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Abstract

Learning latent variable models with deep top-down ar-

chitectures typically requires inferring the latent variables

for each training example based on the posterior distribution

of these latent variables. The inference step typically relies

on either time-consuming long-run Markov chain Monte

Carlo (MCMC) sampling or a separate inference model for

variational learning. In this paper, we propose to use a short-

run MCMC, such as a short-run Langevin dynamics, as an

approximate flow-based inference engine. The bias existing

in the output distribution of the non-convergent short-run

Langevin dynamics is corrected by the optimal transport

(OT), which aims at transforming the biased distribution

produced by the finite-step MCMC to the prior distribution

with a minimum transport cost. Our experiments not only

verify the effectiveness of the OT correction for the short-run

MCMC, but also demonstrate that the latent variable model

trained by the proposed strategy performs better than the

variational auto-encoder (VAE) in terms of image recon-

struction/generation and anomaly detection.

1. Introduction

Recent years have seen a great success of deep generative

models in numerous computer vision applications, such as

image generation [10, 16, 13], image recovery [21, 12, 23],

image representation [33, 29], image disentanglement [35, 4,

25], anomaly detection [34, 31], etc. Such models typically

include simple and expressive generator networks, which

are latent variable models assuming that each observed ex-

ample is generated by a low-dimensional vector of latent

variables, and the latent vector follows a non-informative

prior distribution, such as Gaussian distribution. Since high

dimensional visual data (e.g., images) usually lie on low-

dimensional manifolds embedded in the high-dimensional

space, learning latent variable models of visual data is of fun-

damental importance in the field of computer vision for the

sake of unsupervised representation learning. The challenge

mainly comes from the inference of the latent variables for

each observation, which typically relies on Markov chain

Monte Carlo (MCMC) [24, 6] methods to draw fair samples

from the analytically intractable posterior distribution (i.e.,

the conditional distribution of the latent variables given the

observed example). Since the posterior distribution of the

latent variables is parameterized by a highly non-linear deep

neural network, the MCMC-based inference can suffer from

non-convergence and inefficiency problems, thus affecting

the accuracy of the model parameter estimation.

To avoid inefficient MCMC sampling from the posterior,

variational inference [16] becomes an attractive alternative

by approximating the intractable posterior via a tractable

network. Despite the growing prevalence and popularity of

the variational auto-encoder (VAE) [16], its drawbacks are

increasingly obvious. (i) It parameterizes the intrinsic itera-

tive inference process by an extrinsic feedforward inference

model. These extra parameters due to the reparameterization

have to be estimated together with those of the generator net-

work. (ii) Such a joint training is to be accomplished by max-

imizing the variational lower bound. Thus, the accuracy of

VAE heavily depends on the accuracy of the inference model

as an approximation of the true posterior distribution. Only

when the Kullback-Leibler (KL)-divergence between the in-

ference and the posterior distribution is equal to zero, the

variational inference is equivalent to the desired maximum

likelihood estimation. This goal is usually infeasible in prac-

tice. (iii) An extra effort is required to made in designing

the inference model of VAE, especially for the generators

that have complicated dependency structures with the latent

variables, e.g., [30] proposed a top-down generator with mul-

tiple layers of latent variables, [39, 40] proposed dynamic

generators with time sequences of latent variables. It is not

a simple task to design inference models that infer latent

variables for models mentioned above. An arbitrary design

of the inference model cannot guarantee the performance.
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In this paper, we will totally abandon the idea of reparam-

eterizing the inference process, and reuse the MCMC-based

inference for training deep latent variable models. To be

specific, we use a short-run MCMC, such as a short-run

Langevin dynamics [19, 26], to perform the inference of the

latent vectors during training. However, the convergence

of finite-step Langevin dynamics in each iteration might be

questionable, so we accept the bias existing in such a short-

run MCMC and propose to use the optimal transport (OT)

method [38] to correct the bias. The OT can be adopted

to transform an arbitrary probability distribution to a de-

sired distribution with a minimum transport cost. Thus, we

can use the OT cost to measure the difference between two

probability distributions. We treat the short-run MCMC

as a learned flow model whose parameters are from the la-

tent variable model. We correct the bias of the short-run

MCMC by performing an optimal transport from the result

distribution produced by the short-run MCMC to the prior

distribution. This operation is to minimize the OT cost be-

tween the inference distribution and the prior distribution, in

which we don’t optimize any parameters in the flow model

but update its output. With the corrected inference output,

we can update the parameters of the latent variable model

more accurately.

