+vwrVDURZIXw1pnbDyYoJU=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWZE0WXRje4q2Ae0Q8mkmTY2kwxJRihD/8GNC0Xc+j/u/BvTdhbaeiBwOOdecs8JE8GN9bxvVFhZXVvfKG6WtrZ3dvfK+wdNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0M/VbT0wbruSDHScsiMlA8ohTYp3UvOtlXE565YpX9WbAy8TPSQVy1Hvlr25f0TRm0lJBjOn4XmKDjGjLqWCTUjc1LCF0RAas46gkMTNBNrt2gk+c0seR0u5Ji2fq742MxMaM49BNxsQOzaI3Ff/zOqmNrgKXJ0ktk3T+UZQKbBWeRsd9rhm1YuwIoZq7WzEdEk2odQWVXAn+YuRl0jyr+hdV7/68UrvO6yjCERzDKfhwCTW4hTo0gMIjPMMrvCGFXtA7+piPFlC+cwh/gD5/AKxljzE=</latexit>

Iin

<latexit sha1_base64="W/41vBkDcdn/twQMk+7h3EZPSv8=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoo10EYwLJEfY2m2TJ3u6xOyeEIz/CxkIRW3+Pnf/GTXKFJj4YeLw3w8y8KJHCou9/e4WV1bX1jeJmaWt7Z3evvH/waHVqGG8wLbVpRdRyKRRvoEDJW4nhNI4kb0ajm6nffOLGCq0ecJzwMKYDJfqCUXRS866b6RQn3XLFr/ozkGUS5KQCOerd8lenp1kac4VMUmvbgZ9gmFGDgkk+KXVSyxPKRnTA244qGnMbZrNzJ+TEKT3S18aVQjJTf09kNLZ2HEeuM6Y4tIveVPzPa6fYvwozoZIUuWLzRf1UEtRk+jvpCcMZyrEjlBnhbiVsSA1l6BIquRCCxZeXyeNZNbio+vfnldp1HkcRjuAYTiGAS6jBLdShAQxG8Ayv8OYl3ov37n3MWwtePnMIf+B9/gCXdI+8</latexit>

Iout

<latexit sha1_base64="djRhg0G2LUAFch7eeP0VDknmiDo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVtXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzEOM7g==</latexit>

f

F

G

<latexit sha1_base64="izKm7+vwrVDURZIXw1pnbDyYoJU=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWZE0WXRje4q2Ae0Q8mkmTY2kwxJRihD/8GNC0Xc+j/u/BvTdhbaeiBwOOdecs8JE8GN9bxvVFhZXVvfKG6WtrZ3dvfK+wdNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0M/VbT0wbruSDHScsiMlA8ohTYp3UvOtlXE565YpX9WbAy8TPSQVy1Hvlr25f0TRm0lJBjOn4XmKDjGjLqWCTUjc1LCF0RAas46gkMTNBNrt2gk+c0seR0u5Ji2fq742MxMaM49BNxsQOzaI3Ff/zOqmNrgKXJ0ktk3T+UZQKbBWeRsd9rhm1YuwIoZq7WzEdEk2odQWVXAn+YuRl0jyr+hdV7/68UrvO6yjCERzDKfhwCTW4hTo0gMIjPMMrvCGFXtA7+piPFlC+cwh/gD5/AKxljzE=</latexit>

Iin
T

<latexit sha1_base64="LN5MpOS3XwzpOC3TV6a1k0M0LRQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvPHFtRKwecZpwP6IjJULBKFqp0x9TzMLZoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JmlSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/q3lXdfbisNW6LOMpwAqdwDh5cQwPuoQktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB5Y0j7s=</latexit>

f̂
<latexit sha1_base64="W/41vBkDcdn/twQMk+7h3EZPSv8=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoo10EYwLJEfY2m2TJ3u6xOyeEIz/CxkIRW3+Pnf/GTXKFJj4YeLw3w8y8KJHCou9/e4WV1bX1jeJmaWt7Z3evvH/waHVqGG8wLbVpRdRyKRRvoEDJW4nhNI4kb0ajm6nffOLGCq0ecJzwMKYDJfqCUXRS866b6RQn3XLFr/ozkGUS5KQCOerd8lenp1kac4VMUmvbgZ9gmFGDgkk+KXVSyxPKRnTA244qGnMbZrNzJ+TEKT3S18aVQjJTf09kNLZ2HEeuM6Y4tIveVPzPa6fYvwozoZIUuWLzRf1UEtRk+jvpCcMZyrEjlBnhbiVsSA1l6BIquRCCxZeXyeNZNbio+vfnldp1HkcRjuAYTiGAS6jBLdShAQxG8Ayv8OYl3ov37n3MWwtePnMIf+B9/gCXdI+8</latexit>

