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Abstract

Continual learning is a realistic learning scenario for

AI models. Prevalent scenario of continual learning, how-

ever, assumes disjoint sets of classes as tasks and is less

realistic rather artificial. Instead, we focus on ‘blurry’ task

boundary; where tasks shares classes and is more realis-

tic and practical. To address such task, we argue the im-

portance of diversity of samples in an episodic memory.

To enhance the sample diversity in the memory, we pro-

pose a novel memory management strategy based on per-

sample classification uncertainty and data augmentation,

named Rainbow Memory (RM). With extensive empirical

validations on MNIST, CIFAR10, CIFAR100, and ImageNet

datasets, we show that the proposed method significantly

improves the accuracy in blurry continual learning setups,

outperforming state of the arts by large margins despite

its simplicity. Code and data splits will be available in

https://github.com/clovaai/rainbow-memory .

1. Introduction

Continual learning (CL) or class incremental learning

(CIL) is known to particularly suffer from the catastrophic

forgetting with respect to model generalization, due to in-

accessibility to the data of previous tasks. It is because the

class distributions of each task continuously change given

a task stream. This makes continual learning particularly

challenging; most AI models suffer from under real-world

application scenarios across various domains [38, 20, 30].

To address the issue of changing data distribution for con-

tinual learning, there are many approaches proposed such

as momentum matching [29], sample generation [42, 46,

24, 43], regularization on parameters [27, 5], and sampling-

based memory management [38, 39].

However, they are mostly evaluated in a rather artifi-

cial task setup of disjoint, where tasks do not share the

classes [37]. For real-world applications, we consider a

∗ indicates equal contribution. † indicates corresponding author.
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Figure 1: Blurry-CIL (class incremental learning) setup (top) and

overview of our proposed approach (bottom). In the blurry-CIL,

the tasks share classes, contrary to conventional disjoint-CIL. Pro-

posed memory management strategy updates an episodic memory

with samples of the current task to keep diverse exemplars in the

memory. Data augmentation (DA) further enhances the diversity

of the kept exemplars.

more realistic and practical setting of blurry-CIL where the

classes shared across the tasks [38] (illustrated at the top of

Figure 1). The blurry-CIL setup requires that (1) each task

is given sequentially as a stream, (2) the majority (assigned)

classes of tasks differ from each other, and (3) a model can

leverage only a very small portion of data of previous tasks.

For instance, suppose an e-commerce service that catego-

rizes new items with their images taken by a seller. For each

category, the number of newly registered items conspicu-

ously depend on various factors such as season and tran-

sient event. The popularity period of items varies according

to their characteristics as shown in Figure 2; e.g., swimming

suits are prevalent in summer and padding jumper are much

more registered in winter.

In recent literature, the methods storing a small portion

of old data have shown promising results in preserving the

information of old classes when training new classes for the

blurry-CIL setup [38], thus alleviating catastrophic forget-

ting [16]. This strategy naturally raises the question: what

is the optimal strategies to manage the memory? Since the

number of stored samples is much smaller than that of the
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Figure 2: Popularity changes of four items including swimming

suite, snack, mask, and padding jumper during one year in a

real-world e-commerce service. Each item has its own popular-

ity period and this phenomena is more similar to blurry-CIL than

disjoint-CIL because most item categories do not disjointly appear

in real-world applications.

incoming new-class, the samples in the memory would in-

cur either overfitting or be ignored during training due to its

small size compared to that of samples of incoming tasks.

As a straightforward solution, if we gradually increase the

memory size when the samples are incoming, the problem-

setting fails to hold an important resource constraint of the

CIL; a limited fixed memory requirement. Therefore, we

need a strategy to maintain sufficient information of the old

class with a small number of samples.

To address this problem, we investigate two factors for

better continual learning on the newly defined blurry-CIL

setup; sampling for the memory and augmenting the data in

the memory. First, we propose a perturbation-induced un-

certainty to select samples for the memory by measuring the

per-sample robustness against the perturbations. To measure

the uncertainty, we define a prior distribution that draws the

perturbed samples and approximates the robustness (i.e., in-

verse of uncertainty) described as a likelihood function in

a Bayesian formulation. We fill the memory slots with the

samples drawn from the distribution corresponding to the

robustness. We show that the diversity-induced memory by

sampling both perturbation-robust and fragile data helps the

models to preserve discriminative boundary for each class.

Second, we investigate the effect of the diversity ac-

quired by data augmentation in the blurry-CIL. In partic-

ular, label mixing-based data augmentation, such as Cut-

Mix [49], projects the input samples into a more complex

dimension by mixing the image-label of multiple data sam-

ples randomly and has reported notable successes in various

recognition tasks [47, 26]. It provides additionally rich di-

versity of stored samples in the episodic memory. Along

with the label mixing augmentation, we exploit the ef-

fects of composition of multiple data augmentations for en-

hancing the diversity, benefiting from conventional methods

such as flipping, shearing, or color jittering and recent au-

tomated data augmentation researches [9, 10, 32]. Incorpo-

rating the two proposals, we name our method as Rainbow

Memory or RM for short.

