
More Photos are All You Need: Semi-Supervised Learning for

Fine-Grained Sketch Based Image Retrieval

Ayan Kumar Bhunia1 Pinaki Nath Chowdhury1,2 Aneeshan Sain1,2 Yongxin Yang1,2

Tao Xiang1,2 Yi-Zhe Song1,2

1SketchX, CVSSP, University of Surrey, United Kingdom
2iFlyTek-Surrey Joint Research Centre on Artificial Intelligence.

{a.bhunia, p.chowdhury, a.sain, yongxin.yang, t.xiang, y.song}@surrey.ac.uk

Abstract

A fundamental challenge faced by existing Fine-Grained

Sketch-Based Image Retrieval (FG-SBIR) models is the data

scarcity – model performances are largely bottlenecked by

the lack of sketch-photo pairs. Whilst the number of pho-

tos can be easily scaled, each corresponding sketch still

needs to be individually produced. In this paper, we aim

to mitigate such an upper-bound on sketch data, and study

whether unlabelled photos alone (of which they are many)

can be cultivated for performance gain. In particular, we in-

troduce a novel semi-supervised framework for cross-modal

retrieval that can additionally leverage large-scale unla-

belled photos to account for data scarcity. At the center of

our semi-supervision design is a sequential photo-to-sketch

generation model that aims to generate paired sketches for

unlabelled photos. Importantly, we further introduce a

discriminator-guided mechanism to guide against unfaith-

ful generation, together with a distillation loss-based regu-

larizer to provide tolerance against noisy training samples.

Last but not least, we treat generation and retrieval as two

conjugate problems, where a joint learning procedure is de-

vised for each module to mutually benefit from each other.

Extensive experiments show that our semi-supervised model

yields a significant performance boost over the state-of-the-

art supervised alternatives, as well as existing methods that

can exploit unlabelled photos for FG-SBIR.

1. Introduction

With the ever rising popularity of touch screen devices,

sketch-based image retrieval (SBIR) has witnessed signifi-

cant interest within the vision community [5, 34, 35, 50, 11,

45]. Despite starting as a category-level retrieval problem

[9, 10, 3, 12], the fine-grained nature of sketches stirred cur-

rent research focus more towards fine-grained SBIR (FG-

SBIR) [5, 28] – which aims to retrieve a particular photo

based on a query sketch at an intra-category basis.

Recent FG-SBIR works [48, 26, 5, 28] predominately
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Figure 1. Our proposed method additionally leverages large scale

photos without any manually labelled paired sketches to improve

FG-SBIR performance. Moreover, we show that the two conjugate

process, photo-to-sketch generation and fine-grained SBIR, could

improve each other by joint training.

rely on fully-supervised triplet loss-based deep networks to

yield retrieval performances of practical value. The under-

lying assumption is largely inline with the progression of

supervised photo-only models – that one can always (rela-

tively easily) obtain additional labelled training data to sus-

tain desired performance gains. This assumption however

does not hold for FG-SBIR – sketch-photo pairs can not

be easily scaled as per their photo-only counterparts. That

is, instead of crawling and then labelling photos, the corre-

sponding sketch for any given photo will need to be sepa-

rately drawn by hand. As a result, current FG-SBIR datasets

still remain in their thousands (6.7K for QMUL-ShoeV2

[48, 39], and 2K for QMUL-ChairV2 [39]), while photo-

datasets [32] are available in millions. This data scarcity

problem has consequently resulted in very recent attempts

that aim at designing generalisable and zero-shot models

[26], yet performances of these models remain far away

from fully-supervised alternatives.

In this paper, we face the music and make the bold as-

sumption that there will hardly be sufficiently large sketch-

photo pairs to train a good model. Instead, we test the hy-

pothesis that – freely-available unlabelled photo data would
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help to mitigate the performance gap imposed by the lack

of specifically collected photo-sketch paired data. Our ut-

most contribution is therefore a semi-supervised FG-SBIR

framework where unlabelled photo data (i.e., photos with-

out matching sketches) are used alongside photo-sketch

pairs for model training. We differ significantly to con-

ventional semi-supervised classification methods [36, 29] –

other than learning pseudo photo labels via a learnable clas-

sifier, our “label” for a photo is in the form of a visual sketch

which needs to be generated rather than classified. Thus, at

the core of our design is a sequential photo-to-sketch gen-

eration model that outputs pseudo sketches for unlabelled

photos. The hope is therefore that such pseudo sketch-photo

pairs could augment the training of a retrieval model.

Naively cascading a generator with a retrieval model

however would not work. This is mainly because off-

the-shelf photo-to-sketch generation models [37, 7] could

sometimes generate unfaithful sketches that may not resem-

ble their corresponding photos, especially when it comes

to fine-grained visual features. The downstream retrieval

model would then have no way of knowing which pseudo

sketch and photo pairs are worth training with, ultimately

resulting in performance degradation. This leads to an im-

portant design consideration of ours – we advocate that

there is positive complementarity between generation and

retrieval that can be explored via joint learning (Figure

1). The intuition is simple – pseudo sketches automati-

cally generated from unlabelled photos can help to semi-

supervise a better retrieval model, and vice versa that better

retrieval model can feed back to the generator in producing

more faithful sketch-photo pairs.