Iout

<latexit sha1_base64="djRhg0G2LUAFch7eeP0VDknmiDo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVtXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzEOM7g==</latexit>

f

Forward

Reverse

<latexit sha1_base64="izKm7+vwrVDURZIXw1pnbDyYoJU=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWZE0WXRje4q2Ae0Q8mkmTY2kwxJRihD/8GNC0Xc+j/u/BvTdhbaeiBwOOdecs8JE8GN9bxvVFhZXVvfKG6WtrZ3dvfK+wdNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0M/VbT0wbruSDHScsiMlA8ohTYp3UvOtlXE565YpX9WbAy8TPSQVy1Hvlr25f0TRm0lJBjOn4XmKDjGjLqWCTUjc1LCF0RAas46gkMTNBNrt2gk+c0seR0u5Ji2fq742MxMaM49BNxsQOzaI3Ff/zOqmNrgKXJ0ktk3T+UZQKbBWeRsd9rhm1YuwIoZq7WzEdEk2odQWVXAn+YuRl0jyr+hdV7/68UrvO6yjCERzDKfhwCTW4hTo0gMIjPMMrvCGFXtA7+piPFlC+cwh/gD5/AKxljzE=</latexit>

Iin
T

<latexit sha1_base64="LN5MpOS3XwzpOC3TV6a1k0M0LRQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvPHFtRKwecZpwP6IjJULBKFqp0x9TzMLZoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JmlSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/q3lXdfbisNW6LOMpwAqdwDh5cQwPuoQktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB5Y0j7s=</latexit>

f̂

(a) Reconstruction Error (b) Biased Image Recovery (c) Biased Transfer Module (d) ArtFlow: Unbiased Network/Transfer

Figure 5. Causes of the Content Leak phenomenon. (a) Reconstruction error, i.e., the content of output image is disturbed. (b) Biased image

recovery, i.e., the output image shifts to a biased style via the decoder. (c) Biased style transfer module, i.e., the stylized feature shifts to a

biased style via feature stylization. The red dash lines in (b) and (c) denote unbiased positions of the manifolds. (d) The proposed ArtFlow

scheme, where both the network and the transfer module are not biased, while the backbone network does not introduce any reconstruction

error. Notations – F and G: encoder and decoder used by existing style transfer algorithms, respectively. T : style transfer module, e.g.,

AdaIN or WCT. Iin and Iout: input and output images. f and f̂ : vanilla and stylized deep features of Iin.

A
ct

n
o

rm

A
d

d
it

iv
e 

C
o

u
p

li
n

g

8x

1
x

1
 C

o
n

v

S
q

u
ee

ze

Content

Style

Output

S
q

u
ee

ze

A
ct

n
o

rm

A
d

d
it

iv
e 

C
o

u
p

li
n

g

8x

1
x

1
 C

o
n

v

 
<latexit sha1_base64="qVD4yMYsflyHDPn6/JWBpnLG5ow=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPZZv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPz1ejcQ=</latexit>

fc

<latexit sha1_base64="Y2gzOpTRfmF/fFym2eEnUhtH2D4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPZ1v1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP1WejdQ=</latexit>

fs

<latexit sha1_base64="zAnkwkWkA80pWk81D5qkvnpdLuU=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUASwuxkNhkzO7PM9AphyT948aCIV//Hm3/jJNmDJhY0FFXddHeFiRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNq1PDeJ1pqU0rpJZLoXgdBUreSgyncSh5MxzdTv3mEzdWaPWA44R3YzpQIhKMopMaUS9jdtIrlf2KPwNZJkFOypCj1it9dfqapTFXyCS1th34CXYzalAwySfFTmp5QtmIDnjbUUVjbrvZ7NoJOXVKn0TauFJIZurviYzG1o7j0HXGFId20ZuK/3ntFKPrbiZUkiJXbL4oSiVBTaavk74wnKEcO0KZEe5WwobUUIYuoKILIVh8eZk0zivBZcW/vyhXb/I4CnAMJ3AGAVxBFe6gBnVg8AjP8ApvnvZevHfvY9664uUzR/AH3ucP11+PTQ==</latexit>

fcs

S
ty

le
 T

an
sf

er
 M

o
d

u
le

Content Feature

Style Feature

Stylized Feature
Projection: Forward Inference Reversion: Reverse Inference

Figure 6. The framework of the proposed ArtFlow. For style transfer, Artflow works in a projection-transfer-reversion scheme. Projection:

Extracting deep features of content and style images via the forward inference. Transfer: Transferring the content and style features to the

stylized feature via the style transfer module. Reversion: Transforming the stylized feature to the stylized image via the reverse inference.

image recovery and the biased transfer module may lead to

a style shift in the output image.

