
Variational Transformer Networks for Layout Generation

Diego Martin Arroyo1

martinarroyo@google.com

1Google, Inc

Janis Postels2

jpostels@vision.ee.ethz.ch

2ETH Zürich
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Abstract

Generative models able to synthesize layouts of different

kinds (e.g. documents, user interfaces or furniture arrange-

ments) are a useful tool to aid design processes and as a first

step in the generation of synthetic data, among other tasks.

We exploit the properties of self-attention layers to capture

high level relationships between elements in a layout, and

use these as the building blocks of the well-known Varia-

tional Autoencoder (VAE) formulation. Our proposed Vari-

ational Transformer Network (VTN) is capable of learning

margins, alignments and other global design rules without

explicit supervision. Layouts sampled from our model have

a high degree of resemblance to the training data, while

demonstrating appealing diversity. In an extensive evalua-

tion on publicly available benchmarks for different layout

types VTNs achieve state-of-the-art diversity and percep-

tual quality. Additionally, we show the capabilities of this

method as part of a document layout detection pipeline.

1. Introduction

Layouts, i.e. the abstract positioning of elements in a

scene or document, constitute an essential tool for various

downstream tasks. Consequently, the ability to flexibly ren-

der novel, realistic layouts has the potential to yield sig-

nificant improvements in many tasks, such as neural scene

synthesis [36], graphic design or in data synthesis pipelines.

Even though the task of synthesizing novel layouts has re-

cently started to gain the attention of the deep learning com-

munity [23, 16, 22, 28], it is still a sparsely explored area

and provides unique challenges to generative models based

on neural networks, namely a non-sequential data structure

consisting of varying length samples with discrete (classes)

and continuous (coordinates) elements simultaneously.

Generative models based on neural networks have re-

ceived a significant share of attention in recent years, as

they proved capable of learning complex, high-dimensional

distributions. Common formulations such as Generative

Adversarial Networks (GANs) [8] and Variational Autoen-
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Figure 1: Given a random vector z, our novel transformer

VAE model produces layouts that follow the design con-

straints of the training data. It can generate various layouts

types, from documents to objects and scenes.

coders (VAEs) [21] have shown impressive results in tasks

such as image translation [43], image synthesis [17], and

text generation [2]. A GAN is comprised of an arrangement

of generator-discriminator neural networks in a zero-sum

configuration, while a VAE learns a lower bound of the data

distribution using an encoder-decoder neural network with a

regularized bottleneck. Since these are general frameworks,

they leave room for adapting the underlying neural architec-

tures to exploit the properties of the data. For example, the

weight sharing strategy of Convolutional Neural Networks

(CNNs) renders them the most common building block for

image processing, while for sequential data (e.g., text), Re-

current Neural Networks (RNNs) or attention modules are

often the architecture of choice. In particular, the attention

mechanism has recently demonstrated strong performance

on a variety of tasks, such as language translation [35] and

object detection [3], proving its superiority over RNNs re-

garding modeling long-term relationships.

Prior work has built the foundation by proving the ef-
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fectiveness of deep learning to generate novel documents

[22, 28, 9], natural scenes [16] and User Interface (UI) de-

signs [22]. Mostly, the location and size of a given element

depends not only on the particularities of its type (e.g. titles

tend to be small and at the top of a document, while figures

or tables usually occupy a significant amount of space), but

also on their relationship to other elements. One way to

incorporate this knowledge into modeling a layout distri-

bution is to define handcrafted rules, (e.g. enforcing mar-

gins, alignment, the allowed number of elements in a docu-

ment. . . ). However, such rules are subjective, hard to define

unambiguously and certainly do not generalize to arbitrary

layout distributions. Consequently, we refrain from mod-

eling any prior knowledge by i.e. enforcing heuristics, and

instead equip the neural architecture itself with an inherent

bias towards learning the relationship between elements in a

layout. This makes the attention mechanism a suitable fun-

damental architectural component, since it naturally models

many-to-many relationships and is, thus, particularly suit-

able for discovering relationships in a given layout distribu-

tion in an unsupervised manner.

