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Abstract

We consider the abstract relational reasoning task,

which is commonly used as an intelligence test. Since

some patterns have spatial rationales, while others are only

semantic, we propose a multi-scale architecture that pro-

cesses each query in multiple resolutions. We show that in-

deed different rules are solved by different resolutions and

a combined multi-scale approach outperforms the existing

state of the art in this task on all benchmarks by 5-54%.

The success of our method is shown to arise from multiple

novelties. First, it searches for relational patterns in multi-

ple resolutions, which allows it to readily detect visual re-

lations, such as location, in higher resolution, while allow-

ing the lower resolution module to focus on semantic rela-

tions, such as shape type. Second, we optimize the reason-

ing network of each resolution proportionally to its perfor-

mance, hereby we motivate each resolution to specialize on

the rules for which it performs better than the others and ig-

nore cases that are already solved by the other resolutions.

Third, we propose a new way to pool information along the

rows and the columns of the illustration-grid of the query.

Our work also analyses the existing benchmarks, demon-

strating that the RAVEN dataset selects the negative exam-

ples in a way that is easily exploited. We, therefore, propose

a modified version of the RAVEN dataset, named RAVEN-

FAIR. Our code and pretrained models are available at

https://github.com/yanivbenny/MRNet.

1. Introduction

Raven’s Progressive Matrices (RPM) is a widely-used

intelligence test [13, 3], which does not require prior knowl-

edge in language, reading, or arithmetics. While IQ mea-

surements are often criticized [21, 4], RPM is highly corre-

lated with other intelligence-based properties [17] and has

a high statistical reliability [12, 11]. Its wide acceptance

by the psychological community led to an interest in the AI

community. Unfortunately, as pointed out by [20, 25, 8],

applying machine learning models to it can sometimes re-

sult in shallow heuristics that have little to do with actual

intelligence. Therefore, it is necessary to study the pitfalls

of RPMs and the protocols to eliminate these exploits.

In Sec. 2.1, we present an analysis of the most pop-

ular machine learning RPM benchmarks, PGM [15] and

RAVEN [26], from the perspective of biases and exploits. It

is shown that RAVEN is built in a way that enables the se-

lection of the correct answer with a high success rate with-

out observing the question itself. To mitigate this bias, we

construct, in Sec. 3, a fair variant of the RAVEN bench-

mark. To further mitigate the identified issues, we propose

a new evaluation protocol, in which every choice out of the

multiple-choice answers is evaluated independently. This

new evaluation protocol leads to a marked deterioration in

the performance of the existing methods and calls for the

development of more accurate ones that also allows for a

better understating of abstract pattern recognition. In Sec. 4,

we propose a novel neural architecture, which, as shown in

Sec. 5, outperforms the existing methods by a sizable mar-

gin. The performance gap is also high when applying the

network to rules that were unseen during training. Further-

more, the structure of the new method allows us to separate

the rules into families that are based on the scale in which

reasoning occurs.

The success of the new method stems mostly from

two components: (i) a multi-scale representation, which is

shown to lead to a specialization in different aspects of the

RPM challenge across the levels, and (ii) a new form of in-

formation pooling along the rows and columns of the chal-

lenge’s 3× 3 matrix.

To summarize, the contributions of this work are as fol-

lows: (i) An abstract multi-scale design for relational rea-

soning. (ii) A novel reasoning network that is applied on

each scale to detect relational patterns between the rows and

between the columns of the query grid. (iii) An improved

loss function that balances between the single positive ex-

ample and the numerous negative examples. (iv) A multi-

head attentive loss function that prioritizes the different res-

olutions to specialize in solving different rules. (v) A new
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balanced version of the existing RAVEN dataset, which we

call RAVEN-FAIR.

2. Related Work and Dataset Analysis

The first attempt in an RPM-like challenge with neural

networks involved simplified challenges [6]. The Wild Re-

lation Network (WReN) [15], which relies on the Relation

Module [16], was the first to address the full task and in-

troduced the PGM benchmark. WReN considers the possi-

ble choices one-by-one and selects the most likely option.

Two concurrently proposed methods, CoPINet [27] and

LEN [28] have proposed to apply row-wise and column-

wise relation operations. Also, both methods benefit from

processing all eight possible choices at once, which can

improve the reasoning capability of the model, but as we

show in this work, has the potential to exploit biases in

the data that can arise during the creation of the negative

choices. CoPINet applies a contrast module, which sub-

tracts a common factor from all choices, thereby highlight-

ing the difference between the options. LEN uses an ad-

ditional “global encoder”, which encodes both the context

and choice images into a single global vector that is con-

catenated to the row-wise and column-wise representations.