4. Method

4.1. Overview of the ArtFlow Framework

In this work, we present a novel unbiased style transfer

framework named ArtFlow to address the Content Leak is-

sue of the state-of-the-art style transfer approaches. Differ-

ent from the encoder-transfer-decoder scheme commonly

used in existing neural style transfer algorithms, ArtFlow

performs image style transfer through a projection-transfer-

reversion scheme. As shown in Fig. 6, ArtFlow relies on a

reversible neural flow model, named Projection Flow Net-

work (PFN). In the projection step, the content images and

style images are fed into PFN for lossless deep feature ex-

traction via the forward propagation of PFN. In the transfer

step, the content and style features are transferred to the

stylized feature with an unbiased style transfer module. In

the reversion step, the stylized feature is reconstructed to

a stylized image via the reverse propagation of PFN. Since

the information flow in PFN and the unbiased style transfer

module are both lossless and unbiased, ArtFlow achieves

unbiased image style transfer to avoid the Content Leak.

In the following, we first discuss the details of PFN in

Section 4.2. Then, we discuss the choice of the unbiased

style transfer module by performing both theoretical and

quantitative analyses of the inherent biases of existing trans-

fer modules in Section 4.3.

4.2. Projection Flow Network

Projection Flow Network (PFN) serves as both the deep

feature extractor and image synthesizer of our ArtFlow

framework. In this work, we construct PFN by following

the effective Glow model [28]. As shown in Fig. 6, PFN

consists of a chain of three learnable reversible transfor-

mations, i.e., additive coupling, invertible 1×1 convolution,

and Actnorm. All the components of PFN are reversible,

making PFN fully reversible that the information is lossless

during the forward and reverse propagation. In the follow-

ing, we describe the three reversible transformations.

Additive coupling. Dinh et al. [5, 6] proposed an expres-

sive reversible transformation named affine coupling layer.

In this work, we adopt a special case of affine coupling, i.e.,

additive coupling, for PFN. The forward computation of ad-

ditive coupling is

xa, xb = split(x)
yb = NN(xa) + xb

y = concat(xa, yb).

865



The split() function splits a tensor into two halves along the

channel dimension. NN() is (any) neural network where

the input and the output have the same shape. The concat()
function concatenates two tensors along the channel dimen-

sion. The reverse computation of additive coupling can be

easily derived.

We observe that a flow model with additive coupling lay-

ers is sufficient to handle the style transfer task in exper-

iments. Moreover, the additive coupling is more efficient

and stable than the affine coupling in model training. There-

fore, we employ additive coupling instead of affine coupling

as the expressive transformation layer in PFN.

Invertible 1×1 convolution. Since the additive coupling

layer only processes a half of the feature maps, it is nec-

essary to permute the channel dimensions of feature maps,

so that each dimension can affect all the other dimensions

[5, 6]. We follow Glow [28] to use a learnable invertible

1×1 convolution layer for flexible channel permutation, as

yi,j = Wxi,j . (3)

W is the weight matrix of shape c×c, where c is the channel

dimension of tensor x and y. Its reverse function is xi,j =
W−1yi,j .

Actnorm. We follow Glow [28] to use the activation

normalization layer (Actnorm) as an alternative to batch

normalization [21]. Actnorm performs per-channel affine

transformation on tensor x, as

yi,j = w ⊙ xi,j + b, (4)

where i, j denote a spatial position on the tensor. w and b
are the scale and bias parameters of affine transformation,

and they are learnable in model training. The reverse funci-

ton is xi,j = (yi,j − b)/w.

In addition to the three reversible transformations, the

squeeze operation is inserted into certain parts of PFN to

reduce the spatial size of 2D feature maps. The squeeze
operation splits the features into smaller patches along the

spatial dimension and then concatenates the patches along

the channel dimension.

4.3. Unbiased ContentStyle Separation

Which style transfer module should ArtFlow use to

achieve the unbiased style transfer? To answer this ques-

tion, we first make a theoretical analysis of the biases of

two popular style transfer modules, i.e., the adaptive in-

stance normalization in AdaIN, and the whitening and col-

oring transforms in WCT.

The mechanism of the universal style transfer meth-

ods can be regarded as a natural evolution of the bilin-

ear model proposed by Tenenbaum and Freeman in [52],

which separates an image into a content factor C and a

style factor S and then makes style transfer by replacing

the style factor S in the content image with that in the tar-

get image. Similarly, the universal style transfer methods

assume that the content information and the style infor-

mation in the deep feature space are disentangled explic-

itly [20, 32, 31, 40, 2, 1, 56, 22, 60] or implicitly [4, 45].