By instantiating the VAE framework with an attention-

based architecture, this work investigates an important gap

in literature. We explore relevant design choices in great

detail - e.g. autoregressive vs. non-autoregressive decoder,

learned vs. non-learned prior. Furthermore, we tailor our

novel approach to the yet under-explored task of layout

generation, where we demonstrate state-of-the-art perfor-

mance across various metrics on several publicly available

datasets. To summarize, our main contributions are:

• A novel generative model specialized in layout gener-

ation that incorporates an inductive bias towards high-

level relationships between a large number of elements

in a layout without annotations.

• Exploration of strategies for creating a variational bot-

tleneck on sequences with varying lengths.

2. Related work

Layout synthesis The task of layout synthesis has not yet

been exhaustively covered by literature, but fueled increas-

ing interest in the research community in recent years. Lay-

outGAN [23] is, to the best of our knowledge, the first

paper to apply generative models (in particular GANs) to

this task. The authors use a generator network to synthe-

size bounding box annotations. In order to use a CNN as

discriminator, LayoutGAN applies a novel differential ren-

der module to turn a collection of bounding boxes into an

image. Similarly to our approach, it uses self-attention to

model many-to-many relationships. However, the authors

only evaluate single-column documents with at most nine

elements, which corresponds to much sparser layouts than

provided by common publicly available datasets.

LayoutVAE [16] proposes an autoregressive model

based on a conditional VAE with a conditional prior (con-

ditioned on the number and type of elements in the layout).

The authors use an Long Short-Term Memory (LSTM) [13]

to aggregate information over time. Additionally they pro-

pose using a second conditional VAE to model the dis-

tribution of category counts which is used as conditional

information during layout generation. Their underlying

neural architecture is comprised of fully-connected layers

and LSTMs. Consequently, it is expected that LayoutVAE

struggles to model layouts with a large number of elements,

since LSTMs do not explicitly model the relationships of all

components. Unlike LayoutVAE, our work explicitly biases

the underlying neural network towards learning the rela-

tionships between elements in a layout, and only makes the

decoder autoregressive (reducing the computational costs).

Further, we only train a single VAE for learning the layout

distribution instead of resorting to two separate VAEs.

In Neural Design Networks the authors [22] generate

document layouts with an optional set of design constraints.

Initially, a complete graph for modeling the relationships

between elements is built. The distribution of these relation-

ships is learned using a VAE based on Graph Convolution

Networks (GCNs), where the labels of the relationships are

based on heuristics. The actual layout is subsequently gen-

erated by a separate GCN. The resulting raw layout is then

polished by an additional refinement network. In contrast to

Neural Design Networks, this work does not rely on labels

extracted using heuristics on the training data for learning a

layout distribution, which is prone to introduce ambiguities

and unlikely to generalize across datasets. Moreover, our

approach learns the layout distribution end-to-end without

relying on training three separate neural networks.

Similarly, READ [28] also uses heuristics to determine

the relationships between elements and then trains a VAE

which is based on Recursive Neural Networks (RvNNs) [7]

to learn the layout distribution.

Content-aware Generative Modeling of Graphic De-

sign Layouts [39] trains a VAEGAN conditioned on im-

ages, keywords, attributes of the layout and corresponding

coordinates. However, the authors focus on learning the lay-

out distribution conditioned on additional user input.

Layout Generation and Completion with Self-

attention [9] is most relevant to this work. The authors

perform self-supervised training (i.e. layout completion) us-

ing an autoregressive decoder motivated by Transformers

[35]. Subsequently, novel layouts are synthesized using

beam search [27]. While this generation approach can yield

strong results, it requires optimizing additional hyperpa-

rameters (e.g. beam size) and, more importantly, it does

not have any theoretical guarantees for learning the actual

data distribution. The resulting distribution rather depends

on finding the right level of regularization at training time.
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Only if the model is regularized appropriately beam search

will yield outcomes of sufficient diversity. Since this gener-

ation process lacks theoretical guarantees for capturing the

full diversity of the layout distribution and heavily relies on

heuristics, we directly approximate the distribution using a

attention-based VAE instead.