Specifically, our algorithm iterates the following three

steps: (i) inference step: inferring the latent variables for

each observed example by a short-run Langevin dynamics

that samples from the posterior distribution; (ii) correction

step: moving the population of all the inferred latent vectors

to the prior distribution through optimal transport; (iii) learn-

ing step: update the model parameters by gradient descent

based on the corrected latent vectors and the corresponding

observed examples.

There are several advantages in the proposed algorithm:

(i) efficiency: The learning and inference of the model are

efficient with a short-run MCMC. (ii) convenience: The

approximate inference model represented by the short-run

MCMC is automatic in the sense that there is nothing to

worry about the design and training of a separate inference

model. Both bottom-up inference and top-down genera-

tion are governed by the same set of parameters. (iii) ac-

curacy: the optimal transport corrects the errors of the non-

convergent short-run MCMC inference, thus improves the

accuracy of the model parameter estimation.

The contributions of the paper are three-fold: (i) We

propose to train a deep latent variable model by a non-

convergent short-run MCMC inference with OT correction.

(ii) We extend the semi-discrete OT algorithm to approxi-

mate the one-to-one map between the inferred latent vectors

and the samples drawn from the prior distribution in our

settings. (iii) We provide strong empirical results in our ex-

periments to verify the effectiveness of the proposed strategy

to train deep latent variable models.

2. Related work

Variational inference. VAE [16] is a popular method

to learn generator network by simultaneously training a

tractable inference network to approximate the intractable

posterior distribution of the latent variables. In VAE, one

needs to design an inference model for the latent variables,

which is a non-trivial task in a generator network with com-

plex architecture. Our method does not rely on an extra

inference model to assist the training. It performs infer-

ence by Langevin sampling from the posterior distribution,

followed by an optimal transport correction.

Alternating back-propagation algorithm. The maxi-

mum likelihood learning of the generator network, including

its dynamic version, can be achieved by the alternating back-

propagation (ABP) algorithm [13, 39], without resorting to

an inference model. The ABP algorithm trains the generator

model by alternating the following two steps: (i) inference

step: inferring the latent variables by Langevin sampling

from the posterior distribution, and (ii) learning step: updat-

ing the model parameters based on the training data and the

inferred latent variables by gradient descent. Both steps com-

pute the gradients with the help of back-propagation. The

ABP algorithm has been successfully applied to saliency

detection [43], zero-shot learning [46], and disentangled

representation learning [41, 40], etc.

Optimal Transport. Optimal transport (OT) is used to

compute the distance between two measures and is able to

push forward the source distribution to the target distribu-

tion [38, 32]. Recently, OT has been widely used in the

generative models to help generate high quality samples.

For example, by replacing the original KL-divergence in the

GAN models [10] with the W1 distance, Arjovsky et al. [3]

proposed the WGAN model to achieve better convergence

and generate higher quality samples. Tolstikhin et al. [36]

proposed the Wasserstein variational auto-encoder that mini-

mizes the Wasserstein distance between the inference model

and the posterior distribution. Besides the Wasserstein dis-

tance, the optimal transport is also used to transport a simple

uniform distribution to the complex latent feature distribution

extracted by the autoencoder for image generation [1, 2].

3. Maximum likelihood learning of deep latent

variable model

Let I be a D-dimensional observed data example, such

as an image. Let z be the d-dimensional vector of contin-

uous latent variables. Generalizing from traditional factor

analysis model, the generator network assumes the observed

example I is generated from a latent vector z by a non-linear

transformation I = gθ(z) + ǫ, where gθ is a top-down con-

volutional neural network (sometime called deconvolutional

neural network) with parameters θ that consist of all train-

able weights and bias terms in the network, ǫ ∼ N (0, σ2ID)
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is the observation error, and z ∼ N (0, Id). Id and ID
are d-dimensional and D-dimensional identity matrices, re-

spectively. We assume d ≪ D. The generator network is

essentially a non-linear latent variable model that defines the

joint distribution of (I, z),

pθ(I, z) = pθ(I|z)p(z), (1)

where we assume the prior distribution p(z) = N (0, Id) and

p(I|z) = N (gθ(z), σ
2ID). The standard deviation σ takes

an assumed value. Following the Bayes rule, we can easily

obtain the marginal distribution pθ(I) =
∫
pθ(I, z)dz, and

the posterior distribution pθ(z|I) = pθ(I, z)/pθ(I).
Given a set of training examples {Ii, i = 1, . . . , n} ∼

pdata(I), where pdata(I) is the unknown data distribution.