For example, AdaIN [20] separates deep features into nor-

malized feature maps and mean/std vectors, which can be

regarded as the content factor C and style factor S, respec-

tively.

Following the theoretical framework of the Bilinear

Model [52], we can define the unbiased style transfer as:

Definition 1 Suppose we have a bilinear style transfer

module fcs = C(fc)S(fs), where C, S denote the con-

tent factor and the style factor in the bilinear model, re-

spectively. fcs is an unbiased style transfer module if

C(fcs) = C(fc) and S(fcs) = S(fs).

Based on Def. 1, we have the following two theorems.

Theorem 1 The adaptive instance normalization in AdaIN

is an unbiased style transfer module.

Theorem 2 The whitening and coloring transform in WCT

is an unbiased style transfer module.

The proofs for Theorems 1 and 2 can be found in the supple-

mentary material. The Style Decorator in Avatar-Net [45]

does not fit the bilinear model, while the empirical analy-

sis in Sec. 3.2 shows that Style Decorator is a biased style

transfer module.

In addition to the theoretical analyses, we also quanti-

tatively verify the unbiased property of the transfer mod-

ules in AdaIN and WCT. Quantitatively studying the prop-

erty of popular style transfer modules is an unsolved ques-

tion because the auto-encoder used by existing universal

style transfer methods has significant image reconstruction

errors and may be biased towards styles as discussed in

Sec. 3.2. Consequently, the produced style transfer results

using auto-encoders cannot precisely reflect the effects of

the style transfer modules upon deep features. The pro-

posed PFN addresses this issue. Specifically, if we take the

forward inference and the reverse inference of the proposed

PFN as the encoder and decoder, respectively, we can obtain

a lossless and unbiased “auto-encoder” for style transfer,

which can avoid the influence of the image reconstruction

error and the biased image recovery brought by the decoder.

By using the proposed PFN as the lossless feature projec-

tor/inverter, we make a quantitative analysis about the con-

tent and style reconstruction errors of the transfer modules

in AdaIN and WCT. Fig. 7 demonstrates two findings: 1)

Considering (a) vs. (b) and (c) vs. (d), the proposed PFN can

indeed make lossless and unbiased content and style recon-

struction while the auto-encoder based on VGG19 cannot.

866



(a) AdaIN

(c) WCT (d) ArtFlow+WCT

(b) ArtFlow+AdaIN

Figure 7. Content error between F (G(fcs)) and fc and the style

error between F (G(fcs)) and fs. ArtFlow with the transfer mod-

ules of AdaIN/WCT achieves lossless content/style reconstruction.

2) (b) and (d) quantitatively verify that the transfer module

of AdaIN and WCT are unbiased.

Based on theoretical and quantitative analyses to transfer

modules in AdaIN and WCT, we let the adaptive instance

normalization and the whitening and coloring transforms be

two options for ArtFlow to achieve unbiased style transfer.

5. Experiments

To demonstrate that ArtFlow can achieve unbiased style

transfer, we conduct extensive experiments. We make a

comparison between the proposed ArtFlow and state-of-

the-art style transfer algorithms in terms of stylization ef-

fect, computing time, content leak, and content factor vi-

sualization. Moreover, we present a new interesting appli-

cation named reverse style transfer, which can only be per-

formed by ArtFlow. More qualitative results, portrait style

transfer images, and user study results are available in sup-

plementary materials.

5.1. Experimental Settings

Dataset. Following the existing style transfer methods

[20, 32], we use the MS-COCO dataset [36] as the content

images and the WikiArt dataset [41] as the style images. In

training, we resize the input images to 512×512 and ran-

domly crop each image to 256×256.

Network architecture. As shown in Fig. 6, the proposed

PFN consists of two flow blocks, where each block con-

tains eight neural flows. Each flow is a stack of an Actnorm

layer, an invertible 1×1 convolution, and an additive cou-

pling layer. More studies on the number of blocks and flows

can be found in the supplementary material.

Training. We implement our ArtFlow on the PyTorch

framework [42]. We train ArtFlow for 60,000 iterations us-

ing an Adam optimizer [27] with a batch size of 2, an initial

learning rate of 1e-4, and a learning rate decay of 5e-5. The

training of ArtFlow takes about 12 hours on a single RTX

2080Ti GPU. We adopt the content loss Lc in Eq. 1 and

style loss Ls in Eq. 2 as the training objective of ArtFlow.

The loss weights of Lc and Ls are set to 0.1 and 1, respec-

tively.

