
Quantum Permutation Synchronization

Tolga Birdal1,⋆ Vladislav Golyanik2,⋆ Christian Theobalt2 Leonidas Guibas1

1Stanford University 2Max Planck Institute for Informatics, SIC

Abstract

We present QuantumSync, the first quantum algorithm

for solving a synchronization problem in the context of com-

puter vision. In particular, we focus on permutation syn-

chronization which involves solving a non-convex optimiza-

tion problem in discrete variables. We start by formulating

synchronization into a quadratic unconstrained binary opti-

mization problem (QUBO). While such formulation respects

the binary nature of the problem, ensuring that the result is

a set of permutations requires extra care. Hence, we: (i)

show how to insert permutation constraints into a QUBO

problem and (ii) solve the constrained QUBO problem on

the current generation of the adiabatic quantum computers

D-Wave. Thanks to the quantum annealing, we guarantee

global optimality with high probability while sampling the

energy landscape to yield confidence estimates. Our proof-

of-concepts realization on the adiabatic D-Wave computer

demonstrates that quantum machines offer a promising way

to solve the prevalent yet difficult synchronization problems.

1. Introduction

Computer vision literature accommodates a myriad of

efficient and effective methods for processing rich informa-

tion from widely available 2D and 3D cameras. Many algo-

rithms at our disposal excel at processing single frames or

sequence of images such as videos [82, 34, 13]. Oftentimes,

a scene can be observed by multiple cameras, from differ-

ent, usually unknown viewpoints. To this date it remains an

open question how to consistently combine the multi-view

cues acquired without respecting any particular order [44].

Synchronization [91, 42, 92] is one of the proposed solu-

tions to the aforementioned problem. On an abstract note, it

involves distributing the discrepancies over the graph con-

necting multiple viewpoints such that the estimates are con-

sistent across all considered nodes. To this end, synchro-

nization simultaneously averages the pairwise local infor-

mation into a global one [48, 54, 4, 12]. This procedure

is a fundamental piece of most state-of-the-art multi-view
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Figure 1. Overview of QuantumSync. QuantumSync formulates

permutation synchronization as a QUBO and embeds its logical

instance on a quantum computer. After running multiple anneals,

it selects the lowest energy solution as the global optimum.

reconstruction and multi-shape analysis pipelines [85, 23,

25] because it heavy-lifts the global constraint satisfaction

while respecting the geometry of the parameters. In fact,

most of the multiview-consistent inference problems can be

expressed as some form of a synchronization [107, 15].

In this paper, our focus is permutation synchronization,

where the edges of the graph are labeled by permutation

matrices denoting the correspondences either between two

2D images or two 3D shapes. Specifically, we seek to find

an absolute ordering for each point of each frame which

sorts all the corresponding points into the same bin. Un-

fortunately, this problem by definition involves a combi-

natorial non-convex optimization, for which attaining the

global minimum is intractable under standard formulations

targeting classical von Neumann computers. This difficulty

have encouraged scholars to seek continuous relaxations for

which either a good local optimum [14, 16] or a closed form

solution [6, 57, 5] could be found. The solution to this

approximately equivalent relaxed problem should then be

rounded back to the permutation matrices to report a valid

result. Ideally, we would like to avoid such approximations

and work with the original set of constraints at hand. This

is exactly what we propose to do in this work. Because on

a classical computer we cannot speak of a global optimality

guarantee of our discrete problem, we turn our attention to

a new family of processors, i.e., quantum computers.
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A quantum computer is a computing machine which

takes advantage of quantum effects such as quantum su-

perposition, entanglement, tunnelling and contextuality to

solve problems notoriously difficult (i.e., NP-hard) on a

classical computer. Numerous quantum algorithms have

demonstrated improved computational complexity finally

reaching the desired supremacy [7]. Currently, we see the

first practical uses of quantum computers thanks to the pro-

grammable quantum processing units (QPU) available to

the research community such as D-Wave [2] or IBM [1]. As

this new generation of computers offers a completely differ-

ent computing paradigm, directly porting classical problem

formulations is far from being trivial. In fact, oftentimes we

are required to revise the problem at hand altogether [49].

This paper shows how to formulate the classical per-

mutation synchronization in terms of a quadratic uncon-

strained binary optimization (QUBO) that is quantum com-

puter friendly. QUBO optimizes for binary variables and

not permutations, and, hence, we are required to ensure that

permutation constraints are respected during optimization.