We can train pθ by maximizing the log-likelihood of the

training samples

L(θ) = 1

n

n∑
i=1

log pθ(Ii), (2)

which is equivalent to the minimization of KL(pdata||pθ)
when the number of training examples n is large enough [13].

The maximization of the log-likelihood function pre-

sented in Eq. (2) can be accomplished by gradient ascent

algorithm that iterates

θt+1 = θt + γt
1

n

n∑
i=1

∇θ log pθ(Ii), (3)

where γt is the learning rate depending on time t and the

gradient of the log probability is given by

∇θ log pθ(I) =
1

pθ(I)
∇θpθ(I)

=

∫
[∇θ log pθ(I, z)]

pθ(I, z)

pθ(I)
dz

= Epθ(z|I)[∇θ log pθ(I, z)].

(4)

To compute ∇θ log pθ(I) in Eq. (4), we need to estimate

∇θ log pθ(I, z). According to Eq. (1), the logarithm of the

join distribution is given by

log pθ(I, z) = −
1

2σ2
‖I− gθ(z)‖2 −

1

2
‖z‖2 + const, (5)

where the constant term is independent of z or θ, thus

∇θ log pθ(I, z) = 1
σ2 (I − gθ(z))∇θgθ(z), where ∇θgθ(z)

can be efficiently computed by back-propagation.

4. Short-run MCMC inference

4.1. Long­run Langevin dynamics

To learn the model parameter θ by using Eq. (3), the key is

to compute the intractable expectation term in Eq. (4), which

can be achieved by first drawing samples from pθ(z|I) and

then using the Monte Carlo sample average to approximate it.

Given a step size s > 0, and an initial value z0, Langevin dy-

namics [19, 45], which is a gradient-based MCMC method,

can produce samples from the posterior density pθ(z|I) by

recursively computing

zk+1 = zk +
s2

2
∇z log pθ(z|I) + sξk, (6)

where k indexes the time step of Langevin dynamics,

ξk ∼ N (0, Id) is a random noise diffusion. Also,

∇z log pθ(z|I) = 1
σ2 (I − gθ(z))∇zgθ(z) − z, where

∇zgθ(z) can be efficiently computed by back-propagation.

Let us use K to denote the number of Langevin steps.

When s→ 0 and K →∞, no matter what the initial distri-

bution of z0 is, zK will converge to the posterior distribution

pθ(z|I) and become a fair sample from pθ(z|I).

4.2. Short­run Langevin dynamics

It is not sensible or realistic to use a long-run MCMC to

train the model. Within each iteration, running a finite num-

ber of Langevin steps for inference toward pθ(z|I) appears

to be practical. Thus, a short-run K-step Langevin dynamics

is given by

z0 ∼ p0(z),

zk+1 = zk +
s2

2
∇z log pθ(z|I) + sξk, k = 1, ..,K.

(7)

The initial distribution p0 is assumed to be the Gaussian

distribution in this paper. Following [30], such a dynamics

can be treated as a conditional generator that transforms a

random noise z0 to the target distribution under the con-

dition I. And the transformation itself can also be treated

as a K-layer residual network, where each layer shares the

same parameters θ and has a noise injection. We use κθ to

denote the K-step MCMC transition kernel. The conditional

distribution of zK given I is

qθ(z
K |I) =

∫
p0(z

0)κθ(z
K |z0, I)dz0, (8)

and the corresponding marginal distribution of zK is

qθ(z
K) =

∫
qθ(z

K |I)pdata(I)dI. (9)

If the MCMC converges, qθ(z
K) should be close to the prior

distribution p(z), otherwise there is a gap between them.