The key therefore lies with how such positive exchange

cycle can be facilitated between the generator and retrieval

model. To this end, novelty lies in the components intro-

duced in both generator and retrieval model designs, and in

how they are jointly trained. First, we formulate a novel

sequential photo-to-sketch generator with spatial resolution

preservation and a cross-modal 2D-attention mechanism.

Second, a discriminator is formulated in the retrieval model,

to quantify the reliability of generated pseudo photo-sketch

pairs. Reliability scores are then used for instance-wise

weighting of triplet-loss values upon updating the retrieval

model. A consistency loss (via distillation) is further intro-

duced to simultaneously suppress the noisy training signal

coming from pseudo photo-sketch pairs. Third, to enable

exchange from retrieval to generation, we rely on the fol-

lowing intuition – good synthetic pairs would trigger a low

value on the resulting triplet loss and a higher output of the

discriminator. Feeding these training signals back to the

generator would however involve passing through a non-

differentiable rasterization operation (Figure 2). We thus

employ a policy-gradient [40] based reinforcement learning

scheme that feeds back these signals as rewards.

In summary, our contributions are: (a) For the first

time, we propose to solve the data scarcity problem in FG-

SBIR by adopting semi-supervised approach that addition-

ally leverages large scale unlabelled photos to improve re-

trieval accuracy. (b) To this end, we couple sequential

sketch generation process with fine-grained SBIR model in

a joint learning framework based on reinforcement learn-

ing. (c) We further propose a novel photo-to-sketch genera-

tor and introduce a discriminator guided instance weighting

along with consistency loss to retrieval model training with

noisy synthetic photo-sketch pairs. (d) Extensive experi-

ments validate the efficacy of our approach for overcom-

ing data scarcity in FG-SBIR (Figure 4) – we can already

reach performances at par with prior arts with just a frac-

tion (≈60%) of the training pairs, and obtain state-of-the-art

performances on both QMUL-Shoe and QMUL-Chair with

the same training data (by ≈6% and ≈7% respectively).

2. Related Works

Fine-Grained SBIR: Yu et al. [48] introduced the first deep

FG-SBIR model which employed a deep triplet network to

learn a common embedding space for photo and sketch.

Subsequent works have aimed at improving this via atten-

tion mechanisms with higher order retrieval loss [39], joint

discriminative-generative learning with cross-modal image

generation [27], text tags [38], and cross-modal hierarchical

co-attention [33]. Cross-category generalisation [26] and

on-the-fly retrieval setup [5] are more recent additions to

existing FG-SBIR literature. These fully supervised meth-

ods suffer from the data scarcity, which we aim to address.

Handling Data-Scarcity for FG-SBIR: Earlier works have

tried resolving the lack of instance-level photo-sketch

paired data, by using edge-maps for training [30] or syn-

thetic sketch stroke deformation [49, 48] for data augmenta-

tion. Umar et al. [31, 24] leveraged reinforcement-learning

(RL) in an attempt to augment sketches from edge-maps

under the assumption that real sketch-strokes are a sub-

set of edge-maps, which however is negated by the highly

abstracted nature of real sketches. Very recently, mixed-

modality jigsaw solving [28] has been used as a pre-training

task for FG-SBIR to exploit additional photo images and

their edge maps for cross-modal matching. Its efficacy re-

mains limited however as edge-maps are not sketches.

Photo-to-Sketch Generation: A plausible solution to data

scarcity is synthesising sketches for unlabelled photos to

form pseudo photo-sketch pairs. Existing photo-to-sketch

generation methods can be classified into two types: the

first employs image-to-image translation [23], which how-

ever merely works as a contour detection paradigm, thus

failing to model the hierarchically abstracted nature of

human-drawn sketch. The second follows the seminal

work of Sketch-RNN [15], and generates sequential sketch-

coordinates given a photo, thus mimicking subjective hu-
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man sketching style. The basic design [7], involving a CNN

encoder and RNN decoder, has been further augmented

with both self-domain and two way cross-modal reconstruc-

tion losses [37]. Following this path, we improve sequential

sketch-generative process with a 2D attention mechanism to

better exploit the spatial-layout of objects in photos.

Semi-supervised Learning: Our learning framework is

semi-supervised in the sense that the majority of training

data are unlabelled photos without their paired sketches.

This is thus very different from most existing semi-

supervised learning methods which are designed for clas-

sification rather than cross-modal retrieval. This means

that these methods, based on either pseudo-labelling [22,

25, 36, 29] or consistency regularisation [2, 1], offer little

insight into how our problem can be solved. In contrast,

prior works on semi-supervised cross-modal learning such

as image captioning [6, 21] are more relevant. However,

we uniquely address a cross-modal instance-level retrieval

problem, and train the generator jointly with the retrieval

model, rather than merely providing model pre-training.

3. Methodology

Overview: For semi-supervised fine-grained SBIR, we

consider having access to a limited amount of labelled

photo-sketch pairs DL = {(piL; s
i
p,L)}

NL

i and a much bigger

set of unlabelled photos DU = {piU}
NU

i , where NU ≫ NL.