To this end, we turn all constraints into linear ones and in-

corporate them into QUBO. Finally, we embed our problem

to a real quantum computer and show that it is highly likely

to achieve the lowest energy solution, the global optimum

(see Fig. 1). Our contributions are as follows:

1. The first, to the best of our knowledge, formulation of

the classical synchronization in a form consumable by

an adiabatic quantum computer (AQC);

2. We show how to introduce permutations as linear con-

straints into the QUBO problem;

3. We numerically verify the validity of our formulation

in simulated experiments as well as on a real AQC (for

the first time, on D-Wave Advantage 1.1);

4. We perform extensive ablation studies giving insights

into this new way of computing.

We obtain highly probable global optima up to either of:

(i) eight views and three points per view, (ii) seven views

with four points, or (iii) five points with three views. We

experiment for the first time on an AQC with 5k qubits and

perform extensive evaluations and comparisons to classical

methods. Our approach can also be classified as the first

method for quantum matching of multiple point sets. While

we are the first to implement synchronization on quantum

hardware, our evaluations and tests are proof of concepts as

truly practical quantum computing is still a leap away.

2. Related Work

Synchronization. The art of consistently recovering abso-

lute quantities from a collection of ratios, synchronization,

is now the de-facto choice when it comes to bringing func-

tions on image/shape collections into unison [85, 23, 25].

The problem is now very well studied, enjoying a rich set

of algorithms. Primarily, there exists a plethora of works

on group structures arising in different applications [48, 47,

16, 5, 4, 56, 54, 4, 100, 28, 96, 98, 6, 9]. Some of the pro-

posed solutions are closed form [6, 5, 72, 4] or minimize

robust losses [53, 27]. Others address certifiability [83]

and global optimality [21]. Bayesian treatment or uncer-

tainty quantification is also considered [97, 14, 12, 16] as

well as low rank matrix factorizations [10]. Recent algo-

rithms tend to incorporate synchronization into deep learn-

ing [58, 43]. This work concerns with synchronizing corre-

spondence sets, otherwise known as permutation synchro-

nization (PS) [81]. This sub-field also attracted a descent

amount of attention: low-rank formulations [104, 101],

convex programming [55], multi-graph matching[86], dis-

tributed optimization [55] or Riemannian optimization [16].

All of these approaches try to cope with the intrinsic

non-convexity of the synchronization problem one way or

another. Unfortunately, solving our problem on a classical

computer is notoriously difficult. To the best of our knowl-

edge, we are the firsts to address this problem through the

lens of a new paradigm, adiabatic quantum computing.

Quantum computing. Since its motivation in the 1980s

[71, 39], quantum computing has become an active research

area, both from the hardware [30, 61, 36, 102, 73, 111, 65,

68, 66] and algorithmic side [89, 90, 17, 49, 38, 51, 99, 52,

31, 3, 70, 87, 75, 37, 108, 94]. Quantum methods offering

speedup compared to the classical counterparts have been

demonstrated for domains such as applied number theory

[89, 17, 99, 37], linear algebra [51, 52, 67, 95, 94], ma-

chine learning [3, 70, 108] and simulation of physical sys-

tems [106, 79, 11, 62, 59], among others.

Quantum annealing (QA) [60, 22] and the adiabatic

quantum evolution algorithm by Farhi et al. [38] have trig-

gered the development of adiabatic quantum computers

(AQC). In the last decade, the technology has matured and

became accessible remotely for test and research purposes

with the help of D-Wave [32]. A recent benchmarking of

D-Wave AQC [33] has shown that for energy landscapes

with large and tall barriers, quantum annealing can achieve

speed-ups of up to eight orders of magnitude compared to

simulated annealing [63] running on a single core. AQC

has also been successfully applied to traffic flow optimiza-

tion while outperforming classical methods [75].

Quantum computer vision. Several quantum methods for

computer vision problems have been proposed in the litera-

ture including algorithms for image recognition [76], clas-

sification [20, 78] and facial feature learning by low-rank

matrix factorization [80]. Recently, D-Wave has been ap-

plied to redundant object removal in object detection [69].

While a QUBO formulation of non-maximum suppression

was already known in the literature [84], it has been im-

proved in [69] for D-Wave 2X with solutions outperform-

ing several classical methods. Quantum approach for point
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set alignment [45, 46] solves a related problem to ours. It

approximates rotation matrices in the affine space by basis

elements which can be summed up according to the mea-

sured bitstring. However, this formulation cannot be eas-

ily extended to the multi-view case and does not support

permutation constraints. In contrast, our method solves a

multi-way matching problem, and we successfully deploy it

on a real AQC Advantage 1.1. Our use of assignment con-

straints is also new. Concurrently to us, a similar form of

permutation matrix constraints was proposed by Benkner et

al. [88] for matching two graphs on AQC. Several previous

works formulate similar penalties in different ways. Stol-

lenwerk et al. [93] address the flight assignment problem

on AQC. Formulation of the graph isomorphism problem

can include permutations [110, 41]. In [110], an individual

variable for every vertex pair of the same degree in a graph

is allocated, which subsequently leads to a QUBO. Permu-

tations can also be converted to a table with binary entries

added as a penalty term to the target Hamiltonian [41].