5.2. Style Transfer Results

To demonstrate the style transfer ability of the proposed

ArtFlow, we compare the style transfer results of ArtFlow in

conjunction with the transfer module of AdaIN/WCT with

the state-of-the-art universal style transfer algorithms, i.e.,

StyleSwap [4], AdaIN [20], WCT [32], LinearWCT [31],

OptimalWCT [40], and Avatar-Net [45].

Visual comparison. Fig. 8 shows the style transfer results

by all the compared algorithms. While all the compared

methods can produce good style transfer results, different

methods create distinct artistic effects, e.g., WCT and Op-

timalWCT can create more colorful artistic effects, Linear-

WCT, AdaIN, ArtFlow can preserve more content details,

and Avatar-Net can render more fine textures. The proposed

ArtFlow in conjunction with AdaIN/WCT can produce vi-

sually comparable style transfer results to the state-of-the-

art style transfer algorithms. It is worth noting that the style

transfer results by ArtFlow preserve more details of the con-

tent image (please zoom in to compare the details of the

billboards in the top row results), which confirms that Art-

Flow corrects the biased style transfer issue of the compared

methods and avoids the Content Leak. Moreover, we also

perform portrait style transfer with the proposed ArtFlow.

To train the portrait style transfer model, we use FFHQ [25]

as the content and Metfaces [24] as the style. As Fig. 9

shows, ArtFlow can also achieve good artistic style transfer

results on portrait images.

Quantitative comparison. In addition to the visual com-

parison, we also make a quantitative comparison. Inspired

by [62], we adopt the Structural Similarity Index (SSIM)

and the content loss between the original contents and styl-

ized images as the metric to measure the performance of

the content information preservation in style transfer. To

measure the ability to create artistic effects of a style trans-

fer algorithm, inspired by [32], we use the mean square

error of Gram matrices between the style and the style-

transferred images. As Tab. 1 shows, ArtFlow achieves

the highest SSIM score, which indicates that the proposed

methods have a stronger ability to preserve more content

information. While StyleSwap achieves the best content

loss and a good SSIM score, its style transfer results do

not look as good as the results produced by ArtFlow. Re-

garding the Gram loss, since ArtFlow mainly addresses the

867



(a) Content (b) Style (c) StyleSwap (d) AdaIN (e) WCT

(f) LinearWCT (g) OptimalWCT (h) Avatar-Net (i) ArtFlow+AdaIN (j) ArtFlow+WCT

Figure 8. Style transfer results of the state-of-the-art universal style transfer algorithms.

Table 1. Quantitative evaluation results of universal stylization methods. The computing time is evaluated on 512×512 images.
Method StyleSwap AdaIN WCT LinearWCT OptimalWCT Avatar-Net Self-Contained ArtFlow+AdaIN ArtFlow+WCT

SSIM ↑ 0.44 0.29 0.27 0.35 0.21 0.31 0.23 0.45 0.47

Content Loss ↓ 2.22 3.10 3.35 2.57 4.33 3.35 3.00 2.58 2.80

Gram Loss ↓ 0.00482 0.00127 0.00074 0.00093 0.00035 0.00099 0.00473 0.00098 0.00078

Time (seconds) ↓ 0.272 0.064 0.997 0.092 1.808 9.129 0.156 0.408 0.428

(a) Content (b) Style (c) ArtFlow

Figure 9. Portrait style transfer results using the proposed ArtFlow.

Content Leak issue and corrects the biases towards style im-

ages, it is reasonable that ArtFlow does not achieve the low-

est Gram loss. It is worth noting that ArtFlow in conjunc-

tion with AdaIN achieves a lower Gram loss than vanilla

AdaIN while ArtFlow in conjunction with WCT has a sim-

ilar Gram loss compared with WCT itself, indicating that

ArtFlow can solve the Content Leak issue without hurt-

ing the stylization ability of AdaIN/WCT. In the third row

of Tab. 1, we also show the computing time for all the

compared methods. ArtFlow+AdaIN is slower than vanilla

AdaIN since PFN does not adopt any pooling operations.

Therefore, it requires more computations in the higher lay-

ers than AdaIN. Comparing with WCT, since ArtFlow does

not need the multi-level stylization strategy used by WCT,

ArtFlow+WCT is faster than vanilla WCT.