Some works have been proposed with particular focus on

furniture arrangement [36, 12]. In the method of Wang et al.

[36], one CNN places elements in a room by estimating the

likelihood of each possible location, while a second CNN

determines when the scene is complete. [30] extends this to

model orientations and room dimensions. Moreover, Hen-

derson et al. [12] propose to learn a distribution for each

element type and model high-order relationships between

objects using a direct acyclical graph. Since all of these

methods use the now unavailable SUNCG dataset [33] for

training, establishing a comparison with them is difficult.

Additionally, tab. 1 provides a high-level comparison

between this work and the most relevant adjacent meth-

ods. We differentiate existing works along four important

dimensions: 1) Are models equipped with inductive biases

towards learning the relationships between elements? 2)

Are these relationships learned without supervision or are

additional labels, using e.g. heuristics, necessary? 3) Can

layouts contain an arbitrary number of elements? 4) Does

the learning approach provide guarantees for learning the

underlying distribution by applying probabilistic methods?

Attention-based VAEs are a recent development in the

Natural Language Processing (NLP) literature. The com-

mon goal is to learn the distribution of real data more ac-

curately than with deterministic self-supervised approaches

[25, 26, 37]. To combine Transformers and VAEs [26] uses

self-attention layers for the encoder and decoder compo-

nents. The encoder turns a sentence into a collection of

high-dimensional vectors of the same length as the input.

These constitute the VAE bottleneck, and are passed after

re-parameterization to the decoder to reconstruct the sen-

tence. By feeding a set of vectors sampled from the prior, a

sentence of the same length can be generated. Further, [25]

implements a conditional VAE (conditioned on the context

of a conversation) based on the Transformer to improve

diversity on the task of response generation. [37] devel-

ops a Transformer-based VAE to enhance variability on the

task of story completion. Their encoder and decoder share

weights while the bottleneck of their VAE is fed into the

penultimate layer of the decoder.

3. Variational Transformer Networks

This section illustrates the proposed Variational Trans-

former Networks. From a high-level perspective VTNs are

an instance of the VAE framework tailored to the task of lay-

out synthesis, where the main building blocks of the neural

networks parameterizing the encoder and decoder are atten-

Inductive

Bias

Unsupervised

Relationship

Arbitrary

Size

Distribution

Learning

LayoutGAN [23] ✓ ✓ ✗ ✓

LayoutVAE [16] ✗ ✓ Practically

difficult

✓

READ [28] ✓ ✗ ✓ ✓

NDN [22] ✓ ✗ ✗ ✓

Gupta et al. [9] ✓ ✓ ✓ ✗

Ours ✓ ✓ ✓ ✓

Table 1: Comparison with existing methods. We consider

whether methods 1) equip their models with inductive bi-

ases towards learning the relationships between elements,

2) learn relationships unsupervised, 3) allow layouts of arbi-

trary size and 4) have guarantees for learning the underlying

distribution by applying probabilistic methods.

tion layers. Firstly, we briefly revisit the concept of VAEs.

Subsequently, we explain how VTNs exploit the data format

of layouts, their architecture and how to train them.

3.1. Variational Autoencoders

VAEs are a family of latent variable models that approx-

imate a data distribution P (X) by maximizing the evidence

lower bound (ELBO) [21]

L(θ, φ) = E
z∼qθ(z|x)

[log (pφ (x|z))]−KL (qθ (z|x) ||p (z))

(1)

where pφ(x|z) denotes a decoder parameterized by a neu-

ral network with parameter φ, qθ(z|x) is the approximate

posterior distribution, similarly parameterized by a neural

network with weights θ, and p(z) the prior distribution.

3.2. Exploiting the Data Format of Layouts

The central aspect of layout generation is its unique un-

derlying data format. Layouts are sets of elements of vari-

able size, where each element can be described by both

discrete and continuous features. More formally, each lay-

out x in a given dataset X consists of a variable number

l of bounding boxes. Further, each bounding box xi with

i ∈ [1, . . . , l] contains information about its class (for doc-

uments, e.g. text, image. . . ), location and dimension.