3. Preliminaries and Technical Background

3.1. Synchronization

We model the multi-view configuration as a connected

undirected graph G = (V = {1, 2, . . . , n}, E ⊂ [n] × [n])
where |E| = m and if (i, j) ∈ E then (j, i) ∈ E . Each vertex

vi ∈ V (e.g., image) is associated a domainDi (e.g., ordered

points). Each edge (i, j) ∈ E is labeled with a function

fi,j : Di 7→ Dj (e.g., correspondence). We will refer to the

edge-related entities as relative and node- (vertex-) related

entities as absolute. Thus, we aptly call {fi,j}i,j as relative

maps. In this section, we define and explain the necessary

notions following Fig. 2. The proofs of the theorems given

in this section can be found in our supplementary material.

Definition 1 (Path, Cycle and Null Cycle). We define

a path to be the ordered, unique index sequence p =
{(i1, i2), (i2, i3), · · · , (in−1, in)} ∈ P along G connecting

vi1 to vin . It is called a cycle, if additionally the path traces

back to the starting node. Finally, following [4], we denote

a cycle c ∈ C to be a null-cycle of G if the composition of

functions along c leads to the identity transformation:

fc = f1,2 ◦ f2,3 · · · ◦ f(n−1),n ◦ fn,1 = f∅, (1)

where f∅(x) = x, ∀x ∈ D1 is the identity map and fc
denotes the composite function. Intuitively, c is a non-empty

path in which the only repeated vertices are the first and last

vertices. Note that the direction of the action of ◦ matters

(e.g., f1,2 ◦ f2,3 6= f2,3 ◦ f1,2) and is up to the convention.

Definition 2 (k-cycle). We refer to a function mapping a

vertex to itself as the 1-cycle: fi,i = f∅. Similarly, a 2-

cycle would be fc = fi,j ◦ fj,i and so on [77, 57].

path

(null)

cycle

1-cycle

vertex

map

C
y
cl

e
 C

o
n

si
st

e
n

cy
P

a
th

 I
n

v
a

ri
a

n
ce

Figure 2. (left) Notation and illustration of the general setting we

consider, (right) Cycle consistency vs path invariance.

Definition 3 (Cycle Consistency). We call the graph G to

be cycle-consistent on C if fc = f∅ ∀c ∈ C, where C is the

set of all cycles [50].

The notion of cycle consistency for directed graphs is

known as path invariance [107] and differs from cycle con-

sistency as shown in Fig. 2. In this paper, we further assume

the maps belong to the general linear group and are isomor-

phisms, i.e., fji = f−1
ij .

Remark 1. Depending on the graph topology, the num-

ber of cycles may be exponential in the number of vertices.

Hence, naively ensuring the consistency of large graphs ac-

cording to Dfn. 3 quickly becomes intractable. Algorithms

such as Guibas et al. [50] aim to satisfy the consistency of

a subset of cycles C̄ ⊂ C (bases), where enforcing consis-

tency along these cycles induces consistency along all cy-

cles of the input graph G. However, as efficient selection

of these cycle-consistency bases [105] is a problem under

investigation, we instead use the available group structure:

Theorem 1 (Cycle Consistency by Construction). A con-

sistent vertex labeling {fi : V 7→ Di}i where (D, ◦) forms

a group with operation ◦, can be constructed by satisfying

the following constraint for all i and j:

fi,j = fi ◦ f
−1
j . (2)

Hence, Eq (2) is called the cycle consistency constraint.

Definition 4 (Synchronization). Synchronization is the pro-

cedure of finding a consistent labeling of G given a collec-

tion of ratios {fi,j}i,j ensuring the cycle consistency of G:

argmin
{fk}k

∑

(i,j)∈E

d(f̂i,j , fi,j). (3)

f̂i,j = fi ◦ f
−1
j are the estimated ratios and d(·) is a group-

specific distance metric.

Remark 2. A closer look to the problem reveals that it is

non-convex due to the composition, but convex when the

vertices fj are fixed during optimization of fi. In fact, if
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fi is considered to be fixed, this problem resembles an av-

eraging under the metric d(·). As for different i we have

different averages to compute, synchronization is often re-

ferred as multiple averaging [40, 54, 26, 53].