The key objective is to improve retrieval performance using

both DL and unlabelled photos DU (having no correspond-

ing sketches). More specifically, our framework consists

of two models learned jointly: a FG-SBIR model, and a

photo-to-sketch generation model. The retrieval model tries

to learn an embedding function F(·) : R
H×W×3 → R

d

mapping any rasterized sketch or photo having height H

and width W to a d-dimensional feature.

Instead of image-to-image translation [19, 23], sketch

generation process needs to be designed by sequential

sketch-coordinate decoding [15] in order to model the hi-

erarchical abstract nature of sketch. In particular, the FG-

SBIR model requires rasterized sketch-images to obtain

the sketch embedding, as performance can collapse on us-

ing sketch-coordinate instead [5, 33]. Thus, the genera-

tor learns a function G(·) : R
H×W×3 → R

T×2, map-

ping a photo to equivalent sequential sketch-coordinate

points sc = {(x1, y1), (x2, y2), · · · , (xT, yT)}, where T is

the number of points. Note that in order to feed the gen-

erated sketches to the feature embedding network F of

the retrieval model, a rasterization (sketch-image redrawing

from coordinates) operation is required which is denoted as

sp = φ(sc) : RT×2 → R
H×W×3. Finally, we can create

synthesised photo-sketch pairs D′
U = {(piU; s

i
p,U)}

NU

i for

unlabelled photos to train the retrieval model. Once trained,

only F(·) is used for retrieval during inference, while G(·)
augments pseudo/synthetic photo-sketch pairs for training.

3.1. Photo to Sketch Generation Model

The existing sequential photo-to-sketch generation mod-

els [37, 7] comprise a convolutional image encoder, fol-

lowed by an LSTM decoder. This however has two major

limitations: Firstly, it reduces the photo representation to a

latent vector, leading to significant spatial information loss.

Secondly, one fixed global representation is given as input at

every time step of the LSTM decoding. To overcome these

limitations two novel designs are introduced: (a) keeping

the spatial feature map while ignoring global average pool-

ing; (b) looking back at the specific part of photo which it

draws. Overall, it consists of three major components, a

CNN encoding the photo, a 2-D attention module, and an

LSTM decoder generating the coordinates sequentially.

Given a photo p, let the extracted convolutional feature

map be B ∈ R
h′×w′×c where h′, w′ and c denotes the

height, width and number of channels, respectively. Next,

we perform a global average pooling on B to obtain a vector

of size R
c, and project it as two vectors µ and σ, each hav-

ing size R
Nz . The global embedding of photo is obtained

through a reparameterization trick as z = µ+ σ⊙N (0, 1).
The initial hidden state h0 (and optional cell state c0) of

decoder RNN is initialised as [h0; c0] = tanh(Wzz + bz).
Instead of predicting the absolute coordinates

{(xi, yi)}
T
i , we model every point as 5 element vec-

tors (∆x,∆y, p1, p2, p3) where ∆x and ∆y represents the

off-set distances [15] in the x and y directions from the

previous point. The last three elements represent a binary

one-hot vector of three pen-state situations: pen touching

the paper, pen being lifted and end of drawing. Each

offset-position (∆x,∆y) is modelled using a Gaussian

mixture model (GMM) with M = 20 bivariate normal

distributions [15] given by:

p(∆x,∆y) =

M∑

j=1

ΠjN (∆x,∆y | λj);

M∑

j=1

Πj = 1. (1)

Each M bivariate normal distribution has five parameters

λ = {µx, µy, σx, σx, ρxy} with mean (µx, µy), standard de-

viation (σx, σy) and correlation (ρxy). The mixture weights

of the GMM is modelled by a categorical distribution of size

R
M . Thus every time step’s output yt modelled is of size

R
5M+M+3, which includes 3 logits for pen-state. At time

step t, a recurrent decoder network updates its state st =
(ht, ct) as follows: st = RNN(st−1; [gt,Pt−1]) where gt is

the glimpse vector encoding the information from specific

relevant parts of the feature map B to predict yt; Pt−1 is

the last predicted point (start-token P0 = {0, 0, 1, 0, 0}),

[·] signifies a concatenation operation. The glimpse/context

vector is obtained by 2D attention as follows:






J = tanh(WB ⊛ B +WSht−1);

αi,j = softmax(WT
a Ji,j)

gt =
∑

i,j αi,j · Bi,j ; i = [1, ..h′], j = [1, ..w′]

(2)
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noisy generated data. Simultaneously, G learns by taking reward from F and DC via policy gradient (over both labelled and unlabelled)

together with supervised VAE loss over labelled data. Note rasterization (vector to raster format) is a non-differentiable operation.

where WB , WS , Wa are the learnable weights. Calculating

the attention weight αi,j at every spatial position (i, j), we

employ a convolution operation “⊛” with 3×3 kernel WB to

consider the neighbourhood information in the 2D attention

module, and gt is obtained by weighted summation opera-

tion at the end. A fully-connected layer over every hidden

state outputs yt = Wyht + by , where yt ∈ R
6M+3. We

refer to [15] for more details. Like the standard VAE, our

generator G is trained from the weighted summation of a re-

construction loss (LR
G ) and a KL-divergence loss (Lkl

G ) with

unit normal distribution as follows:

Lvae
G = LR

G + ωklL
kl
G , (3)

where LR
G is composed of the negative log-likelihood loss of

the offsets ∆z = (∆x,∆y) and the pen states (p1, p2, p3):

LR
G = − 1

T

[
∑T

i=1 log p(∆zi | λi) + p̂i log(pi)
]

.