The latest methods, MXGNet [24] and Rel-AIR [18], have

proposed different complex architectures to solve this task

and also consider all choices at once.

Zhang et al. [28] also introduced a teacher-student train-

ing method. It selects samples in a specialized category-

and difficulty-based training trajectory and improves per-

formance. In a different line of work, variational autoen-

coders [10] were shown to disentangle the representations

and improve generalization on held-out rules [19]. Our

method shows excellent performance and better generaliza-

tion to held-out rules without relying on either techniques.

When merging different outputs of intermediate paths,

such as in residual [5] or shortcut [1, 14, 23] connections,

most methods concatenate or sum the vectors into one. This

type of pooling is used by the existing neural network RPM

methods when pooling information across the grid of the

challenge. In Siamese Networks [2], one compares the out-

puts of two replicas of the same network, by applying a dis-

tance measure to their outputs. Since the pooling of the

rows and the columns is more akin to the task in siamese

networks, our method generalizes this to perform a triple

pair-wise pooling of the three rows and the three columns.

2.1. Datasets

The increased interest in the abstract reasoning chal-

lenges was enabled by the introduction of the PGM [15]

and RAVEN [26] datasets. These datasets share the same

overall structure. The participant is presented with the first

eight images of a 3x3 grid of images, called the context im-

ages, and another eight images, called the choice images.

(a) (b)
Figure 1. Dataset examples. (a) PGM. (b) RAVEN. The rules are

annotated and the correct answer is highlighted.

The objective is to choose the missing ninth image of the

grid out of the eight presented choices, by identifying one

or more recurring patterns along the rows and/or columns

of the grid. The correct answer is the one that fits the most

patterns. See Fig. 1 for illustration.

PGM is a large-scale dataset consisting of 1.2M train,

20K validation, and 200K test questions. All images in

the dataset are conceptually similar, each showing various

amounts of lines and shapes of different types, colors, and

sizes. Each question has between 1-4 rules along the rows

or columns. Each applies to either the lines or the shapes in

the image. Fig. 1(a) shows an example of the dataset.

RAVEN is a smaller dataset, consisting of 42K train,

14K validation, and 14K test questions divided into 7 dis-

tinct categories. Each question has between 4-8 rules along

the rows only. Fig. 1(b) shows an example of the dataset.

Evaluation protocols Both datasets are constructed as a

closed-ended test. It can be performed as either a multiple-

choice test (MC) with eight choices, where the model can

compare the choices, or as a single choice test (SC), where

the model scores each choice independently and the choice

with the highest score is taken. While this distinction was

not made before, the previous works are divided in their ap-

proach. WReN follows the SC protocol and CoPINet, LEN,

MXGNet, and Rel-AIR, all followed the MC protocol.

In the SC scenario, instead of presenting the agent with

all the choices at once, it is presented with a single choice

and has to predict if it is the right answer or not. The con-

straint of solving each image separately increases the diffi-

culty since the model cannot make a decision by comparing

the choices. While this eliminates the inter-choice biases,

the agent may label multiple or zero images as the correct

answer and opens the door to multiple success metrics. In

order to directly compare models trained in the MC and SC

protocols, we evaluate both types of models in a uniform
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manner: the score for all models is the accuracy for the

multiple-choice test, where for the SC-trained model, we

consider the answer with the highest confidence, regardless

of the number of positive answers.

Dataset Analysis When constructing the dataset for ei-

ther the MC or the SC challenge, one needs to be very

careful in how the negative examples are selected. If the

negative examples are too obvious, the model can eliminate

them and increase the probability of selecting the correct

answer, without having to fully identify the underlying pat-

tern. Negative examples are therefore constructed based on

the question. However, when the negative examples are all

conditioned on the correct answer, in the MC scenario, the

agent might be able to retrieve the correct answer by looking

at the choices without considering the context at all. For ex-

ample, one can select the answer that has the most common

properties with the other answers. See the supplementary

for an illustration of such biases in a simple language-based

multiple-choice test.