Theorem 2 (Gauge Freedom). The problem in Dfn. 4 is

subject to a freedom in the choice of the reference or the

gauge [8, 26]. In other words, the solution set to Eq (3) can

be transformed arbitrarily by a common fg i.e. fi ← fi ◦fg
while still satisfying the consistency constraint.

In practice, a gauge is fixed by setting one of the vertex

labels to identity: f1 = f∅.

Definition 5 (Permutation Matrix). A permutation matrix

is defined as a sparse, square binary matrix, where each

column or row contains only a single non-zero entry:

Pn := {P ∈ {0, 1}n×n : P1n = 1n , 1
⊤
nP = 1⊤

n }. (4)

where 1n denotes a n-dimensional ones vector. Every P ∈
Pn is a total permutation matrix and Pij = 1 implies that

point i is mapped to element j. Note, P⊤ = P−1. We also

denote the product manifold of m permutations as Pm
n .

Definition 6 (Relative Permutation). We define a permuta-

tion matrix to be a relative map if it is the ratio (or differ-

ence) of two group elements (i→ j): Pij = PiP
⊤
j .

Definition 7 (Permutation Synchronization Problem). For

a redundant set of measures of ratios {Pij}, the permu-

tation synchronization [81] seeks to recover {Pi} for i =
1, . . . , N such that Eq (2) is satisfied: Pij = PiP

−1
j .

If the input data is noise-corrupted, this consistency will

not hold and to recover the absolute permutations {Pi},
some form of a consistency error is minimized.

3.2. Adiabatic Quantum Computation

Contemporary AQC can solve QUBO over a set of

pseudo-Boolean functions of the following form:

argmin
x∈Bn

x⊤Qx+ s⊤x, (5)

where Bn denotes the set of binary vectors of length n,

Q ∈ R
n×n is a real symmetric matrix and s is a real n-

dimensional vector. (5) is a frequent problem that is known

to beNP-hard on a classical computer. AQA operates with

qubits obeying the laws of quantum mechanics. In contrast

to a classical bit, a qubit |φ〉 can continuously transition

between the states |0〉 and |1〉 (the equivalents of classical

states 0 and 1) fulfilling the equation |φ〉 = α |0〉 + β |1〉,
with probability amplitudes satisfying |α|2 + |β|2 = 1.

AQA algorithms for problems in a non-QUBO form first

have to encode the problem as QUBO (5), which defines the

former in terms of logical qubits and weights (s and Q) be-

tween them. The logical problem is then minor-embedded

to the AQA’s physical qubits graph, with methods such as

[24]. AQA interprets s and Q as qubit biases and couplings,

respectively, and converts them to local magnetic fields on

a QPU imposed on the qubits during anneallings, i.e., free

evolutions of the quantum-mechanical computing system.

The search of the optimal x is performed by optimizing over

the hidden1 states of n qubits and consequently unembed-

ding and measuring them as classical bitstrings. The latter

are then passed to the solution interpretation step, which

decodes them in the context of the original problem.

Before annealing, all n qubits are initialized in ground

states of an initial Hamiltonian HI that is easy to achieve

as a superposition with equal probabilities of measuring |0〉
or |1〉 for every qubit. A Hamiltonian is an operator defin-

ing the energy spectrum of the system and— interpreted for

computational problems— the space of all possible solu-

tions. AQA performs a series of annealings, during which

HI continuously alters towards the problem Hamiltonian

HP under the influence of the local magnetic fields. This

instantaneous HamiltonianH can be expressed as:

H(τ) = [1− τ ]HI + τ HP , (6)

with the local time variable τ ∈ [0; 1] transitioning from 0
to 1 during the annealing time t (e.g., 20 µs). According to

the adiabatic theorem of quantum mechanics [19], the sys-

tem will likely remain in the ground state ofHP by the end

of the anneal, assuming a sufficiently long t and despite a

highly non-convex energy landscape of the problem. This is

due to the quantum effects of superposition, entanglement

and tunnelling. Superposition enables the optimization to

be performed on all possible qubit states simultaneously; it

allows to operate on a 2n-dimensional state space spanned

by n qubits. During quantum computation, entangled states

are created, i.e., the states of multiple qubits which cannot

be described independently from each other. Tunnelling en-

ables transition through the barriers (in geometric interpre-

tation). For a more comprehensive overview of the AQC

foundations, see [60, 38, 2] as well as Secs. 2 and 3 of [45].