Another important characteristic of layout datasets is that

there exists a high degree of correlation between the individ-

ual elements in a layout. For example, in case of document

layouts, titles tend to be positioned at the top of a text. It

is therefore essential to bias an approach for learning layout

distributions towards exploiting the relationships between

elements. While some methods introduce additional fea-

tures, such as annotations for the relationships between ele-

ments [22, 28], our approach instead relies solely on bound-

ing box annotations, since additional features are expensive
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to create, prone to ambiguity and fail to generalize across

datasets. Therefore, we introduce an inductive bias to learn

from the relationships by using an attention-based neural

network. Notably, the attention mechanism is an ideal can-

didate for exploiting pairwise relationships, since it lever-

ages the pairwise dot product as its fundamental computa-

tional block for guiding the information flow.

Moreover, the attention mechanism also helps modeling

another aspect of the data - namely a varying and large num-

ber of elements. To mitigate this problem other works have

restricted the maximum number of elements occurring in

one layout [23, 22]. However, attention-based architectures

are well suited for learning the relationships of a large num-

ber of elements, since this is one of the reasons for their

success in the NLP literature [35]. Notably, RNNs, as used

by LayoutVAE [16], are also capable of modeling a vary-

ing number of elements in a layout. However, they strug-

gle with long-term dependencies, i.e. a large number of el-

ements in a layout. This follows from results in the NLP

literature and is also observed by us (see section 4.4).

3.3. Architecture of VTNs

The architecture of VTNs is based on Transformers [35],

which are sequence models that consist of an encoder-

decoder architecture, where both encoder and decoder use

attention layers as their fundamental building blocks. We

refer to fig. 2 for a schematic overview of our approach.

The encoder of the Transformer architecture parameter-

izes the posterior distribution qθ(z|x) in the VAE frame-

work. In particular, qθ(z|x) is parameterized as a multi-

variate normal distribution with diagonal covariance matrix,

whose parameters are determined by the output of the en-

coder network. To train the encoder using backpropagation,

we apply the local re-parameterization trick [20]. The orig-

inal Transformer is a highly specialized language model,

which is usually trained on vast quantities of text data.

Therefore, it is necessary to adjust the hyper-parameters. It

is essential to keep the number of attention heads large (here

nheads = 8) to average out outliers from individual attention

heads [35]. Similarly, we keep a large model dimensional-

ity (dmodel = 512) and size of the point-wise feed-forward

layers (dff = 2048). However, we find that the number

of attention-blocks (see [35]) can be reduced to four with-

out performance loss. This hints that relationships between

elements in a layout are less complex than between words

in language. We further omit the positional encodings used

in the context of NLP since the features of bounding boxes

already contain positional information.

The decoder pφ(x|z) in VTNs is a mirrored version of

the encoder. Note that this breaks with [35] which adds ad-

ditional attention-layers whose keys and queries are the out-

put of the encoder. We empirically find that feeding the out-

put of the encoder as an input to the first layer of the decoder

yields better results. We further experiment with another

major architectural choice: the autoregressive decoder, i.e.

pφ(x|z) =
∏l

i=1 pφ(xi|xi−1, z), where l denotes the num-

ber of bounding boxes in a layout, and a non-autoregressive

variant. While the former has more representational power,

since theoretically any distribution can be modeled as an

autoregressive one, it is also more prone to posterior col-

lapse due to the expressive decoder [2] and requires more

computational resources.

Furthermore, we consider two distinct prior distribu-

tions. First, we use the common choice of a fixed multi-

variate zero-mean normal distribution. However, this often

proves too restrictive for learning the true posterior distri-

bution [4]. In principle there are two avenues to mitigate

this issue: use a more expressive parameterization of the

posterior [19] or the prior distribution [4]. In this work we

attempt to extend the expressiveness of the prior distribu-

tion by learning the parameters of the multivariate normal

distribution with a diagonal covariance matrix. Since lay-

outs consist of a varying number of bounding boxes, we

parameterize the distribution with an LSTM [14].