Our RM is mainly evaluated in blurry-CIL setup on

MNIST, CIFAR10, CIFAR100 and ImageNet datasets,

compared with various standard CIL methods. The exten-

sive experimental validations show that our approach effec-

tively addresses blurry-CIL, outperforming state-of-the art

baselines with significant margins (over 14%p and 9% of

accuracy on all datasets evaluated). In addition, our method

comparably performs to the other methods in disjoint-CIL

set-up even if it is designed for blurry-CIL setup.

We summarize the contributions as follows:

• We propose a new diversity-aware sampling method

for effectively managing the memory with limited ca-

pacity by leveraging classification uncertainty.
• We propose to augment the samples in the memory to

further enhance the diversity of the samples.
• Our RM outperforms previous methods in blurry-CIL

setup by large margins.
• We release the source code of RM and the evaluation

protocol including the task splits of blurry-CIL for fu-

ture research in this avenue.

2. Related Work

Class Incremental Learning Setups. Among many sce-

narios of continual learning, summarized in [43], we are

particularly interested in class-incremental learning (CIL)

scenario with no task identity is given at the inference [15].

There have been many proposals that can be roughly catego-

rized into (1) rehearsal-based approaches [6, 4, 39], where

episodic memory stores a few exemplars of old tasks, then

the exemplars will be replayed in the future task, and (2)

regularization-based approaches [28, 50, 33, 31, 29, 36],

where no samples of old tasks is stored, but exploit the in-

formation of old tasks implicitly remained in the parameters

of models. As rehearsal-based approaches generally have

shown the better performance in CIL [38], we propose to

improve memory management and exploit the insufficient

information in an episodic memory, presuming the exis-

tence of such memory.

Class-incremental learning usually refers to a sequen-

tial learning paradigm with disjoint set of tasks [39, 4, 15].

However, recent studies [1, 38] introduce a setup containing

blurry and continuous stream of tasks, which is more real-

istic as many real-world tasks are seldom given in a disjoint

manner. Another setup is whether CIL allows the temporary

buffer for storing incoming samples of a current task or not

during model training, each of which is called offline and

online, respectively. Many previous works have been eval-

uated either of online [13, 1, 23] or offline [48, 39, 5, 4]

setup, while GDumb [38] reports on both of setups. Basi-

cally, online is more difficult but more practical, so we focus
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on online to report more practical results. Instead, we inves-

tigate the importance of memory management and propose

effective memory update algorithm.

Class Imbalance. Rehearsal-based approaches have re-

ported severe catastrophic forgetting due to the class-

imbalance of exemplars [48]. This makes models vulnerable

to the most frequent classes in episodic memory. To address

the catastrophic forgetting problem, GEM [35], MER [40],

and GSS [1] propose to update the weights using gradient

information so that the models get knowledge from prior

task, and BiC [48] proposes adding a simple layer at the end

of model to calibrate the bias. Very recently, MEGA [17]

proposes a loss balancing approach mixing loss of previous

and current classes to relieve the forgetting. HAL [7] pro-

poses a way to utilize the most destructive samples in the

past tasks as anchor points to address the forgetting prob-

lem, and CAL [2] proposes an approach keeping additional

information by storing intermediate activations, in addition

to the raw images. However, those approaches overlook the

importance of memory management and normally adopt

simple random sampling [17, 2] or reservoir sampling [40]

or ring-buffer sampling [7].

Episodic Memory Management. There are a number

of strategies proposed in the literature [37]. Interestingly,

many proposals show marginal accuracy improvement over

the uniform random sampling despite the computational

complexity [5, 4, 39]. These methods include herding se-

lection [45], a discriminative samplings [34] and entropy

based samples [6]. The herding selection chooses the sam-

ples proportional to a histogram of each sample’s distance

to the class mean. The discriminative sampling chooses the

samples that define decision boundaries. The entropy based

sampling method chooses the samples by the entropy of

their softmax distribution in the output layer.

To obtain the representative and discriminative exem-

plars, Liu et al. proposes a complex but effective sam-

pling method guaranteeing that the exemplars well repre-

sents the mean and boundary of each class distribution [34].

Also, Borsos et al. propose a coreset generation method for

the representative memory using cardinality-constrained bi-

level optimization [3]. and Cong et al. propose a GAN based

memory which they can perturb styles of remembered sam-

ples for incremental learning [8]. These recently published

works address the quality of the samples stored in the mem-

ory, they are either computationally expensive or difficult to

train a sample generator for the memory [3].