3.2. Baseline FG­SBIR Model

For the discriminative retrieval module F(·), we use the

state-of-the-art Siamese network [39, 10, 5] (multi-branch

with weight-sharing) with soft spatial attention [43] to fo-

cus on salient parts of the feature map. Concretely, given

a photo or rasterized sketch image I , we use a pre-trained

InceptionV3 model [41] to extract feature map F ′ = fθ(I).
This is followed by a residual connection between back-

bone feature and attention normalised feature to give F =
F ′ + F ′ · fattn(F

′), upon which global average pooling is

performed to obtain final feature representation of size R
d;

and fattn is modelled using 1x1 convolution with softmax

across the spatial dimensions. For training, the distance to

a sketch anchor (a) from a negative photo (n), denoted as

β− = ‖F(a)−F(n)‖2 should increase while that from the

positive photo (p), β+ = ‖F(a)−F(p)‖2 should decrease.

This is brought about by the triplet loss with a margin µ > 0
as a hyperparameter:

Ltrip
F = max{0, µ+ β+ − β−}. (4)

3.3. Semi­Supervised Framework for FG­SBIR

Overview: Firstly, we train the photo-to-sketch genera-

tion model and discriminative fine-grained FG-SBIR model

independently using the labelled training set DL. There-

after, through our semi-supervised learning framework,

F(·) starts exploiting the unlabelled photos to improve its

retrieval performance, while enhancing sketch generation

quality of G(·) by using F(·) as a critic to provide training

signal to the sketch-generation model G(·) using both un-

labelled and labelled photos simultaneously. Hence, both

G(·) and F(·) can now improve itself with the help of each

other and by exploiting unlabelled photos (see Figure 2).

Certainty Score for Synthetic Photo-Sketch Pair: The

generated photo-sketch pairs D′
U of unlabelled photos are

sometimes noisy compared to real labelled photo-sketch

pairs DL. This is mainly due to large possible output space

[37] of sketch drawing even with respect to a particular

photo, as well as difficulties in predicting the sketch end-

ing token [15] in the sequential decoding process. Ev-

ery synthetic photo-sketch instance pair needs to be han-

dled individually based on their quality, thus requiring a

specific certainty score – signifying the reliability of syn-

thetic photo-sketch pair to train the retrieval model. Ex-

isting semi-supervised classification approach usually con-

siders the probability distribution over classes to filter out

noisy samples based on a predefined threshold [44], top-K

selection [36], or uses entropy-based instance-wise weight-

ing [18] to deal with noisy synthetic labels. A new solu-

tion is thus needed to not just measure the quality of gener-

ated sketch itself, but to quantify how the generated sketch

matches with the particular photo input, in order to help

training the retrieval model.

Inspired by the generative adversarial network [8] where

the sigmoid normalised output of discriminator shows the

probability of being a real vs fake input sample, we use the

discriminator’s confidence to quantify the quality of syn-
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thetic photo-sketch pairs. Specifically, the discriminator DC

learns to classify between real photo sketch pairs and gener-

ated pseudo photo-sketch pairs (concatenated across chan-

nels). Thus, the learning objective for DC is

LDC
= −E(pL; sp,L)∼DL

[
logDC

(
pL, sp,L

)]

−E(pU; sp,U)∼D′
U

[
log

(
1−DC

(
pU, sp,U

))]
. (5)

This objective is computed via a binary cross-entropy loss

using label 1 for real pairs, and 0 for synthetic ones. Thus,

the discriminator’s output DC(pU, sp,U) ∈ [0, 1] signifies

the extent to which the synthetic photo-sketch pairs match

with the distribution of real labelled photo-sketch pairs.

Therefore, values closer to 1 indicate better quality syn-

thetic photo-sketch pairs.

Tolerance against Noisy Pseudo-Labelled Data: To fur-

ther avoid over-fitting to noisy synthetic photo-sketch pairs,

we introduce a consistency loss with respect to a pre-trained

(on labelled dataset) retrieval model as weak teacher [13].

More specifically, once the baseline FG-SBIR model is

trained from labelled data, we keep a copy as FT with

weights frozen. As FT has been trained from real clean

photo-sketch pairs only, we expect that the feature embed-

ding vector obtained from it would act as an additional su-

pervision via distillation [17] to regularise the main FG-

SBIR model (F) which is to be trained from both labelled

and synthetic photo-sketch pairs in a semi-supervised man-

ner. This distillation process is expected to improve the tol-

erance against noisy information of synthetic data. Com-

pared to cross-entropy loss [17] used in distillation of clas-

sification network, a naive choice to design distillation for

feature embedding network is to minimise the distance be-

tween learnable student’s embedding and teacher’s embed-

ding of a particular photo or sketch image individually. We

term it absolute teacher. However, instead of considering

the actual embedding, we hypothesise that the relative dis-

tance between paired photo and sketch, minimising which

is the major purpose of embedding network, could be a

better knowledge to be distilled. We term this as relative

teacher. Thus, given a photo-sketch image pair (p, sp) and

d(·, ·) being a l2 distance function, the consistency loss for

learnable student F with respect to pre-trained teacher FT

becomes as follows:

LKD
F =

∥
∥d

(
FT (p),FT (sp)

)
− d

(
F(p),F(sp)

)∥
∥
2
. (6)

3.4. Joint Training

Optimising FG-SBIR Model: We train the fine-grained

SBIR model F using triplet loss over labelled photo-sketch

pairs DL, instance weighted triplet loss over generated

pseudo photo-sketch pairs DU , and pre-trained teacher

based consistency loss over both DL and DU . Given

sampled data Di
L = {piL, s

i
p,L} ∼ DL and D′j

U =

{pjU , s
j
p,U} ∼ D′

U (on same ratio), the instance-wise

weight is calculated as ωj = DC(D
′j
U). The overall semi-

supervised loss to train the retrieval model becomes:

Lall
F = L

trip
F (Di

L) + ωj · L
trip
F (D′j

U ) + λkd · L
KD
F (Di

L,D
′j
U ) (7)

Optimising Photo-to-Sketch Model: Besides the fully-

supervised VAE loss LR
G , during joint training, the photo-

to-sketch generation model is also learned considering F
and DC as critics. In particular, if the generated sketch

from G correctly depicts the corresponding input photo, the

triplet loss for that generated photo-sketch pair from re-

trieval model would be low, signifying a better photo-sketch

matching and generated sketch quality. Similarly, the higher

the discriminator’s output, the better the quality of gener-

ated photo-sketch pairs. However, these training signals

from F and DC cannot be directly back-propagated to G,

as there exists a non-differentiable rasterization operation

sp before feeding the sketch-image to both retrieval model

and discriminator. Hence, we employ reinforcement learn-

ing based on policy-gradient [40] with REINFORCE [42]

deployed to estimate gradients with respect to parameters

θG of G given some reward. As G aims to lower this triplet

loss value L
trip
F (Eqn. 4), the reward should be negative of

L
trip
F that needs to be maximised. Similarly, the discrimina-

tor’s output quantifying the goodness of photo-sketch pairs

needs to be maximised. Thus the weighted joint reward is:

RG = −λr1 · L
trip
F (Di) + λr2 ·DC(D

i) (8)

where Di ∼ DL ∪ DU . This reward could be computed

for both labelled and unlabelled data as it does not need

any ground-truth sketch-coordinates unlike the Lvae
G loss

(Eqn. 3). Thus two types of gradients are computed to up-

date the parameter θG , one using policy gradient [40] based

on joint-reward guided by the retrieval model and the dis-

criminator, and the other using back-propagation over only

the labelled photos:

∇θGL(θG) = ∇θGL
vae
G (θG)

︸ ︷︷ ︸

over only labelled data

(9)

−λG

T∑

i=1

E pi∼p(qi)
∆zi∼p(∆zi|λi)

∇θG

(

log p(∆zi | λi) + log p(pi)
)

·RG

︸ ︷︷ ︸

over both labelled and unlabelled data (via policy gradient)

In our experiments, we only update the final, fully-

connected layer of sketch-decoder (with weights Wy, by
predicting 6M+3 outputs at every time step), at times us-

ing policy gradient, keeping rest of the parameters of G
fixed. We use a single global reward for the whole sketch-

coordinate sequence, instead of local reward at every time

step, that would otherwise need costly Monte Carlo roll-

outs [47]. Note that in our design, G and DC are connected

in a GAN-like fashion [14] having adversarial objective.

Moreover, the retrieval and generative models are trained

alternatively improving each other over time (Algorithm 1).

4. Experiments

Datasets: Two publicly available datasets, QMUL-Shoe-

V2 [26, 31, 37, 5] and QMUL-Chair-V2 [5, 37] are
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Algorithm 1 Training of Semi-Supervised FG-SBIR

1: Input: Labelled photo-sketch pairs DL and Unlabelled

photos DU .

2: Initialise hyper params: kr, kg .

3: Pre-training: G and F from DL (using Lvae
G & Ltrip

F ).

4: while not done training do

5: for kr steps do

6: Sample data Di
L ∼ DL and Dj

U ∼ DU .

7: Get synthetic paired images D′j
U using G(·).

8: TRAIN F using {Di
L,D

′j
U} ⊲ Eqn. 7

9: TRAIN DC using {Di
L,D

′j
U} ⊲ Eqn. 5

10: end for

11: for kg steps do

12: Sample data Di
L ∼ DL and Dj

U ∼ DU .

13: Get reward RG using F and DC .

14: TRAIN G using {Di
L,D

j
U} ⊲ Eqn. 9

15: end for

16: end while

17: Output: Optimised models F , G and DC.

used, which contain stroke-level coordinate information of

sketches in addition to instance-wise paired sketch-photo

labels, thus enabling us to train both retrieval and sketch-

generative models. Out of the 6,730 sketches and 2,000

photos in Shoe-V2, 6,051 and 1,800 for training respec-

tively, and the rest are for testing [5, 37]. The splits [5, 37]

for Chair-V2 dataset are 1,275/725 sketches and 300/100

photos for training/testing respectively. In addition to these

labelled training data, we further use all 50,025 UT-Zap50K

images [46] as unlabelled photos for shoe retrieval, and

7,800 unlabelled chair photos [28] are collected from shop-

ping websites, including IKEA, Amazon and Taobao. Data,

code, and models will be released soon.