Importantly, while an autoregressive decoder enables

sampling of layouts with varying number of elements - e.g.

by introducing symbols for start/end of the layout - the non-

autoregressive decoder requires incorporating this into the

prior distribution. Therefore, we model the prior in this

case as p(z, s) = p(z|s)p(s) where s denotes the number

of bounding boxes. We learn p(s) during training by count-

ing the number of occurrences of each sequence length.

Finally, we note that in the case of the autoregressive

decoder, we find empirically that aggregating the latent rep-

resentations z across all elements in a layout yields better

perceptual quality. This corresponds to parameterizing the

posterior distribution with the output of the encoder aggre-

gated along the dimension of the layout elements. To this

end we follow BERT [6] where the final hidden state of the

encoder for the first token is used to represent the entire se-

quence, and used as the first element in the the decoder in-

put. In the case of the non-autoregressive decoder we do not

aggregate the latent representations, but feed them directly

with variable dimensionality to the decoder.

3.4. Optimizing VTNs

Since we are learning the layout distribution using a

VAE, we optimize the ELBO defined in eq. (1). However,

a practical optimization challenge of VAEs is the so-called

posterior collapse [2, 10]. The decoder ignores the informa-

tion in the latent representation and collapses onto modes of

the data distribution. At the same time the posterior distri-

bution parameterized by the encoder can perfectly match

the prior distribution, since it does not need to transmit in-

formation to the decoder. Therefore, this work follows a

common heuristic by optimizing the β-VAE objective in-
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Figure 2: VTN. The encoder and decoder are parameterized by attention-based neural networks. This biases the network

to learn relationships between the layout elements and enables processing layouts of arbitrary size. During training (black

arrow) the reconstruction loss and the KL-divergence between the prior p(z) and the approximate posterior distribution are

minimized. During inference (red arrow) we sample latent representations z from the prior and transform those into layouts

using our self-attention-based decoder.

stead of eq. (1)

L(θ, φ) = E
z∼qθ(z|x)

[log(pφ(x|z))]− βKL (qθ(z|x)||p(z))

(2)

To optimize eq. 2 we use Adam [18] and follow the learning

rate schedule in [35]. To further reduce the risk of posterior

collapse, it is common to increase β at the beginning of

training from zero to the desired value. Specifically, we im-

plement the exponential beta schedule proposed by [2, 26].

In all our experiments we use β = 1 with the autoregressive

decoder and β = 0.5 with the non-autoregressive decoder.

Moreover, we follow [9] in discretizing the location,

width and height of the bounding boxes. Thus each bound-

ing box is represented by a feature vector containing a one-

hot encoding of the class concatenated with the one-hot en-

codings representing the above discretization. We use cate-

gorical cross-entropy as a reconstruction loss.

Implementation Details We implement our method us-

ing Tensorflow 2 [1] and a NVIDIA V100 GPU for acceler-

ation. We train using the Adam optimizer with a batch size

of 64 for 30 epochs in the case of the autoregressive decoder

and 50 epochs using the non-autoregressive version.

4. Experiments

4.1. Datasets

We evaluate our method on the following publicly avail-

able datasets of layouts for documents, natural scenes, fur-

niture arrangements and mobile phone UIs.

PubLayNet [42] contains 330K samples of machine-

annotated scientific documents crawled from the Internet.

It has the categories text, title, figure, list, table.

RICO [5] is a dataset of user interface designs for mobile

applications. It contains 91K entries with 27 element cate-

gories (button, toolbar, list item. . . ). Due to memory con-

straints we omit layouts with more than 100 elements1, in

total removing 0.031% of the data.

COCO [24] Contains ∼100K images of natural scenes. We

use the Stuff variant, which contains 80 thing and 91 stuff

categories, removing small bounding boxes (≤ 2% image

area), as well as instances that are tagged as “iscrowd”.

SUN RGB-D[32] is a scene understanding dataset with

10000 samples, including scenes from [31], [15] and [38].

The annotations comprise different household objects. We

compute the 2D bounding boxes of the semantic regions

from a top-down perspective.