Other than sampling, there are works addressing the

episodic memory. Generative models are employed to gen-

erate past task samples [42, 41, 46, 21] instead of sam-

pling. The generation strategy is an active research topic

and shows promising results in relatively straightforward

experimental validation (e.g., on MNIST and SVHN). But

on these datasets, sampling from the uniform distribution

already achieves saturated accuracy [6] and there is no

promising results reported in challenging datasets (e.g., Im-

ageNet) yet. Hayes et al. propose to replay ‘compressed

memory’ to increase the memory utilization [18]. Iscen et

al. propose to reduce the dimension of stored features for

efficiency [22]. Fini et al. propose a batch-level distillation

(BLD) method to increase the memory efficiency in an on-

line setting which has an extreme memory constraint [13].

Unlike these works addressing the sampling efficiency, we

focus on the quality of the stored samples in the memory.

3. Class Incremental Learning Setups

We can formulate CIL setups as follows:

C = {c1, c2, . . . , cN},

Tt = {c | ψ(c) = t},

D
C

c = {xc
1
, xc

2
, . . . , xcMc

},

D
T

t = {DC

c | c ∈ Tt},

where C denotes a set of all classes, Tt denotes a class-

subset assigned to each task t, which is determined by a

stochastic assign function, ψ(c) returning an assigned task

for a given class c, and D
C
c and D

T
t represent a set of sam-

ples populating class c and task t sample space, respectively.

Note that N is not known and not even bounded in real-

world scenario and Mc can be either of equal or not among

classes (c) according to a problem definition.

We now formulate either blurry or disjoint CIL setups by

intersecting D
T
t ’s or not.

disjoint-CIL ⇒
⋂
Tt = ∅,

blurry-CIL ⇒
⋂
Tt 6= ∅.

The disjoint-CIL setup exaggerates the catastrophic for-

getting since it never exposes seen classes in successive

tasks, but it is deviated from the real-world where new

classes do not show up exclusively. Conversely, blurry-CIL

setup makes the task boundaries faint in a way that each

task contains small number of classes also present in the

other tasks. Approaches are evaluated in various perspec-

tives including forgetting and intransigence [5] under a con-

tinuously changing class balance setup [38].

4. Approach

To effectively address the blurry-CIL with an episodic

memory, we propose a memory management strategy that

enhances diversity of samples to cover the distribution of

the class by sampling a diverse set of samples which may

preserve the boundary of a class distribution. We further en-

hance the diversity of the samples by data augmentation.
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4.1. Diversity­Aware Memory Update

We argue that the exemplars which are selected to be

stored in the memory should be not only representative for

their corresponding class but also discriminative to the other

classes. To choose such samples, we argue that the samples

that are near the classification boundary are the most dis-

criminative and the samples that are close to the center of

the distribution is the most representative. To satisfy both

characteristics, we propose to sample the exemplars that are

diverse in the feature space.

To secure the diversity, we need to estimate the rela-

tive locations of each sample in class-discriminative feature

space. But it is computationally expensive to compute the

relative locations of the features as it requires to compute

sample-to-sample distances (O(N2)). Instead, we propose

to estimate the relative location by uncertainty of a sam-

ple estimated by the classification model, i.e., we assume

that the more certain samples for the model will be located

closer to the center of the class distribution and vice versa.

Specifically, we compute uncertainty of a sample by

measuring the variance of model outputs of perturbed sam-

ples by various transformation methods for data augmen-

tation: including color jitter, shear, and cutout [12] (illus-

trated in Figure 3). Following the derivation from Gal et

al. [14], we approximate the uncertainty by Monte-Carlo

(MC) method of the distribution p(y = c|x) when given the

prior of the perturbed sample x̃, as p(x̃|x). We define the

perturbation prior p(x̃|x), as a uniform mixture of the vari-

ous perturbations as shown in the examples in Figure 3. The

derivation can be written as:

p(y = c|x) =

∫
D̃

p(y = c|x̃t)p(x̃t|x)dx̃t

≈
1

A

A∑
t=1

p(y = c|x̃t),

(1)

where x, x̃, y and A denote a sample, a perturbed sam-

ple, the label of the sample, and the number of perturbation

methods, respectively. The distribution D̃ denotes the data

distribution defined by the perturbed samples x̃. In particu-

lar, the perturbed sample x̃ is drawn by a random function

fr(·), as:

x̃ = fr(x|θr), r = 1, ..., R, (2)

where θr is a hyper-parameter which denotes the random

factor of the r-th perturbation. The prior p(x̃|x) is defined

as:

x̃ ∼

R∑
r=1

wr ∗ fr(x|θr), (3)

!