Implementation Details: Firstly, for sketch-generation, we

use ImageNet pre-trained VGG-16 as encoder, excluding

any global average pooling operation. We keep the dimen-

sion (Nz) of z as 128, the hidden state of the decoder LSTM

as 512, the embedding dimension of the 2D-attention mod-

ule as 256 respectively. We set the max sequence length to

100, and the generative model is trained with a batch size

of 64 with ωkl = 1 using the pre-training strategy from

[37]. Secondly, the retrieval model (ImageNet pre-trained

Inception-V3 [41] ) is trained with a batch-size of 16 with

a margin value of 0.3. Finally, after completing individual

training from labelled data, we start joint training (Section

3.4) by additionally exploiting unlabelled data using kg and

kr as 5. Architecture of DC is from [19]. We set λkd = 0.1,

λr1 = 1, λr2 = 1, and λG = 10 respectively. All images

are resized to 256 × 256, with rasterization from sketch-

coordinate involving a window of same size having centre

scaling as well. We use Adam optimiser for both the gener-

ation and retrieval models with a learning rate of 0.0001.

Evaluation Metric: (a) FG-SBIR: Following existing FG-

SBIR works [48, 28], we use Acc@q, i.e. percentage of

sketches having true-paired photo appearing in the top-q

list. (b) Sketch Generation: Following [37, 4], sketch-

generation is quantified from three perspectives (i) Recog-

nition: Using a ResNet-50 classifier trained on 250-classes

from TU-Berlin sketch dataset, a generated sketch getting

recognised as the same class as that of corresponding photo

signifies category-level realism. (ii) Retrieval:1 To judge

whether the generated sketch has object-instance specific

agreement, we check the retrieval accuracy Acc@q via a

pre-trained FG-SBIR model using the generated sketches to

retrieve corresponding photos of the testing set. (iii) Gen-

eration: Following a recent sketch generation work [4], we

further calculate FID-score [16] using a pre-trained sketch-

classifier that captures both the quality and diversity of gen-

erated data compared to real human sketches.

4.1. Competitors

Sketch Generation: Sketch Generation could be ap-

proached in two following ways: (a) Image-to-image trans-

lation pipeline: Pix2Pix [19] could be adapted to perform

cross-modal translation in the image space. PhotoSketch

[23] extends further to handle the one-to-many possible na-

ture of photo-conditioned sketch image generation problem,

by calculating a mean loss over multiple sketches corre-

sponding to a particular photo. (b) Image-to-sequence gen-

eration pipeline: Pix2Seq [7] is the ablated version of our

model having a convolutional encoder and LSTM decoder,

without involving 2D-attention. L2S [37] is an extension

over [7] that uses two-way cross domain translation with

self-domain reconstruction for better regularisation. Ours-

G is a supervised model with 2D-attention, trained inde-

pendently from labelled data only. Ours-G-full is our fi-

nal sketch-generative model involving joint-training to learn

from both labelled and unlabelled data.

Fine-Grained SBIR: We compare with three groups of

competitors. (a) state-of-the-art: SN-Triplet [48] employs

triplet ranking loss with Sketch-a-Net as its baseline fea-

ture extractor. SN-HOLEF [38] is an extension over [48]

employing spatial attention along with higher order ranking

loss. SN-RL [5] is a very recent work employing reinforce-

ment learning based fine-tuning for on-the-fly retrieval. As

early retrieval is not our objective, we cite result at sketch-

completion point. (b) Exploiting unlabelled photos: There

has been no prior work addressing semi-supervised learn-

ing for FG-SBIR, and model designed for category-level re-

trieval [20] does not fit here. We thus adopt a few works that

could be used to leverage unlabelled photos. Edgemap-

Pretrain [30] is a naive-approach to use edge-maps of un-

labelled photos to pre-train the retrieval model. While edge-

maps hardly have any similarity to real free-hand sketches,

1Note: Retrieval accuracy is used to quantify both FG-SBIR and sketch

generation performance. Please refer to [37] for more details.
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Table 1. Quantitative results of photo-to-sketch generation

Chair-V2
Recognition (↑) Retrieval(↑)

FID Score(↓)

Acc.@1 Acc.@10 Acc.@1 Acc.@10

Pix2Pix [19] 4.5% 12.1% 2.4% 16.2% 33.4

PhotoSketch [23] 7.1% 14.3% 4.2% 17.9% 25.7

Pix2Seq [7] 5.4% 52.1% 4.0% 31.8% 14.5

L2S [37] 12.3% 53.8% 8.3% 36.7% 12.7

Ours-G (only labelled data) 15.2% 56.9% 13.4% 40.7% 10.1

Ours-G-Full 16.4% 58.6% 14.9% 42.6% 8.9

Shoe-V2
Recognition(↑) Retrieval(↑)

FID Score (↓)

Acc.@1 Acc.@10 Acc.@1 Acc.@10

Pix2Pix [19] 6.2% 14.5% 1.8% 8.4% 31.7%

PhotoSketch [23] 8.9% 17.3% 3.4% 10.2% 24.3%

Pix2Seq [7] 51.3% 86.6% 5.1% 25.8% 11.3

L2S [37] 53.7% 89.7% 6.2% 28.6% 10.7

Ours-G (only labelled data) 56.3% 91.9% 9.7% 33.6% 9.5

Ours-G-Full 58.1% 93.4% 12.3% 35.4% 8.3

they could be converted to better pseudo-sketches using the

work [31] that learns how to abstract sketches based on

subset-stroke selection. We term it as Edge2Sketch [31].