Eq. (7) is also called the noise-initialized short-run

MCMC, where for each step of parameter update, the short-

run MCMC starts from the noise distribution z0 ∼ p0(z).
If the short-run MCMC is initialized by the inferred results

obtained in previous iteration, it is called the persistent short-

run MCMC.
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Despite the efficiency of the short-run MCMC inference

in Eq. (8), it might not converge to the true posterior dis-

tribution pθ(z|I). [30] treats the short-run MCMC as an

approximate inference model and optimizes the step size s
by variational inference, in which the step size s is optimized

via either a grid search or gradient descent, so that the short-

run MCMC qs(z|I) (here s is the learning parameter) can

best approximate the posterior distribution pθ(z|I).

5. MCMC inference with OT correction

In this paper, we propose to use optimal transport to cor-

rect the bias of the short-run inference results. Instead of min-

imizing the difference between the short-run inference model

and the true posterior, i.e., KL(qθ(z
K |I)|pθ(z|I)), we use OT

to minimize the transport cost between the marginal distribu-

tion qθ(z
K) of the latent variables inferred by the short-run

Langevin dynamics and the prior distribution p0(z).

5.1. OT correction for biased short­run MCMC

To be specific, for learning a top-down latent variable

model I = gθ(z) that generates an observed image I from a

latent vector z, we iterate the following three steps. (i) Infer-

ence step: we first infer the latent vector for each observed

image Ii by a K-step short-run MCMC, i.e., ẑ ∼ pθ(z
K |Ii),

and then we obtain a population {ẑi} of the inferred latent

vectors for all observed data {Ii}, where {ẑi} ∼ qθ(z
K);

(ii) Correction step: We use OT to move {ẑi} to the desired

prior distribution for closing the gap between them due to

non-convergent inference. The OT reshapes the biased popu-

lation to the prior distribution with a minimum moving cost.

With the more correct inferred latent vectors, the subsequent

parameter update can be more accurate; (iii) Learning step:

Given the observed images and their corresponding inferred

latent vectors, we update θ by following Eq. (3) and Eq. (4).

As the θ becomes increasingly well-trained, the inference

engine qθ(z
K) becomes more accurate and the correction

made by OT also becomes smaller. An illustration of the

proposed strategy is presented in Fig. 1, where we also com-

pare our framework with the one using a traditional long-run

MCMC inference.

z

I

Long-Run
MCMC

p(z)

gθ(z)

z

I

ẑ

Short-Run
MCMC

Optimal

gθ(z)

p(z)

pθ(zK )

Transport

Figure 1. Diagrams of two learning strategies for latent variable

models: (left) the long-run MCMC inference framework. (right) the

proposed framework using a short-run MCMC with OT correction.

In practise, we can use either the noise-initialized short-

run MCMC or the persistent short-run MCMC in the infer-

ence step. In our experiment we choose the latter one for the

purpose of quick convergence. As to the correction stage, we

learn the one-to-one OT map from {ẑi} to {zi}, which is a

population sampled from the prior Gaussian distribution and

of the same size as {ẑi}. Computing the optimal transport

at each iteration is time-consuming and unnecessary in prac-

tise. To make the whole pipeline more efficient, we actually

perform the correction step after every L iterations. After

we get the bijective OT map T (ẑi) = zj , instead of directly

updating the model through the paired data {(T (ẑi), Ii)},
we choose to correct ẑi by using a mixture of the OT result

and the old one to avoid unstable learning due to a sudden

change of ẑi, i.e.,

ẑi ← αT (ẑi) + (1− α)ẑi, (10)

where α ∈ [0, 1] is a hyperparameter that controls the per-

centage of the OT result used for correction. Then we get the

corrected paired data {(ẑi, Ii)}, which are used to update the

model parameter θ. Note that when α = 0, our model degen-

erates to the traditional ABP model [13]. If α is set to be 1,

we correct the short-run outputs totally with the OT results.

A moderate 0 < α < 1 is typically helpful to gradually pull

the marginal distribution qθ(z
K) to the prior distribution

p(z) for ensuring a smooth correction. We summarize the

whole pipeline of our learning strategy in Alg. 1.