!
"

!
#

…

!
$

Measure 
uncertainty

…

Input Perturbed samples

Figure 3: Estimating uncertainty of a data sample (x) with its per-

turbed samples (x̃) for the proposed Rainbow Memory. Detailed

procedure is summarized in Algorithm 1.

where the random variable wr, r = {1, ..., R} is drawn

from a categorical binary distribution. From the approxi-

mated distribution (1), we measure the uncertainty of the

sample with respect to the perturbation as:

Sc =

T∑
t=1

✶cargmax
ĉ

p(y = ĉ|x̃t),

u(x) = 1−
1

T
max

c
Sc,

(4)

where u(x) denotes the uncertainty of the sample x and Sc

is the number of times that class c is the predicted top-1

class. The ✶c denotes the binary class indexing vector. The

lower valued u(x), corresponding to more consistent top-1

class over perturbations, indicates that x resides in a region

where a model is strongly confident.

Algorithm 1 summarizes our proposed diversity-aware

memory update algorithm. Following GDumb [38], we also

assign the same amount of memory slots (kc) over the ‘seen’

classes (N ). After assigning the exemplars to the memory

slots, we compute the uncertainties for both streamed sam-

ples (DS
t ) and stored exemplars (DM

t−1
) in a memory at task

t, then sort all these samples (Dc) by their uncertainties.

From the sorted list, we select samples with an interval of

|Dc|/kc to secure the diversity. As a result of this sampling,

we fill the memory with exemplars in a wide spectrum

ranged from strongly perturbation, i.e., robust samples, to

fragile ones. This imposes perturbation-based diversity to

the episodic memory.
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Algorithm 1 Diversity-Aware Memory Update

1: Input: K denotes memory size, Nt denotes the num-

ber of seen classes until task t, DS
t denotes stream data

at task t, DM
t−1

denotes exemplars stored in a episodic

memory after task t− 1.

2: Output: DM
t exemplars after learning task t.

3: D
M
t = {} ⊲ New exemplars from scratch

4: kc = floor(K/Nt) ⊲ Class-balanced sampling

5: for c = 1, 2, . . . , Nt do

6: Dc = {(x, y)|y = c, (x, y) ∈ D
S
t ∪D

M
t−1

}
7: Sort Dc by u(x) computed by (4)

8: for j = 1, 2, . . . , kc do

9: i = j ∗ |Dc|/kc ⊲ |Dc|/kc step-size indexing

10: D
M
t += Dc[i]

11: end for

12: end for

4.2. Diversity Enhancement by Augmentation

To further enhance the diversity of exemplars from the

memory, we employ data augmentation (DA). The DA’s di-

versify a given set of samples by image-level or feature-

level perturbations, which correspond to the philosophy of

updating memory by securing the diversity (Section 4.1).

We consider various perturbation types including sim-

ple single-image-based DA perturbing the original input

image, mixed-labeled DA which integrates multiple im-

ages [49, 51] and automated DAs (AutoDAs) [9, 11, 32].

The stochastically chosen various augmentations succeed

in image classification. Yet, the efficacy of the DA’s has not

been well investigated in the CIL context.

Mixed-Label Data Augmentation. As task iteration pro-

ceeds, the samples in a new task are likely to follow differ-

ent distribution from the one in the episodic memory (i.e.,

from the previous tasks). We adopt mixed-labeled DA to

‘mix’ images in the classes of the new tasks and the exem-

plars of the old classes in the memory. This mixed-label DA

alleviates the side effects caused by change of class distri-

bution over the tasks and improves the performances.

As one of the representative mixed-labeled DA meth-

ods, CutMix [49] generates a mixed sample and a smoothed

label, given the set of supervised samples (x1, y1) and

(x2, y2), as:

x̃ = m⊙ x1 + (1−m)⊙ x2,

ỹ = λy1 + (1− λ)y2,
(5)

where the set m denotes the randomly selected pixel region

for the image x1 according to the hyper-parameter β drawn

from the beta-distribution. As shown in (5), the mixed-label

DA generates artificial samples that are hard to be consid-

ered as a variant of the source images unlike the conven-

tional data augmentations manipulating an original image

by flipping, rotating, and/or contrasting while not ruining a

class boundary.

Automated Data Augmentation. In addition to the above

mixed-labeled DAs, we further use AutoDA to enrich the

augmentation effect by compositing multiple DA’s on the

model performance under CIL. Especially, we employ Au-

toAugment [9], providing parameters for determining the

number of augmentations and their magnitudes.

5. Experiments

We empirically validate the efficacy of our RM by com-

paring it with state of the arts in various experimental se-

tups; CIL task setups for the benchmarks, memory-sizes of

episodic memory, and performance metrics. In addition, we

further investigate components of the propose RM; memory

management strategy and augmentation methods for their

contribution to the CIL performances.