Recently, Jigsaw-Pretrain [28] used jigsaw solving over

the mixed patches between a particular photo (unlabelled)

and its edge-map, as a pre-text task for self-supervised

learning (SSL) to improve FG-SBIR performance. Further-

more, we term our self-implemented supervised FG-SBIR

model trained only on labelled data as Ours-F. Ours-F-

Full is our final retrieval model employing joint training

over both labelled and unlabelled photos. We also replace

our 2D-attention based sketch-generation process by base-

line sketch-generative model Pix2Pix [19] and L2S [37],

and term them as Ours-F-Pix2Pix and Ours-F-L2S re-

spectively. Finally, we design a naive semi-supervised FG-

SBIR baseline (Vanilla-SSL-F), where we blindly (with-

out instance-weighting and distillation) use the generated

sketch to additionally train the retrieval model.

4.2. Performance Analysis

Photo-to-Sketch Generation: From Table 1, we observe:

(i) Pix2Pix and PhotoSketch based on cross-modal trans-

lation in pixel space perform poorly. They fail to capture

the abstraction in human sketching style, where distribution

gap with real sketches is reflected in their significantly poor

FID scores. (ii) Pix2Seq and L2S outputs vector sketches

by sequentially predicting sketch coordinates, thus possess-

ing higher similarity towards human sketches. They how-

ever, still lag behind our ablated version Ours-G in scores.

As both of them reduce the spatial dimension of the convo-

lutional feature-map to a global context vector, spatial in-

formation is significantly compromised, with the decoder

receiving little guidance from the vector on exact draw-

ing content. In contrast, we retain the spatial dimension

of feature-map, and employ 2D-attention to focus on that

specific part of the photo it draws at any time step. (iii) L2S

is a notably close competitor to ours in terms of recogni-

tion accuracy, but better information passage between ev-

ery time step of decoder and convolutional encoder deliv-

Table 2. Quantitative results of fine-grained SBIR

Methods

Chair-V2 Shoe-V2

Acc.@1 Acc.@10 Acc.@1 Acc.@10

SN-Triplet [48] 47.4% 84.3% 28.7% 71.6%

SN-HOLEF [38] 50.7% 86.3% 31.2% 74.6%

SN-RL [5] 51.2% 86.9% 30.8% 74.2%

Edgemap-Pretrain [30] 53.9% 87.7% 33.8% 80.9%

Edge2Sketch-Pretrain [31] 54.3% 88.2% 34.2% 81.2%

Jigsaw-Pretrain [28] 56.1% 88.7% 36.5% 85.9%

Ours-F (only labelled data) 53.3% 87.5% 33.4% 80.7%

Vanilla-SSL-F 49.6% 85.6% 30.6% 74.3%

Ours-F-Pix2Pix 53.2% 87.5% 33.2% 80.1%

Ours-F-L2S 57.6% 89.4% 36.6% 84.7%

Ours-F-Full 60.2% 90.8% 39.1% 87.5%

ers much better sketches with fine-grained details (reflected

by retrieval accuracy). Furthermore, our final model Ours-

G-Full employs joint training with a retrieval model to ad-

ditionally exploit the unlabelled photos, improving sketch

generation performance (retrieval Acc@1) from 9.7% to

12.3% by 2.6% over our baseline Ours-G on Shoe-V2,

thus justifying the benefits of our semi-supervised learning.

Some qualitative results are shown in Figure 3. Blue de-

notes a supervised baseline, while red is Ours-G(F)-Full.

Fine-grained SBIR: From Table 2, we observe: (i) Our

baseline retrieval model is noticeably better than SN-

Triplet, and lies at par with recent state-of-the-art FG-

SBIR baselines like SN-HOLEF and SN-RL. (ii) With re-

gards to exploiting unlabelled photos, Edgemap-Pretrain

offers marginal improvement while using it on top of our

baseline with ImageNet pretrained weights. Aligning with

the intuition, while edge-maps are further augmented with

Edge2Sketch by a subset of stroke selection to model the

abstracted nature of sketch over edge-maps, it increases

retrieval performance by a reasonable margin. In con-

text of using edge-maps for pre-training, Jigsaw-Pretrain

provides maximum benefits, but still lags behind our fi-

nal model Ours-F-Full. (iii) While edge-map does not

posses sketch abstraction knowledge of human sketching

style, our approach of using a sequential photo-to-sketch

generation model to generate synthetic photo-sketch pairs

for unlabelled photo encodes better knowledge to enhance

generalisation. However, it is noteworthy that Vanilla-SSL-

F blindly using synthetic sketch-photo pairs yields perfor-

mance lower than the supervised one due to overfitting on

noisy information. Overall, for fine-grained SBIR, due to

our proposed semi-supervised learning, the retrieval accu-

racy Acc@1 of Ours-F-Full increases from 33.4% to 39.1%
by a margin of 5.7% over our baseline Ours-F on Shoe-

V2. Moreover, replacing our photo-to-sketch generation

model by L2S and Pix2Pix reduces the same by 2.5% and

5.9% respectively, thus justifying the importance of our

sketch generative model with 2D attention. (iv) Note that

policy-gradient based RL scheme could be avoided by using

Pix2Pix for sketch generation, and gradient can directly be

back-propagated from retrieval to generative model. How-

ever, that is still found to be inferior to ours.
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Figure 3. Qualitative results on our photo-to-sketch generation process, where sketch is shown with attention-map at progressive instances.