Algorithm 1 Short-run MCMC inference with OT correction

1: Input: (1) observed examples {Ii}, (2) number of skip

steps L, (3) number of Langevin steps K, (4) Langevin

step size s, (5) random samples {zj} from the prior

distribution N (0, Id), and (6) hyperparameter α.

2: Output: Model parameters θ.

3: k ← 1
4: repeat

5: # Inference

6: Infer the latent vectors {ẑi} from {Ii} by a K-step

short-run Langevin dynamics in Eq. (7). The short-

run MCMC can be initialized by random noise or the

previous result.

7: # Correction

8: if k%L == 0 then

9: Compute the approximate OT map T̂ from {ẑi} to

{zj} according to Alg. 2.

10: ẑi ← αT̂ (ẑi) + (1− α)ẑi
11: end if

12: # Learning

13: Update the model parameter θ by following Eq. (3)

and Eq. (4) with the paired data {(ẑi, Ii)}.
14: k ← k + 1
15: until Converge
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Algorithm 2 Optimal Transport

1: Input: source samples {ẑi}ni=1, target samples {zj}nj=1,

and a threshold ǫ.
2: Output: T̂
3: Initialize h = (0, 0, . . . , 0).
4: repeat

5: Compute Jj for j = 1, 2, . . . , n

6: Compute ∂E
∂hj

=
#Jj

n
− 1

n

7: Update h according to the Adam algorithm with β1 =
0.9 and β2 = 0.5.

8: until ‖∇E‖ ≤ ǫ
9: Build the approximate OT map T̂ through Jj , j =

1, 2, . . . , n.

5.2. Optimal transport

Given the latent codes sampled from qθ(z
K), namely

{ẑi}ni=1, and the randomly generated samples {zj}nj=1 from

the prior N (0, Id), the one-to-one map from {ẑi} to {zj} is

computed through the optimal transport. Specifically, we set

the cost function to be the squared Euclidean distance cij =
‖ẑi−zj‖22 because it has a beautiful geometric meaning [37],

and then solve the following assignment problem:

min
π∈Π

n∑
i,j=1

πijcij (11)

where Π = {π|∑n
j=1 πij = 1

n
,
∑n

i=1 πij = 1
n
, πij ≥ 0}.

According to the linear programming theory, there will be

only one nonzero element in each row/column of π. Actually,

all of the nonzero elements should be equal to 1/n. Thus, we

can define the map from {ẑi} to {zj} like this: T : ẑi → zj
if πij 6= 0. When n is large, directly solving the above prob-

lem with Linear Programming will be problematic, since

the computational complexity is prohibitively high (O(n2.5)
according to [22]). Similarly, the classical Hungarian algo-

rithm [17] for the assignment problem cannot be used to

solve this problem due to the high computational complexity

O(n3). It is also impossible to solve the above problem with

the approximate OT solvers, e.g., the Sinkhorn algorithm [7],

since these solvers tend to give a dense transport plan, from

which it is impossible to recover the OT map. Moreover, the

approximate algorithms are not suitable for large scale prob-

lems with n > 20, 000. Thus, we turn to the dual problem

of Eq. (11). Here we extend the original dual formula for the

semi-discrete OT in [5, 11, 1] to the following minimization

problem in our discrete setting:

min
h

E(h) =
1

n

n∑
j=1

max
j
{〈ẑi, zj〉+ hj}−

1

n

n∑
j=1

hj . (12)

The above problem is convex as it is the maximum of

the summation of n hyperplanes. Thus, it can be solved

by the gradient descent algorithm. The gradient is com-

puted by ∂E
∂hj

=
#Jj

n
− 1

n
, where Jj = {i|〈ẑi, zj〉 + hj ≥

〈ẑi, zk〉+ hk ∀ k ∈ [n]} and #Jj is the number of elements

in Jj . Assume h∗ is an optimal solution of E(h), then h =
h∗ + (c, c, . . . , c)T is also an optimal solution. To omit the

ambulation, we define∇E(h) = ∇E(h)−mean(∇E(h)).
With the gradient information, the energy E(h) can be mini-

mized by the Adam gradient descent algorithm [15].