5.1. Experimental Setup

Benchmark Task Setup. We evaluate algorithms mostly

in blurry-CIL setup, otherwise stated. Following [1], we

denote blurry-CIL setup as ‘BlurryM ’, where the M de-

notes the portion of samples coming from the other tasks.

Therefore, each task in the blurry-CIL setup contains sam-

ples from its assigned major classes (i.e., the most frequent

classes and assigned to each task exclusively) consisting

of (100 −M)% and ones of minor classes (i.e., the other

classes of C except for the assigned major classes) consist-

ing of remaining M%. Note that the class distribution of

minor classes in each task are balanced.

In addition, we consider two different learning setup; on-

line and offline. In online, the incoming samples are pre-

sented to a model only once except the ones selected as ex-

emplars since it does not have a buffer which is large enough

to keep the whole streamed samples. On the other hand, in

offline, a model can observe the incoming samples multiple

times (i.e., epochs) with the buffer. Please note that we re-

peat each experiment three times to report means and stan-

dard deviations except the ImageNet experiments.

Datasets and Metrics. We use MNIST, CIFAR10, CI-

FAR100 and ImageNet (ILSVRC2012) datasets to config-

ure CIL task setups for evaluations. We randomly split and

assign with different random seeds a set of all classes (C)

into 5 tasks to generate a CIL task setup, and thus each

class-subset (Tt) has 2 and 20 major classes for CIFAR10

and CIFAR100 datasets, respectively. For ImageNet, we

split 1000 classes to 10 tasks, so each class-subset (Tt) has

100 major classes.

We use three popular metrics in the literature, such as

Last Accuracy (A5), Last Forgetting (F5), and Intransigence

(I5). ‘Last’ refers to the value is measured after all tasks
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are learned, and we denote it with number ‘5’ here because

both of CIFAR10 and CIFAR100 have five tasks. Accord-

ingly, they will be A10, F10, and I10 for ImageNet. Please

refer to the supplementary material for more details about

the metrics. Finally, we use various episodic memory sizes

for different datasets as the size of the datasets differ.

Baselines and Implementation Details. We compare

our proposed RM with the standard CIL methods includ-

ing EWC [27], Rwalk [5], iCaRL [39], BiC [48] and

GDumb [38], the only method specifically designed for

the blurry setup. Note that GSS [1] is not compared since

GDumb outperforms it by large margins. The comparable

CIL methods utilize MLP400, ResNet18, ResNet32, and

ResNet34 [19] as their network architectures for MNIST,

CIFAR10, CIFAR100, and ImageNet, respectively. For CI-

FAR10/100, we use the same backbone to the official

GDumb [38] implementation1 throughout all experiments.

For ImageNet, we use the backbone from their original im-

plementation [19].

For the training hyperparameters of experiments on

MNIST and CIFAR10/100, we use batch-size of 16, co-

sine annealing learning-rate schedule ranged from 0.05 to

0.0005, and the number of epochs of 256, following [38].

For those on ImageNet, we use batch-size of 256, step an-

nealing learning-rate schedule ranged from 0.1 to 0.001, and

the number of epochs of 100, which are used from BiC [48].

In addition, we use an episodic memory, which is up-

dated through reservoir sampling which exhibits the best

performance (Section 5.3), to the baselines not considering

the existence of memory; EWC and Rwalk, for fair com-

parison. As expected, all memory-attached baselines out-

perform the corresponding original ones.

5.2. Results

We compare the propose RM to other methods in

‘Blurry10-Online’ setup on various datasets and summarize

the results in Table 1. As shown in the table, RM consis-

tently outperforms all other methods, and the gain becomes

larger when the number of classes (|C|) increases, which

is more challenging. Note that the original BiC performs

significantly worse in ImageNet in the blurry setup, so we

eliminate the distilling loss yielding irregular values, then

BiC performs reasonably well (denoted by ∗ in Table 1). On

MNIST, however, RM without DA performs the best. We

believe that DA interferes the model training with perturbed

samples since the exemplars are enough to avoid forgetting.

On the other hand, DA improves the metrics with large mar-

gins on the other datasets as we expected in section 4.2.

Table 2 presents the comparison on CIFAR10-Blurry10-

Online for three episodic memory sizes (K); 200, 500 and

1,000. We again observe that our proposed RM outperforms

1https://github.com/drimpossible/GDumb

all other baselines over all three memory-sizes in terms of

A5, F5, and I5 by significant margins in Blurry and on-

line CIL setup on CIFAR10. It is interesting that EWC and

Rwalk do not perform well in forgetting (F5) despite their

competitive A5 scores regardless of the memory size. The

results imply that these methods preserve effective exem-

plars in the final task, which are enough to restore the for-

getting happening in the previous tasks. iCaRL, GDumb

and BiC are less effective for intransigence (I5) with larger

memory size while they perform well in forgetting com-

pared to EWC and Rwalk as a tradeoff.