A context-blind test, which is conducted by training a

model that does not observe the context images, can check

whether the negative answers reveal the correct answer. Ide-

ally, the blind test should return a uniform random accu-

racy, e.g. 12.5% for eight options. However, since the

negative choices should not be completely random so that

they will still form a challenge when the context is added,

slightly higher accuracy is acceptable. When introduced,

the PGM dataset achieved a blind test score of 22.4%. In the

RAVEN benchmark, the negative examples are generated

by changing a single attribute from the correct image for

each example, making it susceptible to a majority-based de-

cision. RAVEN was released without such a context-blind

test, which we show in the supplementary that it fails at.

Concurrently to our work, Hu et al. [7] have also dis-

covered the context-blind flaw of RAVEN. They propose an

adjustment to the dataset generation scheme that eliminates

this problem, which they call ‘Impartial-RAVEN’. Instead

of generating the negative choices by changing a random

attribute from the correct answer, they propose to sample in

advance three independent attribute changes and generate

seven images from all the possible combinations of them.

3. RAVEN-FAIR

In the supplementary, we analyze both PGM and

RAVEN under the blind, SC, and MC settings. As we show,

due to the biased selection of the negative examples, the

RAVEN dataset fails the context-blind test, as it is solved

with 80.17% accuracy by only looking at the choices, mak-

ing it unsuitable for the MC protocol.

We, therefore, propose a modified dataset we term

RAVEN-FAIR, generated by Algorithm. 1. This algorithm

starts with a set of choices that contains the correct answer

Algorithm 1: RAVEN-FAIR

input : C - 8 context components

a - the correct answer for C

output: A - 8 choice components (a ∈ A)

A←− {a};
while length(A) < 8 do

a′ ←− Choice(A);
â←−Modify(a′);
if Solve(C, â) = False then

A←− A ∪ {â};
end

end

(a) (b)
Figure 2. Illustration of negative examples’ generation processes.

(a) RAVEN. (b) RAVEN-FAIR.

and iteratively enlarges this set, by generating one negative

example at a time. At each round, one existing choice (ei-

ther the correct one or an already generated negative one) is

selected and a new choice is created by changing one of its

attributes. The result is a connected graph of choices, where

the edges represent an attribute change.

As an example, we show the process of generating the

negative examples for RAVEN in Fig. 2(a). For compari-

son, we also show the process of how our proposed algo-

rithm generates the negative examples for RAVEN-FAIR

in Fig. 2(b). Note that the two figures show the produced

choices for different context questions. In each figure, eight

choices for an initial question are shown. The center image,

which is also highlighted, is the correct answer. Each arrow

represents a newly generated negative example based on an

already existing choice, by changing one arbitrary attribute.

The dotted lines connect between choices that also differ by

one attribute but were not generated with condition to each

other. As can be seen, the RAVEN dataset generates the

questions in a way that the correct answer is always the one

with the most shared attributes with the rest of the examples.

The negative option with the most neighbors in this example

is the top-left one, which only has three neighbors, while the

correct answer always has eight. Even without highlighting

the correct answer, it would be easy to point out which one
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it is, by selecting the one with the most neighbors, without

looking at the question.

In contrast, our fair algorithm generates the negative ex-

amples in a more balanced way. Since each newly generated

negative choice can now be conditioned on both the correct

image or an already existing negative one, the correct choice

cannot be tracked back by looking at the graph alone. In

this example, the correct answer only has two neighbors,

and both the right and top-right negative images have three

neighbors. Because the algorithm is random, the number of

neighbors that the correct image has is arbitrary across the

dataset, and is between one and eight.

In the context-blind test (supplementary), RAVEN-FAIR

returned a 17.24% accuracy, therefore passing the test and

making it suitable for both SC and MC. The PGM dataset

passed our context-blind test as well, with 18.64% accuracy.

4. Method

Our Multi-scale Relation Network (MRNet), depicted in

Fig. 3(b), consists of five sub-modules: (i) a three-stage en-

coder Et, where t ∈ {h,m, l}, which codes the input con-

text and a single choice image into representations in three

different resolutions: 20× 20 (high), 5× 5 (med) and 1× 1
(low), (ii) three relation modules RMt, one for each resolu-

tion, which perform row-wise and column-wise operations

on the encodings to detect relational patterns, (iii) three pat-

tern modules PMt, one for each resolution, which detects if

similar patterns occur in all rows or columns, (iv) three bot-

tleneck networks Bt, which merge the final features of each

resolution, and (v) a predictor module MLP , which esti-

mates the correctness of a given choice image to the context

in question, based on the bottlenecks’ outputs. The model

is presented with a question in the form of 16 images: a set

of context images IC = {In|n ∈ [1, 8]} and a set of choice

images IA = {Ina |n ∈ [1, 8]}. Since the model operates in

the SC protocol, it evaluates the choices separately. There-

fore, the notations act as if there is only a single choice im-

age Ia to answer. To solve all eight choices, the model is

repeated eight times with a different choice image Ia ∈ IA.