Since Eq. (12) is the dual of the assignment problem,

with the optimal solution h∗, it is easy to reconstruct the

one-to-one OT map from {ẑi} to {zj} by T : ẑi → zj , j =
argmaxk〈ẑi, zk〉 + h∗

k ∀ k ∈ [n]. During the optimization

process, we stop when the norm of the gradient ∇E(h) is

less than ǫ. Ideally, if ǫ = 0, the map T will be injective and

surjective, and each Jj only includes one element, namely

the corresponding i. In that case, the OT map T is well

defined. In reality, we usually set ǫ > 0, therefore T will

be neither injective nor surjective. In such a situation, for

some zjs, there may be one or more corresponding ẑis; and

for some other zjs, the corresponding ẑis may not exist.

To omit the ambiguity and reconstruct the one-to-one map,

we need to handle the set Jj that will be empty or include

one or more elements. The approximate OT map T̂ is thus

given by: (i) if there is only one element in Jj , namely

i, then T̂ (ẑi) = zj ; (ii) when Jj includes more than one

elements, we randomly select i ∈ Jj and abandon the others,

then define T̂ (ẑi) = zj ; (iii) the abandoned ẑis and the

zjs corresponding to the empty Jjs are removed from the

domain and range of T̂ , respectively. In such a way, we build

a new injective and surjective map T̂ that approximates the

OT map T well.

Note that in our OT algorithm, the prior distribution is

not limited to the Gaussian distribution. We can actually

choose any prior distribution as long as it is easy to sample

from. Additionally, the computational complexity to solve

the nonsmooth dual problem in Eq. (12) is O(n2/
√
ǫ) [27].

Under the background of training the complex neural net-

works with a large number of parameters, the time used to

optimize the OT problem is negligible. Finally, the number

of the removed samples from T̂ should not be larger than nǫ.
In our experiments, we usually set ǫ = 0.05. With such a

small ǫ, we can get a good approximation of the OT map.

6. Experiments

In the experiments, we test the proposed model in terms

of whether it can (i) successfully correct the marginal distri-

bution qθ(z
K) of the latent vectors inferred by the short-run

Langevin dynamics, (ii) learn an expressive generator that

synthesizes visually realistic images from the prior distribu-

tion, and (iii) successfully perform anomaly detection. To

show the performance of our method, we experiment on

MNIST [20], SVHN [28] and CelebA [44] datasets. Details
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Figure 2. Visualization of the latent codes sampled from the marginal distribution qθ(z
K) at different iterations and the prior distribution
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Figure 3. The output marginal distributions of z by different models

trained on images from classes “0” and class “1” of MNIST dataset.

about the design of the generator architecture, the choices

of the model hyperparameters and the optimization method

for each dataset can be found in the supplementary material.

Moreover, to investigate the influence of different hyper-

parameters, we mainly use the MNIST dataset due to its

simplicity and representativeness. To quantify the perfor-

mance of the model, we adopt the mean squared error (MSE)

and the FID score [14] to measure the quality of the recon-

structed and generated images.

6.1. Latent space analysis

To verify that the proposed method does correct the short-

run marginal distribution qθ(z
K) of the latent variables, we

pick up the classes “0” and “1” of the MNIST dataset, from

which we learn our model with the latent space dimension

set to be 2 for better visualization. We first show the evolu-

tion of qθ(z
K) at different iterations of our model in Fig. 2,

where the iteration indicates the number of OT corrections.

From Fig. 2, we can see that qθ(z
K) gradually moves to-

ward the prior distribution due to the OT correction, and

finally matches it. Fig. 3 also shows a comparison of the

latent vectors inferred by the VAE model [16], the ABP

model [13] and our model, respectively. The distributions of

latent vectors inferred by the VAE and the ABP models are

far from the prior (Gaussian) distribution, while the marginal

distribution qθ(z
K) of our model looks much closer to it.

6.2. Image modeling

We evaluate the quality of both the reconstructed and

generated images. With a well-learned model, the marginal

distribution of qθ(z
K) should match the prior distribution

well. In such a case, the generator will be a probability

transformation from the prior Gaussian distribution to the

image distribution, and we can synthesize a high quality

image by I = gθ(z) with a latent vector z sampled from the

prior distribution. Additionally, the model can be useful for

reconstruction. In the following, we compare our model to

the VAE [16], its variants 2sVAE [8] and RAE [9]. We also

compare with the ABP model [13] and its variant SRI [30],

whose generator has multiple layers of latent variables. The

last model we compare is the LEBM model [31], which

uses an energy-based short-run MCMC to infer the latent

variables of each observed image.