4.3. Ablation Study

A thorough ablative study on Shoe-V2 dataset verifies

contributions of individual design components in Table 3.

[i] Instance weighting for retrieval: To simply judge the

contribution of discriminator (DC) guided instance weight-

ing we remove it, and adapt the framework accordingly.

Consequently Acc@1 retrieval performance significantly

drops to 36.8% with a decrease of 2.3% on Shoe-V2. Due to

sigmoid normalisation [8], the output of DC falls in [0,1].

We quantify it as 10 discrete levels with a step size 0.1.

We calculate the average ranking percentile (ARP) of syn-

thetic sketch-photo pairs from testing set which fall un-

der the same discrete level, and plot it against 10 different

levels. From Figure 4 (a), it is evident that the synthetic

sketch-photo pairs having higher discriminator score (to-

wards 1) tend to have much better ARP [5] values (i.e better

quality), while those with lesser ARP values are assigned

with lesser (towards 0) certainty score by the discrimina-

tor. This observation is consistent with our assumption that

DC should quantify quality of synthetic sketch-photo pairs

for instance-wise weighting. [ii] Distillation based noise

tolerance for retrieval: Removing knowledge distillation

based regularisation, which additionally tries to provide tol-

erance against noisy synthetic sketch-photo pairs, Acc@1
is decreased by 1.8% to 37.3% on Shoe-V2 dataset. Our

relative teacher based distillation process (Section 3.3) for

retrieval network surpasses absolute teacher alternative by

a margin of 0.9% (Acc@1) on Shoe-V2, thus confirming its

usefulness. [iii] 2D-attention for sketch-generation: The

use of 2D attention significantly improves the sketch gen-

eration performance, providing better fine-grained agree-

ment with the input photo. While we employ a 3x3 con-

volutional kernel to aggregate neighbourhood information,

using an 1D attention that treats feature maps as 1D se-

quence, the retrieval accuracy Acc@1 of generated sketches

on Shoe-V2 drops to 8.1% by margin of 4.2%. We conjec-

ture that 2D-spatial attention has higher efficiency in gener-

ating fine-grained sequential sketches from input photo than

two-way translation based regularisation as done in L2S

[37]. [iv] Significance of joint-training: (a) A direct way

of judging efficiency of joint training is employing sepa-

rately trained photo-to-sketch generation model to augment

synthetic sketch-photo pairs, and using them blindly to train

the retrieval model along with labelled data without instance

weighting or teacher-regularisation. This however lags be-
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Figure 4. (a): Consistency of discriminator’s certainty score. (b):

Varying training data size for FG-SBIR - Semi-Supervised Learn-

ing (SSL) vs Supervised-Learning (SL).

hind the baseline (supervised) fine-grained SBIR model by

2.8% (i.e. 30.6%), as the model over-fits to the noisy in-

formation present in synthetic sketch-photo data. This con-

firms that naively using sketch generation does not help at

all. (b) The retrieval accuracy (Acc@1) from sketch gen-

eration performance improves by 1.4% with an additional

policy-gradient based training taking reward (Eqn. 8) from

the retrieval model and the discriminator DC as critic. In-

dividually, they help to improve by 0.9% and 0.8%, respec-

tively under the same metric. (c) Furthermore, we compute

the performance of our semi-supervised framework at vary-

ing training data size for both processes in Figure 4 (b). We

notice a significant overhead compared to our supervised

baseline model for each dataset individually.

Table 3. Ablative study on Shoe-V2: Instance Weighting (IW),

Teacher Regularisation (TR), Attention (AT), Joint-Training (JT).

IW TR AT JT

Fine-Grained SBIR Sketch Generation

Acc.@1 Acc.@10
Recognition Retrieval

Acc.@1 Acc.@1

✓ ✓ ✓ ✓ 39.1% 87.5% 58.1% 12.3%

✗ ✓ ✓ ✓ 36.8% 85.4% 57.3% 11.2%

✓ ✗ ✓ ✓ 37.3% 86.1% 57.8% 12.1%

✓ ✓ ✗ ✓ 37.6% 86.1% 51.3% 5.1%

✓ ✓ ✓ ✗ 37.9% 86.6% 56.3% 9.7%

✗ ✗ ✗ ✗ 31.1% 75.4% 51.3% 5.1%

5. Conclusion

We have proposed a semi-supervised fine-grained

sketch-based image retrieval framework to solve the data

scarcity problem. To this end, we proposed to treat sequen-

tial photo-to-sketch generation and fine-grained sketch-

based image retrieval as two conjugate problems along with

various regularizers to address the intricate issues of reli-

ability and tolerance to noisy synthetic sketch-photo pairs.

This leads to substantial improvement on existing baselines

in sparse data-scenarios for FG-SBIR.
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