Multi-scale encoder The encoder is a three-stage Con-

volutional Neural Network that encodes all images (con-

text or choice) into multi-resolution representations (high,

middle, low). Every image In ∈ [−1, 1]1,80,80, for n ∈
{1, 2, ..., 8, a}, is passed sequentially through the three

stages of the encoder, i.e., the middle resolution encoding is

obtained by applying further processing to the output of the

high resolution encoder and similarly the low resolution en-

coding is obtained by further processing the middle resolu-

tion one. Specifically, the encoding process results in three

tensors. enh ∈ R
64,20,20, enm ∈ R

128,5,5 and enl ∈ R
256,1,1.

enh = Eh(I
n), enm = Em(enh), enl = El(e

n
m) . (1)

Relation Module Based on the encoding of the images,

we apply a relational module (RM) to detect patterns on

each row and column of the query. There are three such

modules (RMh, RMm, RMl). For each resolution t ∈
{h,m, l}, the 9 encodings ent for n = 1, 2, .., 8, a are posi-

tioned on a 3x3 grid, according to the underlying image In,

see Fig. 3(c). The rows and columns are combined by con-

catenating three encodings on the channel dimension. The

rows consist of the three triplets (e1t , e
2

t , e
3

t ), (e4t , e
5

t , e
6

t ),
(e7t , e

8

t , e
a
t ). Similarly, the columns consist of the three

triplets (e1t , e
4

t , e
7

t ), (e
2

t , e
5

t , e
8

t ), (e
3

t , e
6

t , e
a
t ). Each row and

column is passed through the relation network (RN).

r1t = RNt(e
1

t , e
2

t , e
3

t ), c1t = RNt(e
1

t , e
4

t , e
7

t )

r2t = RNt(e
4

t , e
5

t , e
6

t ), c2t = RNt(e
2

t , e
5

t , e
8

t )

r3t = RNt(e
7

t , e
8

t , e
a
t ), c3t = RNt(e

3

t , e
6

t , e
a
t )

(2)

Each RN consists of two residual blocks with two convolu-

tion layers inside each one. For the high and middle reso-

lutions, the convolution has a kernel of size 3 with ’same’

padding, while for the low resolution the kernel size is 1

without padding. The output of each relation block is of the

same shape as its corresponding encoding et, i.e. RNh :
R

3∗64,20,20 → R
64,20,20, RNm : R

3∗128,5,5 → R
128,5,5,

and RNl : R
3∗256,1,1 → R

256,1,1. Note that we apply the

same relation networks to all rows and columns. This ap-

proach allows comparison between the rows and between

the columns to detect recurring patterns. In addition, it

maintains the permutation and transpose invariance prop-

erty we assume on the rows and columns.

Pattern Module At this point, at each level t ∈ {h,m, l}
the representation of the panel is structured as three row

features and three column features, which we want to merge

into a single representation. The module dedicated to this is

the pattern module (PM), which applies some operator F (·)
on the rows and columns. It is depicted in Fig. 3(d).

To promote order-invariance between the three rows or

columns, a permutation-invariant operator F (·) is recom-

mended. One can perform sum pooling (SUM3). This kind

of approach was employed by [15, 27, 28]. Due to the lin-

earity of the sum pooling, a ReLU is employed.

SUM3(x1, x2, x3) := ReLU(x1 + x2 + x3) (3)

The reduction is then applied on the rows and columns.

rt = SUM3(r1t , r
2

t , r
3

t ), ct = SUM3(c1t , c
2

t , c
3

t ) (4)

The SUM3 operator has a drawback in that it does not de-

tect similarity between the rows and between the columns.