5.3. Content Leak

As discussed in Sec. 3, if the Content Leak happens,

the content information would gradually disintegrate when

we perform style transfer repeatedly. To demonstrate that

the proposed ArtFlow can avoid the Content Leak phe-

nomenon, we use the above way to visualize and compare

the Content Leak phenomenon in AdaIN, WCT, Avatar-Net,

and their counterparts in conjunction with the proposed Art-

Flow. We also show the result by [9] because it also ad-

dresses the content leak issue. As Fig. 10 shows, the Con-

tent Leak appears in vanilla AdaIN, WCT, Avatar-Net, and

Self-Content [9] when we perform the style transfer for 20

rounds. In contrast, when we replace the VGG19 based

auto-encoder with the proposed PFN in AdaIN/WCT, the

Content Leak disappears completely, which indicates that

ArtFlow in conjunction with AdaIN/WCT can effectively

solve the Content Leak problem and therefore achieve un-

biased style transfer. Regarding Avatar-Net, as discussed

in Sec. 3.2, since the Style Decorator in Avatar-Net is in-

herently biased towards style, ArtFlow combining the Style

868



C
o

n
te

n
t

S
ty

le

R
o

u
n

d
 1

R
o

u
n

d
 2

0

R
o

u
n

d
 1

R
o

u
n

d
 2

0

AdaIN WCT Avatar-Net ArtFlow+AdaIN ArtFlow+WCT ArtFlow+Avatar-NetSelf-Contained

Figure 10. A comparison of the Content Leak phenomenon. We show the style transfer results of the first round and the 20-th round.

Table 2. User study results of universal stylization methods.

Method StyleSwap AdaIN WCT LinearWCT OptimalWCT Avatar-Net ArtFlow

Votes ↑ 7 19 64 257 60 78 314

(a) Input (b) AdaIN (c) WCT (d) ArtFlow+AdaIN

Figure 11. Visualization of content features of AdaIN, WCT, and

the proposed ArtFlow.

Decorator as the transfer module cannot achieve unbiased

style transfer. However, by replacing the auto-encoder with

PFN, the Content Leak phenomenon is still significantly al-

leviated by Avatar-Net.

5.4. ContentStyle Separation

As discussed in Sec. 4.3, AdaIN and WCT can be re-

garded as an evolution of the Bilinear Model in [52]. Tak-

ing the view of the bilinear model, the mechanism of AdaIN

and WCT can be regarded as: 1) disentangling the content

and style factors in the deep feature space, and 2) replacing

the style factor of the content image with the style factor of

the style image. Since such a disentangled representation

of the content and style exists in the feature space, we can

visualize the pure content by inverting the content factor

back to an image. Fig. 11 shows the inverted content factor

in AdaIN, WCT, and ArtFlow in conjunction with AdaIN.

Compared with the inverted content factor of AdaIN and

WCT, the results by ArtFlow contain significantly less style

effects (e.g., colors) along with sharper image structures.

Fig. 11 shows that ArtFlow can achieve unbiased content-

style separation while AdaIN and WCT cannot.

6. User Study

To quantitatively demonstrate that the proposed ArtFlow

has the comparable style transfer performance with the

state-of-the-art algorithms, we perform a user study. Our

user study is based on the validation dataset that consists

of 43 content images and 27 style images. We obtain the

style transfer results of StyleSwap, AdaIN, WCT, Linear-

WCT, OptimalWCT, Avatar-Net, and the proposed ArtFlow

on every content-style pair, respectively. We finally obtain

1161 style transfer results for each method. In user study,

we list all style transfer results of a content-style pair and let

the user to choose ONE most preferable style transfer result.

We eventually collect 799 effective votes. Tab. 2 shows the

style transfer results. The proposed ArtFlow obtains more

votes compared with other style transfer methods, which

demonstrates that our method has comparable style transfer

performance with the state-of-the-art methods.

7. Conclusion

In this paper, we reveal a common issue in the state-of-

the-art style transfer algorithms, i.e., the Content Leak phe-

nomenon. Upon analyzing the main causes of the Content

Leak, we present a new style transfer framework named

ArtFlow. Unlike the existing style transfer algorithms,

which adopt the VGG19 based auto-encoder to extract deep

features, ArtFlow introduces a reversible neural flow-based

network named PFN, thus enabling both the forward and re-

verse inferences to project images into the feature space and

invert features back to the image space, respectively. Art-

Flow in conjunction with an unbiased style transfer module,

e.g., either AdaIN or WCT, achieves comparable style trans-

fer results while avoiding the Content Leak phenomenon.

Furthermore, because PFN can achieve lossless and unbi-

ased image projection and reversion, the proposed ArtFlow

can facilitate a better content-style separation and thus en-

able the reversion of the style transfer in a lossless manner.

8. Acknowledgement

This work is supported in part by NSF awards IIS-

1704337, IIS-1813709, and our corporate sponsors.

869



References

[1] Jie An, Tao Li, Haozhi Huang, Li Shen, Xuan Wang, Yongyi

Tang, Jinwen Ma, Wei Liu, and Jiebo Luo. Real-time univer-

sal style transfer on high-resolution images via zero-channel

pruning. arXiv preprint arXiv:2006.09029, 2020.