Our RM not only outperforms other baselines for accu-

racy but also exhibit good forgetting and intransigence per-

formance, regardless of memory sizes. It is also observed

that the performance gaps between ours and the others de-

crease when the memory-size becomes larger since the im-

pact of sampling efficiency decreases with redundant sam-

ples. Note that these results on CIFAR10 exhibit similar

trends to the results on CIFAR100 and ImageNet (shown in

Table 1). Although the CIFAR100 and ImageNet has 10×
or 100× more classes than the CIFAR10, RM still outper-

forms all the baselines in all three metrics by large margins.

These results imply that our RM is quite effective for more

practical and realistic CIL setup of blurry and online, com-

pared to the prior arts.

5.3. Detailed Analysis

On Various Blurry Levels. Even though blurry-CIL is

the main task of our interests, it is interesting to investigate

the performance of the proposed RM on disjoint-CIL (i.e.,

Blurry0) setup and in various blurry levels. We summarize

the comparative results in Table 3.

In disjoint-CIL where catastrophic forgetting is more se-

vere than blurry-CIL, regularization-based methods such as

EWC [27] and Rwalk [5] show competitive performances.

It is expected that disjoint-CIL setup tends to exagger-

ate catastrophic forgetting that regularization-based meth-

ods aim to address (Section 3). Notably, RM performs

comparably without any regularization while outperforming

rehearsal-based methods, e.g., iCaRL, GDumb and BiC.

In the offline setup, the gain by RM diminishes and prior

arts slightly outperform the RM. We conjecture that keep-

ing the large incoming samples in buffer dilutes the sen-

sitivity of exemplar sampling. In blurry-CIL setups with

online-setting (Blurry10 and Blurry30), RM outperforms

other baselines by remarkable margins even when DA is

not applied. With the proposed DA, RM achieves over 70%
accuracy for both Blurry10 and Blurry30 setups, far better

than the other baselines.

We further compare the accuracy trajectories over the

task streams; three streams generated from stochastically

assigned function, ψ(c), with different random seeds, for

CIFAR10 and single stream for ImageNet and summarize
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Table 1: Comparison with three metrics (A{5, 10}, F{5, 10}, and I{5, 10}: %) in {MNIST, CIFAR100, ImageNet}-Blurry10-Online.
∗ indicates the reproduction of BiC with only using classification loss without distilling loss to be better suited for Blurry10 setup.

MNIST (K=500) CIFAR100 (K=2,000) ImageNet (K=20,000)

Methods A5 (↑) F5 (↓) I5 (↓) A5 (↑) F5 (↓) I5 (↓) A10 (↑) F10 (↓) I10 (↓)

EWC 90.98 ± 0.61 4.23 ± 0.45 4.54 ± 0.94 26.95 ± 0.36 11.47 ± 1.26 43.18 ± 14.22 39.54 14.41 42.68

Rwalk 90.69 ± 0.62 4.77 ± 0.36 4.96 ± 0.56 32.31 ± 0.78 15.57 ± 2.17 37.18 ± 10.02 35.26 13.92 46.96

iCaRL 78.09 ± 0.60 6.09 ± 0.23 17.03 ± 0.60 17.39 ± 1.04 5.38 ± 0.88 44.18 ± 9.29 17.52 1.94 81.94

GDumb 88.51 ± 0.52 2.67 ± 0.31 6.75 ± 0.43 27.19 ± 0.65 7.49 ± 0.95 41.18 ± 7.23 21.52 4.07 60.70

BiC 77.75 ± 1.27 8.25 ± 1.45 17.37 ± 1.27 13.01 ± 0.24 4.63 ± 0.46 53.84 ± 11.85 37.20∗ 1.52∗ 45.02∗

RM w/o DA 92.65 ± 0.33 0.58 ± 0.09 3.14 ± 0.94 34.09 ± 1.41 4.01 ± 0.50 34.51 ± 4.58 37.96 2.63 44.26

RM 91.80 ± 0.69 0.75 ± 0.30 3.62 ± 0.63 41.35 ± 0.95 4.99 ± 0.89 20.18 ± 3.06 50.11 1.39 32.11

Table 2: Comparison with three metrics (A5, F5, and I5: %) for three episodic memory sizes in CIFAR10-Blurry10-Online. DA is used in

RM denotes CutMix+AutoAug.