Instead, we propose a novel method that is inspired by

Siamese Networks, which compares multiple rows and
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Figure 3. MRNet. (a) Depiction of the input query. (b) High-level diagram of the architecture. (c) The relation module (RMt). (d) The

pattern module (PMt).

columns. This vector operator DIST3 is defined per vec-

tor index i and is applied to the rows and columns:

DIST3i(x1, x2, x3) :=(x1,i − x2,i)
2

+(x2,i − x3,i)
2

+(x3,i − x1,i)
2

(5)

rt = DIST3(r1t , r
2

t , r
3

t ), ct = DIST3(c1t , c
2

t , c
3

t ) (6)

DIST3 does not contain an activation function, since the

method is already non-linear. Its advantage is also visible

in its backward path. The gradient of each operator with

respect to element i of x1 is:

∂SUM3i(x1, x2, x3)

∂x1,i

= 1

∂DIST3i(x1, x2, x3)

∂x1,i

= 2 · (2 · x1,i − x2,i − x3,i)

(7)

The gradient of SUM3 does not depend on the values of

x2 and x3, while the gradient of DIST3 does. Therefore,

DIST3 has the potential to encourage increased coordina-

tion between the paths.

Finally, the row- and column-features are summed into a

merged representation of the entire panel:

pt = rt + ct (8)

Bottleneck module The three relation modules and their

pattern detectors return a latent representation of the panel

in three resolutions (ph, pm, pl). This module collects the

three representations into a single representation. For this

purpose, each representation is downsampled by a bottle-

neck network (Bt) that encodes the panel representation pt
into feature vectors with 128 features.

vt = Bt(pt) (9)

The three final features are then concatenated into a single

vector with 384 features (3x128).

v = Concat(vh, vm, vl) (10)

The predictor The resulting merged feature vector from

the bottleneck module is used to predict the correctness of

a choice Ia ∈ IA to the context IC . A Multi-Layer Per-

ceptron (MLP) predicts the score of the choice images. A

sigmoid translates this score to the probability of the choice

Ia to be a correct answer:

p(y = 1|Ia, IC) = Sigmoid(MLP (v)) (11)

For each choice image, the loss is the Binary Cross Entropy

loss. Because each grid has seven negative choices and only

one correct answer, we weight the loss of each choice re-

spectively, meaning that the correct answer has a weight of

7 and each negative answer has a weight of 1.

Multi-head attentive predictor Optimizing the three

heads with the main loss works relatively well, but we have

found that adding an objective that optimizes each head sep-

arately improves the final results and reduces the overall

training time. To do so, three additional predictors were cre-

ated, one for each bottleneck output vh, vm, vl. The archi-

tecture of the heads is the same as that of the main head and

the loss function is identical. To encourage each resolution
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to specialize in the rules that the other resolutions are having

difficulty with, we propose an attentive weight distribution

on the loss functions of the three heads. Consider the pre-

diction of each head pt(y = y∗|Ia, IC) for t ∈ {h,m, l},
where y∗ ∈ {0, 1} represent whether the choice Ia is cor-

rect or not. The weight applied to each head is:

wt =
exp{pt(y = y∗|Ia, IC)}∑
τ exp{pτ (y = y∗|Ia, IC)}

(12)

Let Lt be the Binary Cross Entropy loss for head t ∈
{h,m, l}. The final multi-head loss is:

L3 =
∑

t

wtLt (13)

Training method We trained with a batch size of 32

queries with an early stopping scheme of 20 epochs, mea-

suring the accuracy on the validation set. The reported accu-

racy was measured on the test set, for the checkpoint with

the best validation accuracy. See supplementary for a de-

tailed description of the architecture. We did not tune any

hyper-parameter of the model. Adam [9] was used with

lr=1e-3, β=(0.9,0.999), and weight decay of 1e-6.

5. Experiments

We experiment on PGM, RAVEN, and RAVEN-FAIR.

Each dataset has a preset train, validation, and test splits of

the data. We used the train set for training and the test set

for the evaluation. The validation set was used to pick the

best checkpoint during training for evaluation. PGM has

additional metadata of the rules logic, which can be used

as additional supervision during training. The use of the

metadata has been shown to improve performance on all

previous works. We refer to this more informative setting as

PGM meta. Following previous works, the utilization of the

metadata was done by extending the predictor module with

an additional head that predicts the 12 bits of the metadata,

and training the model with an additional (auxiliary) Cross

Entropy loss. Similar to the previous works, the weight for

the auxiliary loss is β = 10.