[2] Jie An, Haoyi Xiong, Jun Huan, and Jiebo Luo. Ultrafast

photorealistic style transfer via neural architecture search. In

AAAI, 2020.

[3] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang

Hua. Stylebank: an explicit representation for neural image

style transfer. In CVPR, 2017.

[4] Tian Qi Chen and Mark Schmidt. Fast patch-based style

transfer of arbitrary style. arXiv preprint arXiv:1612.04337,

2016.

[5] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:

Non-linear independent components estimation. arXiv

preprint arXiv:1410.8516, 2014.

[6] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.

Density estimation using real nvp. In ICLR, 2017.

[7] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.

A learned representation for artistic style. In ICLR, 2017.

[8] Chen et al. Beautyglow: On-demand makeup transfer frame-

work with reversible generative network. In CVPR, 2019.

[9] Chen et al. Self-contained stylization via steganography for

reverse and serial style transfer. In WACV, 2020.

[10] Oriel Frigo, Neus Sabater, Julie Delon, and Pierre Hellier.

Split and match: example-based adaptive patch sampling for

unsupervised style transfer. In CVPR, 2016.

[11] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Tex-

ture synthesis using convolutional neural networks. In

NeurIPS, 2015.

[12] Leon A Gatys, Matthias Bethge, Aaron Hertzmann, and Eli

Shechtman. Preserving color in neural artistic style transfer.

arXiv preprint arXiv:1606.05897, 2016.

[13] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.

A neural algorithm of artistic style. arXiv preprint

arXiv:1508.06576, 2015.

[14] Xinyu Gong, Haozhi Huang, Lin Ma, Fumin Shen, Wei Liu,

and Tong Zhang. Neural stereoscopic image style transfer.

In ECCV, 2018.

[15] Shuyang Gu, Congliang Chen, Jing Liao, and Lu Yuan. Ar-

bitrary style transfer with deep feature reshuffle. In CVPR,

2018.

[16] Aaron Hertzmann. Painterly rendering with curved brush

strokes of multiple sizes. In SIGGRAPH, 1998.

[17] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian

Curless, and David H Salesin. Image analogies. In SIG-

GRAPH, 2001.

[18] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and

Pieter Abbeel. Flow++: Improving flow-based generative

models with variational dequantization and architecture de-

sign. In ICML, 2019.

[19] Haozhi Huang, Hao Wang, Wenhan Luo, Lin Ma, Wenhao

Jiang, Xiaolong Zhu, Zhifeng Li, and Wei Liu. Real-time

neural style transfer for videos. In CVPR, 2017.

[20] Xun Huang and Serge J Belongie. Arbitrary style transfer

in real-time with adaptive instance normalization. In ICCV,

2017.

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, pages 448–456, 2015.

[22] Yongcheng Jing, Xiao Liu, Yukang Ding, Xinchao Wang,

Errui Ding, Mingli Song, and Shilei Wen. Dynamic instance

normalization for arbitrary style transfer. In AAAI, 2020.

[23] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016.

[24] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,

Jaakko Lehtinen, and Timo Aila. Training generative

adversarial networks with limited data. arXiv preprint

arXiv:2006.06676, 2020.

[25] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, 2019.

[26] Jaehyeon Kim, Sungwon Kim, Jungil Kong, and Sun-

groh Yoon. Glow-tts: A generative flow for text-to-

speech via monotonic alignment search. arXiv preprint

arXiv:2005.11129, 2020.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[28] Durk P Kingma and Prafulla Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. In NeurIPS, 2018.

[29] Chuan Li and Michael Wand. Combining markov random

fields and convolutional neural networks for image synthesis.

In CVPR, 2016.

[30] Shaohua Li, Xinxing Xu, Liqiang Nie, and Tat-Seng Chua.

Laplacian-steered neural style transfer. In ACM MM, 2017.

[31] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang.

Learning linear transformations for fast arbitrary style trans-

fer. In CVPR, 2019.

[32] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature

transforms. In NeurIPS, 2017.

[33] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and

Jan Kautz. A closed-form solution to photorealistic image

stylization. In ECCV, 2018.

[34] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi

Hou. Demystifying neural style transfer. arXiv preprint

arXiv:1701.01036, 2017.

[35] Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing

Kang. Visual attribute transfer through deep image analogy.

In SIGGRAPH, 2017.

[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, pages 740–755, 2014.

[37] Hongyu Liu, Bin Jiang, Yibing Song, Wei Huang, and Chao

Yang. Rethinking image inpainting via a mutual encoder-

decoder with feature equalizations. In ECCV, 2020.