4.2. Evaluation methodology

It is important to evaluate layouts along two high-level

dimensions - perceptual quality and diversity. Note that in

the case of layouts perceptual quality is prone to subjectiv-

ity and different aspects must be considered from dataset to

dataset. It is thus difficult to define a single metric that en-

tirely covers both aspects. We therefore resort to a set of

metrics where each aims at representing an individual as-

pect of either perceptual quality or diversity.

Alignment and overlap. Some datasets, such as Pub-

LayNet or RICO, consist of entries with strictly defined

alignments and small overlaps between bounding boxes.

Consequently, these properties are an indicator of the per-

ceptual quality of synthesized layouts. We follow Layout-

GAN [23] in measuring overlaps using the total overlapping

area among any two bounding boxes inside the whole page

(overlap index) and the average Intersection over Union

(IoU) between elements. Additionally, we quantify align-

ment using the alignment loss proposed by [22].

Unique matches under DocSim metric. We use the

1Note that this restriction originates from memory constraints and does

not imply that our approach is not capable of learning larger layouts given

sufficient memory.
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number of unique matches between real sets of layouts and

synthesized layouts as a proxy for diversity. We use the

DocSim metric [28] as a similarity metric. Note that, while

the number of unique matches primarily analyzes diversity,

it also partially reflects perceptual quality.

Wasserstein distance. A rigorous approach to evalu-

ate diversity would be computing the Wasserstein distance

between the real and learned data distributions. Unfortu-

nately this is infeasible. However, we can approximate the

Wasserstein distance between real and generated data for

two marginal distributions - the class distribution (discrete)

and the bounding box distribution (continuous, 4-d vectors

(xcenter, ycenter, width, height)). In practice, we compute

these Wasserstein distances from a finite set of samples.

4.3. Quantitative results

Comparison to state of the art A comparison to any of

the methods described in section 2 is difficult, since, to the

best of our knowledge, none has a publicly available imple-

mentation2. Similar to the authors of LayoutVAE [16], we

were unable to reproduce the results of LayoutGAN [23] on

documents. We reimplement LayoutVAE and the approach

of Gupta et al. [9]. In the LayoutVAE case, we follow [9]

and sample category counts from the test dataset. For Gupta

et al., we use a mixture of nucleus sampling with p = 0.9
and top-k sampling with k = 30. As suggested by the au-

thors, we found nucleus sampling to improve the diversity

of the synthesized layouts. We, further, compare against

NDN [28] on RICO using their proposed alignment metric.

In tab. 3 we ablate our model on the prior type and the

decoding strategy. We observe that, while the autoregres-

sive decoder slightly decreases diversity (Wasserstein dis-

tance class/bounding box and number of unique matches),

it yields large improvements regarding perceptual quality

(IoU, overlap index and alignment). Moreover, in the case

of the non-autoregressive decoder a learned prior yields im-

provements regarding perceptual quality. However, when

using an autoregressive decoder the learned and non-learned

priors yield similar results. Therefore, we apply an autore-

gressive decoder with a non-learned prior in the remaining

experiments, since it strikes the optimal balance between

diversity, perceptual quality and model simplicity.

We report quantitative results for the aforementioned

metrics on different datasets. Unless explicitly stated, all

metrics are computed on 1000 samples, and the value is av-

eraged across 5 trainings with different random initializa-

tion. In tabs. 2 and 4 we show the results of our method

in comparison to existing art. We show that our method

produces a large number of distinct layouts that have sim-

ilar alignment metrics as the real data. Furthermore, we

2Though the LayoutGAN authors recently released an imple-

mentation, they only did so for a toy example on MNIST:

https://github.com/JiananLi2016/LayoutGAN-Tensorflow

clearly outperform LayoutVAE [16] across all metrics and

demonstrate improved diversity at similar perceptual qual-

ity compared to [9], as expected since our method explicitly

approximates the layout distribution. Given that both Lay-

outVAE and Gupta et al. generate layouts autoregressively

and considering our ablation in tab. 3, we note that autore-

gressive modeling denotes an important element of learning

layout distributions.