Baselines We compare our method to the state of

the art methods: WReN [15], LEN [28], CoPINet [27],

MXGNet [24], and Rel-AIR [18]. We also employed the

ResNet [5] models described in the supplementary: ResNet-

SC and ResNet-MC. The former evaluates each choice sep-

arately and the latter all choices at once.

As noted in Sec. 2, LEN and CoPINet follow the MC

protocol. To evaluate these baselines without the possibil-

ity of exploiting the weaknesses of RAVEN, we have cre-

ated additional versions of them for the SC protocol. In

LEN, the ‘global-CNN’ originally accepted all 16 images,

including the choices. We have changed it to accept only

the context images (‘global-8’). In CoPINet, we removed

Test Accuracy (%)

Model PGM RAVEN

Name Version SC base meta FAIR orig

S
C

B
as

el
in

es ResNet-SC ✓ †48.9 - †58.3 †40.4

WReN’18 normal ✓ 62.6 76.9 †30.3 †16.8

V-WReN’18 Normal ✓ 64.8 - - -

CoPINet’19 no-contrast ✓ †42.7 †45.2 †36.5 †18.4

LEN’19 global-8 ✓ †65.6 †79.6 †50.9 †29.9

MRNet ✓ 93.4 92.6 86.8 84.0

A
b

la
ti

o
n

no L3 ✓ 84.4 88.4 84.0 80.1

no L3, no wb ✓ 75.2 84.9 80.6 78.6

no L3, no wb, with SUM3 ✓ 74.3 79.0 77.0 69.6

no wb ✓ 87.6 88.9 83.4 80.2

with SUM3 ✓ 83.2 85.3 79.5 78.2

M
C

B
as

el
in

es

ResNet-MC ✗ †41.1 - †24.5 †72.5

CoPINet’19 normal ✗ 56.4 †51.1 †50.6 91.4

LEN’19 normal ✗ 68.1 82.3 †51.0 72.9

LEN’19 teacher-model ✗ 79.8 85.8 - 78.3

T-LEN’19 normal ✗ 70.3 84.1 ✗ ✗

T-LEN’19 teacher-model ✗ 79.8 88.9 ✗ ✗

MXGNet’20 ✗ 66.7 89.6 - 83.9

Rel-AIR’20 ✗ 85.5 - - 94.1

MRNet with-contrast ✗ 94.5 92.8 88.4 96.6

A
b

la
ti

o
n no L3 ✗ 85.7 89.0 85.2 95.5

no L3, no wb ✗ 76.4 85.4 81.3 94.3

no wb ✗ 87.4 89.8 86.1 95.0

Table 1. Evaluation on all datasets. †Baseline was run by us, due

to missing results.

Accuracy (%)

Baselines MRNet

Regime WReN V-WReN MXGNet (a) (b)

Neutral 62.6 64.2 66.7 75.2 93.4

Interpolation 64.4 - 65.4 67.1 68.1

Extrapolation 17.2 - 18.9 19.0 19.2

HO Pairs 27.2 36.8 33.6 37.8 38.4

HO Triple Pairs 41.9 43.6 43.3 53.4 55.3

HO Triples 19.0 24.6 19.9 25.3 25.9

HO line-type 14.4 - 16.7 27.0 30.1

HO shape-color 12.5 - 16.6 16.9 16.9

Table 2. Generalization evaluation on the held-out regimes of

PGM. (a) Without weight balancing and L3. (b) With them.

the contrasting module (‘no-contrast’), which allows infor-

mation to pass between the choices. We also compared to

LEN with their proposed teacher-model training schedule,

and to T-LEN, which has dedicated prediction paths for line
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(a) (b) (c)
Figure 4. Ablation on the role of each scale in PGM, using a fully trained MRNet on the SC protocol. (a) Without auxiliary loss (PGM),

no L3. (b) With auxiliary loss (PGM meta), no L3. (c) Wihout auxiliary loss (PGM), with L3. We measured the accuracy for each type,

using only one of the scales and the other ones are masked. The inner radius shows the accuracy of the full model. The three rings show

the accuracy of each resolution. The inner ring is the low resolution, then the middle, and the high resolution is the outer one.