In Fig. 4, we show both the reconstructed and the gener-

Figure 4. The reconstructed (the first column) and the generated im-

ages (the second column) of MNIST [20] (the first row), SVHN [28]

(the second row) and CelebA [44] (the third row) datasets.

615420



Models VAE 2sVAE RAE ABP SRI SRI (L=5) LEBM Ours

MNIST
MSE 0.023 0.026 0.015 - 0.019 0.015 - 0.0008

FID 19.21 18.81 23.92 - - - - 14.28

SVHN
MSE 0.019 0.019 0.014 - 0.018 0.011 0.008 0.002

FID 46.78 42.81 40.02 49.71 44.86 35.23 29.44 19.48

CelebA
MSE 0.021 0.021 0.018 - 0.020 0.015 0.013 0.010

FID 65.75 49.70 40.95 51.50 61.03 47.95 37.87 29.75

Table 1. The comparison results on different datasets. The MSE and FID (smaller is better) are used to test the quality of the reconstructed

and generated images, respectively.

Heldout Digit 1 4 5 7 9

VAE 0.063 0.337 0.325 0.148 0.104

MEG 0.281± 0.035 0.401± 0.061 0.402± 0.062 0.290± 0.040 0.342± 0.034

Bigan-σ 0.287± 0.023 0.443± 0.029 0.514± 0.029 0.347± 0.017 0.307± 0.028

LEBM 0.336± 0.008 0.630± 0.017 0.619± 0.013 0.463± 0.009 0.413± 0.010

ABP 0.095± 0.028 0.138± 0.037 0.147±0.026 0.138± 0.021 0.102±0.033

Ours 0.353±0.021 0.770± 0.024 0.726±0.030 0.550±0.013 0.555±0.023

Table 2. AUPRC scores (larger is better) for unsupervised anomaly detection on the MNIST dataset. Numbers are taken from [31] and

results for our model are averaged over 10 experiments for variance.

ated images with the latent vectors sampled from the given

prior distribution. It is obvious that the generated images

shown in the second column are realistic and comparable

to the real ones in the training datasets. In Table 1, we use

the MSE to test the quality of the reconstructed images and

the FID score to quantify the quality the generated images.

From the table we can find that the proposed method outper-

forms the other methods in the tasks of reconstruction and

generation.

6.3. Anomaly detection

Anomaly detection is another task that can help evaluate

the proposed model. With a well-learned model from the

normal data, we can detect the anomalous data by firstly sam-

pling the latent code z of the given testing image I from the

conditional distribution qθ(z
K |I) by the short-run Langevin

dynamics, and then computing the logarithm of the joint

probability log pθ(I, z) in Eq. (5). Based on our theory, the

joint probability should be high for the normal images and

low for the anomalous ones.

In the following experiments, we treat each class in the

MNIST dataset as an anomalous class and leave the others

as normal. We follow the protocols as in [18, 42, 30] and

train the model only with the normal data. Then the model

is tested with both the normal and anomalous data. To eval-

uate the performance, we use log pθ(I, z) as our decision

function to compute the area under the precision-recall curve

(AUPRC), just like [31] does. In the test stage, we run each

experiment 10 times to get the mean and variance. In Ta-

ble 2, we compare our method with the related models in

this task, including the VAE [16], MEG [18], BiGAN-σ [42],

LEBM [31] and ABP model [13], which can be treated as a

special case of our model without the OT calibration. From

the table, we can find that the proposed method can get much

better results than those of other methods.

6.4. Influence of the number of latent dimensions

Here we show the influence of the number of dimensions

of the latent space under the same architecture. We use the

SVHN dataset, and set different numbers of dimensions of

the latent space, e.g., 20, 40 and 64, respectively. As shown

in Table 3, with more latent dimensions, we can obtain much

better results in terms of both reconstruction and generation.

# Dimension MSE FID

20 0.011 36.32

40 0.008 24.73

64 0.002 19.48

Table 3. The performances of the proposed method on SVHN

dataset with the same architecture but different numbers of latent

dimensions. (Smaller is better for MSE and FID.)