K=200 K=500 K=1,000

Methods A5 (↑) F5 (↓) I5 (↓) A5 (↑) F5 (↓) I5 (↓) A5 (↑) F5 (↓) I5 (↓)

EWC 40.07 ± 2.14 21.20 ± 0.76 61.91 ± 4.51 55.65 ± 4.60 16.06 ± 3.89 44.24 ± 11.98 68.67 ± 0.95 12.63 ± 1.78 25.97 ± 10.88

Rwalk 38.66 ± 1.52 20.67 ± 2.36 65.81 ± 4.85 53.66 ± 3.18 17.04 ± 0.31 45.81 ± 9.78 68.20 ± 1.86 11.48 ± 1.19 25.17 ± 11.57

iCaRL 37.43 ± 1.31 2.08 ± 2.23 63.51 ± 13.73 45.98 ± 3.04 4.75 ± 1.70 51.91 ± 2.57 53.60 ± 2.82 7.21 ± 2.58 37.84 ± 13.49

GDumb 35.85 ± 1.03 1.67 ± 3.49 55.31 ± 6.02 49.47 ± 1.08 1.44 ± 2.77 40.91 ± 14.04 64.26 ± 1.21 0.37 ± 1.92 31.81 ± 13.37

BiC 33.29 ± 0.86 3.91 ± 1.64 50.37 ± 6.96 42.06 ± 2.41 1.34 ± 2.27 52.04 ± 15.50 47.81 ± 3.04 3.03 ± 1.44 52.77 ± 15.54

RM w/o DA 44.41 ± 1.40 0.90 ± 0.93 49.51 ± 11.09 60.87 ± 0.88 0.95 ± 1.14 35.74 ± 13.89 70.93 ± 1.57 -1.43 ± 0.71 22.07 ± 14.07

RM 54.61 ± 1.62 -2.60 ± 1.91 43.57 ± 11.63 71.13 ± 0.25 -0.85 ± 0.28 18.29 ± 14.21 78.04 ± 0.50 1.29 ± 1.26 11.64 ± 5.83
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Figure 4: Illustration of accuracy changes as tasks are being learned in (a) CIFAR10-Disjoint-Online, (b) CIFAR10-Blurry10-Offline, (c)

CIFAR10-Blurry10-Online, (d) ImageNet-Blurry10-Online settings. More results are presented in the supplement.

the results in Figure 4. For the online settings ((a), (c) and

(d)), our RM consistently outperforms the other baselines

over entire task stream. However, in offline setting (b), RM

comparably performs to the prior arts over the entire task

stream as summarized in Table 3.

Uncertainty Measure. We compare three methods for es-

timating uncertainty by various Monte-Calro methods; (1)

no MC (No MC), (2) RandAug-based (RandAug MC), and

(3) AutoAug [9]-based methods (AutoAug MC), summa-

rizing the A5 results in Table 5. Note that RandAug MC

and AutoAug MC also leverage configuring the stochastic

data perturbation set as well as DA during training.

As shown in the table, the two automated DA-based

methods improve the accuracy compared to the No MC

case, caused by diversity-enhanced configuration. For mea-

suring the uncertainty in our RM, we use RandAug MC.

Comparison to Other Memory Update Algorithms. To

investigate exclusive gains by the memory update algo-

rithm, we compare RM with other memory update schemes

while leaving other components unchanged and summarize

results in Table 6. The other algorithms include Random,

Reservoir [44] and Prototype [39]. Random selects new ex-

emplars for the next episodic memory randomly from cur-

rent exemplars and incoming samples. Reservoir conducts

uniform random sampling on a unknown length task stream.

The prototype selects the samples where the extracted fea-

tures are close to the feature mean of its own class. As

shown in the table, RM outperforms all the augmentation

conditions with different settings of K.

Data Augmentation. We also investigate the effects of

various DA methods on performances by comparing the

adopted DA methods with others while other components
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Table 3: Comparison of last accuracy (A5 (↑), %) over benchmarks {Disjoint (0%), Blurry (10%), and Blurry (30%)} and training setups

{Online and Offline} on CIFAR10 (K=500).

Blurry0 (=Disjoint) Blurry10 Blurry30

Methods Online Offline Online Offline Online Offline

EWC 55.66 ± 1.18 64.00 ± 1.34 55.65 ± 4.60 78.67 ± 1.06 60.57 ± 1.15 85.00 ±0.42

Rwalk 55.91 ± 1.85 65.04 ± 0.11 53.66 ± 3.18 78.59 ± 1.37 59.03 ± 0.05 85.18 ± 0.57

iCaRL 40.70 ± 5.13 65.61 ± 2.57 45.98 ± 3.04 57.07 ± 2.74 48.11 ± 4.63 64.90 ± 7.95

GDumb 50.37 ± 1.17 42.47 ± 1.15 46.70 ± 1.53 43.16 ± 0.77 47.78 ± 3.77 45.72 ± 0.64