Scales Configurations. Accuracy(%)

h m l All Center 2×2 3×3 L-R U-D O-IC O-IG

✓ ✗ ✗ 72.0 84.1 47.2 48.3 90.0 91.5 87.6 55.5

✗ ✓ ✗ 73.3 90.5 56.1 53.4 83.5 83.0 82.5 64.1

✗ ✗ ✓ 58.9 97.7 62.2 62.8 42.3 42.5 56.8 48.1

✓ ✓ ✗ 77.7 82.8 61.7 59.5 91.7 92.2 89.9 66.3

✓ ✗ ✓ 78.3 91.0 63.2 64.7 88.8 92.2 87.7 60.3

✗ ✓ ✓ 76.6 98.3 67.5 65.4 81.6 83.4 81.5 58.3

✓ ✓ ✓ 80.6 87.7 64.7 64.3 94.2 94.3 90.9 68.0

with L3 86.8 97.0 72.7 69.5 98.7 98.9 97.6 73.3

Table 3. Ablation on the role of each scale in RAVEN-FAIR

rules and shape rules and is only applicable to PGM. The

results can be seen in Tab. 1 separately for each protocol.

Results Before evaluating our model, two important

things can be noticed by observing at the baselines. First,

the performance of LEN and CoPINet declines in SC,

where unlike MC, the models cannot compare the choices

within the model. This is especially noticeable in RAVEN,

where CoPINet practically solved it in MC and failed it in

SC. On both RAVEN and RAVEN-FAIR, all SC baselines

performed worse than the simple ResNet-SC, which does

not have any dedicated modules for relational reasoning.

Second, by comparing each models’ performance between

RAVEN and RAVEN-FAIR, we can see that MC mod-

els perform significantly lower on RAVEN-FAIR than on

RAVEN. This confirms that RAVEN-FAIR indeed fixes the

biases in the data and is much more suitable as a benchmark

than RAVEN, especially for the MC protocol. These obser-

vations align with the dataset analysis presented in the sup-

plementary, which conclusions were discussed in Sec. 2.1.

One can observe that our model outperforms the base-

lines in both protocols and across all datasets. In SC, our

method outperforms previous baselines by 27.8% in PGM,

13.0% in PGM meta, 35.9% in RAVEN-FAIR, and 54.1%

in RAVEN. In MC, we outperform the baselines by 9.0%,

3.2%, 37.4% and 4.9% respectively. Except for RAVEN,

our SC protocol model even performed better than both SC

and MC protocols of the baselines, despite the SC protocol

having less information. We noticed that our model’s per-

formance has reached a point where the auxiliary task of the

metadata hurts performance since the added task creates a

burden on the optimization of the main task (Vapnik et al.

(1998) [22]) and does no longer benefit the model. There-

fore the accuracy on PGM meta is lower than that of PGM,

which is the first time a model shows such behavior.

For ablation, we trained our model with the SUM3 oper-

ator instead of DIST3, without the weight balancing of the

positive choices versus the negative ones (no wb), and with-

out the multi-head attentive loss (L3). The results are shown

in Tab. 1 below those of the full model. For SC, we show an

aggregated ablation on these modifications, i.e., each fol-

lowing instance applies an additional modification. Each

added modification results in a performance decline com-

pared to the previous version. The experiments which re-

move one component at a time also support that both multi-

head attentive loss and the weight balancing both greatly

improve the training of the main head. It is also evident that

DIST3 is a superior pooling operator over SUM3. For MC,

we performed an ablation with either or both the weight bal-

ancing and the L3 removed. The simplified models without

these contributions are not competitive.

Aside from test accuracy, model capacity and training

resource consumption is also an important factor. While

our method outperforms the other baselines, it is not bigger

or slower to train. Our method trains in about 40 minutes

per epoch on PGM on a single 1080TI GPU, which is about

the same speed as WReN and CoPINet, and about 3x faster

than LEN. We did not measure the runtime of MXGNet,

Rel-AIR, or LEN with the teacher-model framework, but

we expect them to require substantial resources and time.

Generalization An important property of a model that is

good at abstract reasoning is to be able to generalize over

rules that were not seen during training. PGM has specially
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built versions of the dataset for this purpose. Aside from the

‘Neutral’ regime, there are seven more regimes, where dif-

ferent rule types were omitted from the train and validation

sets, and the test set consists solely of the held-out rules.

For more details, please refer to Santoro et al. [15].