6.5. Ablation study

Now we explore the performances of the proposed model

under different values of the parameter α introduced in

Eq. (10), different step sizes of the Langevin dynamics (the

s of Eq. (7)), different numbers of Langevin steps (K in

Eq. (7)) and different numbers of iterations for the learning

step that seeks to maximize the joint probability in Eq. (5)

using the paired data {(ẑi, Ii)}.
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Figure 5. The influences of α on the OT cost, MSE loss and FID over different iterations.

The influence of α. Firstly, we investigate the influ-

ence of α in Eq. (10), which is shown in Fig. 5. In the left

subfigure, we show the OT cost from {ẑi} to {zj}, which

serves as a distance between the qθ(z
K) through the short-

run Langevin dynamics and the prior distribution p(z). It

is obvious that a larger α can pull the marginal distribution

qθ(z
K) more quickly toward the prior distribution. The sub-

figure in the middle suggests that to get a smaller MSE loss,

it is better to choose a smaller α. According to the right

subfigure, we get the best FID with a medium α, namely

α = 0.5. Thus, to balance the OT cost, MSE loss and the

FID, we set α = 0.5 in the following experiments. From

the curves, we also find that as the algorithm progresses, the

marginal distribution qθ(z
K) gets increasingly close to the

prior distribution p0(z), and the qualities of both the recon-

structed images and the generated images also increase.

s=3e-3 s=1.5e-2 s=3e-2 s=6e-2

MSE
Before 0.007 0.008 0.011 0.027

After 0.018 0.013 0.013 0.027

FID
Before 44.51 28.10 22.70 109.97

After 40.61 26.86 21.89 87.77

Table 4. The influence of the step size of the Langevin dynamics.

The influence of the Langevin step size. Next, we show

the performances of our model with different Langevin step

sizes (s in Eq. (7)) in Table 4, where “Before” means that we

use the model before the OT correction, and “After” means

we use the trained model after the OT correction. With a

small s, the MSE loss is indeed very small, but the FID is

relatively large, meaning that the quality of the generated

images is not very good. When s is large, e.g., s = 6e−2 in

the last column, both the MSE loss and the FID are large,

which means that we cannot even get high quality recon-

structed images. In this situation, the model actually doesn’t

converge very well. Only with the appropriate Langevin

step size (in this experiment, s = 3e−2), we can obtain a

good balance between the MSE and the FID for satisfying

reconstruction and generation results.

The influence of the number of Langevin steps. The

number of Langevin steps K in Eq. (7) is another key factor

that influences the performance of the proposed method. The-

oretically, larger K will give us a more convergent MCMC

inference, so as to help us get more accurate latent variables.

To prove this point, we set K = 30, 50, 100 respectively, and

keep the other parameters fixed. The results are shown in

Table 5. Indeed, a larger K gives us a better result. However,

a large K will also increase the running time for the whole

pipeline linearly. Thus, to get a good balance between the

running time and the performance, we need to choose the

suitable K for different datasets.

K=30 K=50 K=100

MSE 0.014 0.011 0.007

FID 22.32 18.57 15.43

Table 5. The influence of the number of Langevin steps K.

The influence of the number of iterations inside the

learning step. In Alg. 1, we actually run several iterations,

denoted by L2, of gradient ascent inside the learning step to

maximize the joint probability in Eq. (5) by the paired data

{(ẑi, Ii)}. The results are shown in Table 6. From the table

we can find that by increasing L2, we can get much better

performances for image reconstruction and generation.

L2=1 L2=2 L2=3

MSE 0.013 0.010 0.008

FID 21.89 17.32 14.28

Table 6. The influence of the number of learning iterations.

7. Conclusion

In this paper, we propose to use the OT theory to correct

the bias of the short-run MCMC-based inference in training

the deep latent variable models. Specifically, we correct the

marginal distribution of the latent variables of the short-run

Langevin dynamics through the OT map between this dis-

tribution and the prior distribution step by step. In such a

way, the distribution of the inferred latent vectors will finally

converge to the prior distribution, thus improving the accu-

racy of the subsequent parameter learning. Experimental

results show that the proposed training method performs

better than the ABP and VAE models on the tasks like image

reconstruction, image generation and anomaly detection.
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