Furhtermore, in tab. 5 we also compare our approach

to Lee et al. [22] on the RICO dataset using their proposed

alignment metric. We demonstrate superior results when

no explicit design constraints are given (NDN-none), show-

ing that our method is better at discovering relationships

without supervision. Even in the NDN-all case, where all

relationships are given to the network, we show similar per-

formance despite not relying on this information.

4.4. Qualitative results

We show qualitative results for PubLayNet in fig. 3, as

well as a qualitative comparison with existing methods in

fig. 4. In alignment with the quantitative results in section

4.3, we observe that our approach and [9] yield similar per-

ceptual quality. Furthermore, LayoutVAE [16] struggles to

model layouts with a large number of elements. As previ-

ously discussed, this results from the application of RNNs,

which are inferior at modeling the relationships between

a large number of elements compared with the attention

mechanism. In fig. 5 we show synthetic samples for RICO

as well as the closest DocSim match in the real dataset. We

show similar results for SUN RGB-D in fig. 7. In order to

show the capabilities of our method on the task of natural

scene generation, we train our model on the COCO-Stuff

dataset. In fig. 6 we show samples from our network. For

better understanding we feed our generations to a pretrained

instance of LostGAN [34]3. These results show that our

method is capable of capturing relationships between ele-

ments regardless of their distance or position in the input

sequence. This is observed by the strict margins modeled

by our network, which resemble those of the real data. In

the case of COCO or SUN RGB-D, we show how the net-

work identifies joint occurrences of different elements (e.g.

giraffe and tree, person and playingfield or table and chair).

4.5. Layout detection

This experiment demonstrates the benefit of our ap-

proach regarding data augmentation for a downstream task.

Document understanding comprises multiple tasks that go

beyond simple Optical Character Recognition (OCR). Un-

derstanding the arrangement of different pieces of text and

images and their boundaries (the document layout) is also

necessary for applications such as text extraction or to de-

termine the reading order in a complex document. While

3https://github.com/iVMCL/LostGANs
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IoU Overlap Alignment W class ↓ W bbox ↓ # unique matches ↑
LayoutVAE [16] 0.171 0.321 0.472 - 0.045 241

Gupta et al. [9] 0.039 0.006 0.361 0.018 0.012 546

Ours (autoregressive) 0.031 0.017 0.347 0.022 0.012 697

Real data 0.048 0.007 0.353 - - -

Table 2: Quantitative evaluation on PubLayNet. We generate 1000 layouts with each method and compare them regarding

average IoU, overlap index [23], alignment [22], Wasserstein (W) distance of the classes and bounding boxes to the real data

and the number of unique matches according to the DocSim. Ours (autoregressive) denotes using an autoregressive decoder.

Autoregressive

decoder

Learned

prior

IoU ↓ Overlap ↓ Alignment ↓ W class ↓ W bbox ↓ # unique

matches ↑
✗ ✗ 0.259 ± 0.114 0.178 ± 0.122 0.364 ± 0.080 0.011 ± 0.007 0.018 ± 0.012 813 ± 51

✗ ✓ 0.243 ± 0.027 0.097 ± 0.040 0.381 ± 0.010 0.013 ± 0.007 0.011 ± 0.001 794 ± 34

✓ ✗ 0.031 ± 0.004 0.017 ± 0.006 0.347 ± 0.005 0.022 ± 0.002 0.012 ± 0.001 697 ± 13

✓ ✓ 0.032 ± 0.002 0.015 ± 0.004 0.353 ± 0.004 0.022 ± 0.005 0.013 ± 0.001 677 ± 16

Table 3: Quantitative ablation study on PubLayNet. We generate 1000 layouts and compare them in average IoU, overlap

index, alignment, Wasserstein (W) distance of the classes and bounding boxes to the real data and the number of unique

matches according to DocSim. We compare our model w/wo autoregressive decoder and with learned/non-learned prior.