Tab. 2 shows that our method generalizes better in all

regimes. Most notably are the ’HO line-type’ and ’HO

Triple Pair’ regimes, where our method has a gap of 10%

from the baselines. We do note, however, that other

regimes, such as ’HO shape-color’ and ’Extrapolation’,

only made a negligible improvement on the baselines and

are still only slightly better than random. This reassures

that there is still much to be done for future work in this

regard. In the generalization experiments, training with L3

only showed minor improvement. We, therefore, conclude

that the performance gain for out-of-domain rules has more

to do with the architecture, i.e. the multi-scale design and

the relation and pattern modules.

Understanding the Role of Each Scale The premise of

the importance of multi-scale design is incomplete with-

out gaining additional knowledge on the contribution of

each resolution. We, therefore, trained the model multi-

ple times on RAVEN-FAIR with different combinations of

scales (h,m, l) removed. We did not use weight balanc-

ing or the multi-head attentive loss for this evaluation. In

Tab. 3, we show the average accuracy per rule type. The

results clearly show that each resolution has an advantage

in different rules. The lower resolution solves the ’Center’,

’2×2’, and ’3×3’ configurations better, and the upper reso-

lution is more adept for ’L-R’, ’U-D’ and ’O-IC’. The ’O-

IG’ configuration is best solved by the middle resolution,

which suggests it requires a combination of high-resolution

and low-resolution features. When using two scales, the

combination of the lower and upper resolutions was better

than the ones with the middle resolution, even though the

middle resolution is better when only one scale is permit-

ted. This shows that the combination of upper and lower

resolutions is more informative. Finally, the full model per-

forms best on average, and the added L3 improves on all

configurations by optimizing each scale separately.

A similar analysis was done on PGM. Since PGM is a

very large dataset that takes longer to train, instead of re-

training, we measured the accuracy of prediction using the

output of a single bottleneck by masking the outputs of two

different bottlenecks each time. Questions with multiple

rules were ignored in this analysis since it wouldn’t be clear

which rules assisted in answering the question correctly and

would contaminate the analysis. Fig. 4 visualizes the accu-

racy per resolution for each type of rule. As with RAVEN-

FAIR, there is a clear role for each resolution. The lower

resolution is responsible for the ’line’ rules, which are more

semantic, while the upper resolution is for the ’shape’ rules,

which have a strong spatial dependency. The middle resolu-

tion is specialized in shape-number, likely because the 3×3

grid alignment of the shapes in each individual image InC
of PGM (not to be confused with the 3×3 question align-

ment) is close to the 5×5 shaped matrix of the encodings

em. The analysis of the model trained on PGM meta shows

specifically where the added auxiliary loss contributes. All

resolutions improved their area of expertise from the set-

ting without the metadata and learned to solve additional

tasks. Some rules were already solved without the auxiliary

loss, such as ’shape-number’ and ’line-type, but others, such

as ’shape-color’ and ’shape-type’, received a substantial in-

crease in accuracy. L3 showed a large improvement on all

rules and better utilization of the middle resolution, without

having to use the metadata. The exact results on each rule

can be found in the supplementary.

Both analyses come to the same conclusion: Each scale

is naturally advantageous for a different set of tasks. Rules

that require full embedding of the image, to recognize the

shape of a large object (RAVEN ’Center’) or detecting a pat-

tern in arbitrary located lines (PGM ’line-color’), require

low-resolution encoding. Rules on small objects and spe-

cific positions (RAVEN ’L-R’, PGM ’shape-position’) are

better solved in high resolution, before the spatial coherency

is lost. We noticed during training that the model converges

in steps, i.e. that several times the improvement on the val-

idation set stagnates and then starts to rise again. We hy-

pothesized that these steps occur when learning new rules

and have conducted a per-rule analysis during training. The

results, presented in the supplementary, indicate that this is

indeed the case. A different set of rules is learned in each

step and the learned rules usually have a common property.

6. Conclusions

The novel method we introduce outperforms the state of

the art methods across tasks, protocols, benchmarks, and

splits. It also generalizes better on unseen rules. Since

the MC protocol can be readily exploited, we advocate for

the SC protocol, which more directly tests the ability to in-

fer the pattern from the question. For MC, evaluating on

the RAVEN-FAIR variant mitigates the weaknesses of the

original RAVEN benchmark. We expect both multi-scale

encoders and pairwise distance-based pooling to be benefi-

cial also for other multi-faceted tasks that involve reasoning

such as causality analysis based on temporal sequences, vi-

sual question answering, and physics-based reasoning.
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