BiC 44.70 ± 2.12 59.53 ± 4.30 42.06 ± 2.41 61.45 ± 6.25 42.92 ± 1.47 71.93 ± 2.45

RM w/o DA 54.05 ± 4.94 59.47 ± 0.61 60.87 ± 0.88 74.58 ± 0.60 60.92 ± 6.48 83.91 ± 0.40

RM 66.25 ± 0.21 61.91 ± 0.63 71.13 ± 0.18 76.86 ± 0.04 73.90 ± 0.80 85.10 ± 0.16

Table 4: Comparison of last accuracy (A5 (↑), %) over methods with data augmentations in CIFAR10-Blurry10-Online. The results on

K = 1, 000 is reported in the supplementary material. ‘CM+AA’ refers to CutMix+AutoAug.

K=200 K=500

Methods None CutMix RandAug AutoAug CM+AA None CutMix RandAug AutoAug CM+AA

EWC 40.0±2.1 41.9±1.0 44.7±0.6 48.3±3.5 50.3±1.2 55.6±4.6 56.2±0.7 60.0±5.3 64.8±0.6 67.5±0.9

Rwalk 38.6±1.5 41.3±2.2 46.5±2.9 48.7±2.7 51.8±1.6 53.6±3.1 57.5±1.4 62.5±3.0 64.7±1.0 67.2±1.5

iCaRL 37.4±1.3 37.9±3.8 38.4±1.4 41.8±2.3 43.3±2.2 45.9±3.0 46.9±1.4 51.3±1.1 51.6±2.8 56.6±1.2

GDumb 33.3±2.0 35.8±1.0 37.1±2.0 38.4±1.1 41.4±1.1 46.7±1.5 49.4±1.0 54.3±1.4 55.9±1.4 58.2±2.7

BiC 33.2±0.8 33.2±0.8 27.1±2.7 29.7±3.1 31.2±0.7 42.0±2.4 42.0±2.4 38.6±2.8 38.7±1.5 38.4±2.5

RM 44.4±1.4 45.9±2.4 49.9±2.9 55.3±2.2 54.6±1.6 60.8±0.8 62.0±3.5 68.6±0.7 69.6±2.9 71.1±0.1

Table 5: Comparison of uncertainty measures for RM on

CIFAR10-Blurry10-Online (K=500).

No MC RandAug MC AutoAug MC

A5 (%) 58.59 61.27 60.1

Table 6: Comparison of last accuracy (A5 (↑), %) over memory up-

date methods without data augmentations in CIFAR10-Blurry10-

Online. ‘CM+AA’ refers to CutMix+AutoAug.

K=200 K=1,000

Methods None CutMix CM+AA None CutMix CM+AA

Random 24.1 ± 1.4 24.0 ± 1.0 22.4 ± 0.8 46.7 ± 2.5 52.5 ± 4.2 52.7 ± 2.8

Reservoir 38.0 ± 2.2 39.1 ± 0.8 49.4 ± 1.8 64.6 ± 4.2 67.2 ± 5.3 75.5 ± 0.0

Prototype 34.6 ± 0.5 33.8 ± 1.9 26.5 ± 3.9 48.1 ± 5.7 41.1 ± 4.1 29.3 ± 1.5

Uncertainty (RM) 43.8 ± 1.2 42.4 ± 1.8 52.2 ± 1.3 64.7 ± 4.1 71.8 ± 4.3 76.1 ± 1.1

unchanged in Table 4. As shown in the table, other methods

also enjoyed the performance enhancement by DA same as

RM. However, the enhancement from CutMix + AutoAug

used for RM is the most effective among all DAs. Note that

even when adding various DA, RM achieves the best per-

formance surpassing the other baselines.

6. Conclusion

We address a realistic and real-world class incremental

(continual) learning setup where tasks share the classes,

denoted as blurry-CIL. To effectively address such sce-

nario, we propose to enhance diversity of samples in an

episodic (or representative) memory. Specifically, we pro-

pose a new diversity-enhanced sampling method using per-

sample perturbation-based uncertainty. In addition, we em-

ploy diverse sets of data augmentation techniques to fur-

ther improve the diversity, that is representativeness and dis-

criminativeness of exemplars, induced from the proposed

memory update.

In blurry-CIL scenarios on CIFAR10, CIFAR100, and

ImageNet, our diversity-enhancing method (named Rain-

bow Memory or RM) not only outperforms the state-of-the-

art methods by large margins but also presents comparable

performances on disjoint and offline CIL setups. We fur-

ther investigate the effectiveness of the proposed method in

various blurry setups and even in the disjoint setup, along

with in-depth analysis for each proposed components. As

a future work, we will investigate the relationships between

uncertainty-based memory update and data augmentation in

training time and their effects on diverse CIL tasks.
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