OCR-annotated data is quite abundant, this is not the case

for layout detection. Annotating documents is a tedious pro-

cess which is prone to ambiguity, as the rules that define

e.g. what a paragraph is are often subjective. This ambi-

guity also makes automatic annotators based on heuristics

fail or be constrained to specific domains [42]. Most works,

such as PubLayNet [42], LayoutLM [40] or [41] are based

on object detection backbones using CNNs. Here, we use

our method to create a training dataset for a layout detec-

tor on the PubLayNet dataset. We use the bounding boxes

generated by our method to guide the rendering. Obtain-

ing realistic text, images, tables or lists for a given domain

is labor-intensive, therefore, we crop these from the origi-

nal dataset guided by the ground truth annotations and use

the most appropriate one for a particular box according to

its class and dimensionality. This approach ensures that the

aspect ratio is preserved. In fig. 3 we show several exam-

RICO

IoU Overlap Alignment Wclass ↓ Wbbox ↓ # unique m. ↑
[16] 0.193 0.400 0.416 - 0.045 496

[9] 0.086 0.145 0.366 0.004 0.023 604

Ours 0.115 0.165 0.373 0.007 0.018 680

Real 0.084 0.175 0.410 - - -

COCO

[16] 0.325 2.819 0.246 - 0.062 700

[9] 0.194 1.709 0.334 0.001 0.016 601

Ours 0.197 2.384 0.330 0.0005 0.013 776

Real 0.192 1.724 0.347 - - -

Table 4: Extension of Tab. 2 for RICO, COCO

Method Alignment

NDN-none [22] 0.91± 0.030
NDN-all [22] 0.32± 0.020

Ours 0.37± 0.009
Real data 0.0012

Table 5: Comparison between Neural Design Network [22]

and our approach using their proposed alignment metric on

RICO.
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Figure 3: Top: Generated layouts from our autoregressive

model for PubLayNet. Bottom: Renderings of the layouts.

The supplementary material shows more samples.

ples of this approach. We sample 240000 layouts from our

model to train a Faster R-CNN model [29] with a Resnet-

50 backbone [11] and evaluate the performance on the test

set of PubLayNet in tab. 6. We do not perform any postpro-
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Figure 4: Qualitative comparison between LayoutVAE,

Gupta et al. and our method on PubLayNet. The RNN of

LayoutVAE struggles with a large number of elements.
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Figure 5: Generated layouts for RICO and their associated

DocSim match. The supplement shows more samples.

cessing on the sampled layouts. For comparison, we run the

same experiment with renderings created from real bound-

ing box annotations (“Real layouts”), as well as with actual

training images (“Real PubLayNet”). We compare the mean

average precision (mAP) at 0.5 IoU. Our synthesized lay-

outs alone are capable of achieving a good accuracy score.
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Figure 6: Generated layouts on COCO-Stuff (top) and im-

ages generated by LostGAN based on these layouts (bot-

tom). The supplementary material shows more samples.
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Figure 7: Generated layouts for SUN RGB-D and their as-

sociated DocSim matches with the corresponding image.

Ours Real layouts Real PubLayNet

mAP @ 0.5 IoU 0.769 0.883 0.9646

Table 6: Detection accuracy scores for a layout detection

model trained with synthetic and real data.

5. Conclusion and future work

This work proposes self-attention layers as fundamental

building blocks of a VAE and develops a solution tailored

to layout synthesis, evaluating it on a diverse set of public

datasets. Our approach yields state-of-art quantitative per-

formance across all our metrics (see section 4.3) and layout

samples of appealing perceptual quality (see section 4.4).

We observe that autoregressive decoding constitutes an im-

portant ingredient to obtain high quality layouts. We also

demonstrate its applicability as a data synthesizer for the

downstream task of layout detection (see section 4.5). How-

ever, we also note that our proposal can still be improved in

promising future research directions. Namely, learning to

generate additional properties (e.g. font or text size) or the

dimensions of the layout, which could be useful for docu-

ments with varying size, (e.g., leaflets). Moreover, it could

be interesting to incorporate an end-to-end approach for lay-

out synthesis, such as ours, into a scene synthesis pipeline.
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