[38] Xiao-Chang Liu, Xuan-Yi Li, Ming-Ming Cheng, and

Peter Hall. Geometric style transfer. arXiv preprint

arXiv:2007.05471, 2020.

870



[39] Xuezhe Ma, Xiang Kong, Shanghang Zhang, and Eduard

Hovy. Macow: Masked convolutional generative flow. In

NeurIPS, 2019.

[40] Lu Ming, Zhao Hao, Yao Anbang, Chen Yurong, Xu Feng,

and Zhang Li. A closed-form solution to universal style

transfer. In ICCV, 2019.

[41] K Nichol. Painter by numbers, wikiart. https://www.

kaggle.com/c/painter-by-numbers, 2016.

[42] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-

ferentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[43] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveg-

low: A flow-based generative network for speech synthesis.

In ICASSP, pages 3617–3621, 2019.

[44] Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and

controllable neural texture synthesis and style transfer using

histogram losses. arXiv preprint arXiv:1701.08893, 2017.

[45] Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. Avatar-

net: multi-scale zero-shot style transfer by feature decora-

tion. In CVPR, 2018.

[46] YiChang Shih, Sylvain Paris, Connelly Barnes, William T

Freeman, and Frédo Durand. Style transfer for headshot por-

traits. ACM Transactions on Graphics, 33(4):148, 2014.

[47] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[48] Yibing Song, Linchao Bao, Shengfeng He, Qingxiong Yang,

and Ming-Hsuan Yang. Stylizing face images via multiple

exemplars. CVIU, 2017.

[49] Yibing Song, Chao Ma, Lijun Gong, Jiawei Zhang, Ryn-

son WH Lau, and Ming-Hsuan Yang. Crest: Convolutional

residual learning for visual tracking. In ICCV, 2017.

[50] Yibing Song, Jiawei Zhang, Lijun Gong, Shengfeng He, Lin-

chao Bao, Jinshan Pan, Qingxiong Yang, and Ming-Hsuan

Yang. Joint face hallucination and deblurring via structure

generation and detail enhancement. IJCV, 2019.

[51] Yibing Song, Jiawei Zhang, Shengfeng He, Linchao Bao,

and Qingxiong Yang. Learning to hallucinate face images

via component generation and enhancement. In IJCAI, 2017.

[52] Joshua B Tenenbaum and William T Freeman. Separating

style and content with bilinear models. Neural Computation,

12(6):1247–1283, 2000.

[53] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-

tor S Lempitsky. Texture networks: feed-forward synthesis

of textures and stylized images. In ICML, 2016.

[54] D Ulyanov, A Vedaldi, and VS Lempitsky. Instance nor-

malization: the missing ingredient for fast stylization. arXiv

preprint arXiv:1607.08022, 2016.

[55] Dmitry Ulyanov, Andrea Vedaldi, and Victor S Lempitsky.

Improved texture networks: maximizing quality and diver-

sity in feed-forward stylization and texture synthesis. In

CVPR, 2017.

[56] Huan Wang, Yijun Li, Yuehai Wang, Haoji Hu, and Ming-

Hsuan Yang. Collaborative distillation for ultra-resolution

universal style transfer. In CVPR, 2020.

[57] Ning Wang, Wengang Zhou, Yibing Song, Chao Ma, Wei

Liu, and Houqiang Li. Unsupervised deep representation

learning for real-time tracking. IJCV, 2021.

[58] Xin Wang, Geoffrey Oxholm, Da Zhang, and Yuan-Fang

Wang. Multimodal transfer: a hierarchical deep convolu-

tional neural network for fast artistic style transfer. In CVPR,

2017.

[59] Yinglong Wang, Yibing Song, Chao Ma, and Bing Zeng.

Rethinking image deraining via rain streaks and vapors. In

ECCV, 2020.

[60] Zhizhong Wang, Lei Zhao, Haibo Chen, Lihong Qiu, Qi-

hang Mo, Sihuan Lin, Wei Xing, and Dongming Lu. Diver-

sified arbitrary style transfer via deep feature perturbation. In

CVPR, 2020.

[61] Holger Winnemöller, Sven C. Olsen, and Bruce Gooch.

Real-time video abstraction. ACM Transactions on Graph-

ics, 25(3):1221–1226, 2006.

[62] Jaejun Yoo, Youngjung Uh, Sanghyuk Chun, Byeongkyu

Kang, and Jung-Woo Ha. Photorealistic style transfer via

wavelet transforms. In ICCV, 2019.

[63] Hang Zhang and Kristin Dana. Multi-style gener-

ative network for real-time transfer. arXiv preprint

arXiv:1703.06953, 2017.

871

https://www.kaggle.com/c/painter-by-numbers
https://www.kaggle.com/c/painter-by-numbers