4. Quantum Synchronization

Suppose a multi-view configuration where we are given

n points in each of the m views. Points in view i relate to

the ones in view j via a permutation Pij (see Sec. 3.1). Pij

is usually obtained independently for each pair in the edge

set E and hence is noisy. Following [16], we see the permu-

tation synchronization as a probabilistic inference problem,

where we will be interested in the following quantities:

1. Maximum a-posteriori (MAP):

X⋆ = argmax
X∈Pm

n

log p(X|P) (7)

1in the sense that α, β cannot be revealed (measurement postulate) and

non-destructive copying of |φ〉 is not possible (no-cloning theorem [103])

13125



where log p(X|P) =+ −β
∑

(i,j)∈E ‖Pij − XiX
⊤
j ‖

2
F,

and =+ denotes equality up to an additive constant.

2. The full posterior distribution: p(X|P) ∝ p(P,X).

Here, X⋆ denotes the entirety of the sought permutations,

and, similarly, P is the collection of all specified pairwise

permutations. The MAP estimate is often easier to obtain

and useful in practice. On the other hand, samples from the

full posterior can provide important additional information,

such as uncertainty. Not surprisingly, the latter is a much

harder task, especially considering the discrete nature of our

problem. Each AQC algorithm includes problem encoding,

minor embedding, sampling and solution interpretation, as

described in Sec. 3.2. In what follows, we will describe the

problem encoding and the preparation of Q in Eq (5).

4.1. Permutation Synchronization as QUBO

We first re-write the synchronization loss in Eq (7) as a

quadratic assignment problem (QAP) that is more friendly

for adiabatic optimization, and later insert the permutations

as linear constraints into the formulation.

Proposition 1. Permutation synchronization under the

Frobenius norm can be written in terms of a QUBO:

argmin
{Xi∈Pn}

∑

(i,j)∈E

‖Pij −XiX
⊤
j ‖

2
F = argmin

{Xi∈Pn}

x⊤Q′x.

Here, x = [· · ·x⊤
i · · · ]

⊤ and xi = vec(Xi) where vec(·)
acts as a vectorizer. Q′ is then a matrix of the form:

Q′ = −











I⊗P11 I⊗P12 · · · I⊗P1m

I⊗P21 I⊗P22 · · · I⊗P2m

...
...

. . .
...

I⊗Pm1 I⊗Pm2 · · · I⊗Pmm











. (8)

Proof. The steps are intuitive to follow and an expanded

proof is included in the supplementary material:

X⋆ = argmin
X∈Pm

n

∑

(i,j)∈E

‖Pij −XiX
⊤
j ‖

2
F (9)

= argmin
X∈Pm

n

2N2n− 2
∑

(i,j)∈E

tr(XjX
⊤
i Pij) (10)

= argmin
X∈Pm

n

−
∑

(i,j)∈E

vec(Xi)
⊤(I⊗Pij)vec(Xj)

= argmin
X∈Pm

n

x⊤Q′x. (11)

The Hessian of this problem is given by Q′ itself. Hence,

the problem is only convex and solvable by algorithms such

as interior-point or trust-region methods when Q′ is pos-

itive definite. The indefinite problems can be solved via

active-set methods if the variables are relaxed to the set of

reals. For discrete variables and when Q′ is not positive def-

inite, this is a variant of NP-hard integer quadratic prob-

lem. We will instead show how to use the recent quantum

computers to obtain the global minimum.

Formulating the QUBO synchronization. The prob-

lem in Eq (11) has an added difficulty of being a dis-

crete combinatorial optimization problem over the prod-

uct manifold of permutations. Replacing permutations with

different choices of matrices lead to different relaxations,

for example: (i) positivity allows for semi-definite pro-

gramming [57], (ii) orthonormality allows for spectral so-

lutions [72], and (iii) doubly stochastic relaxation can allow

for Riemannian optimization [16]. However, all of these

methods have to be followed by a projection step onto the

discrete Permutohedron, often cast as an assignment prob-

lem and solved via the celebrated Hungarian algorithm.

QUBO enables us to solve this problem without continu-

ous relaxations in a globally optimal manner by rephras-

ing Eq (11) in terms of binary variables B at our disposal:

argmin
x∈B

x⊤Q′x. (12)

Permutations as linear constraints. The binary variables

x ∈ B are a superset of the product-permutations. In other

words, the solution to Eq (11) need not result in permuta-

tions once the matrices corresponding to each node are ex-

tracted. We propose to encourage the solution towards a set

of permutations by introducing linear constraints Ax = b

such that the optimization adheres to the definition of a per-

mutation: rows and columns sum to one as in Eq (4). Given

xi = vec(Xi), this amounts to having bi = 1 and

Ai =

[

I⊗ 1⊤

1⊤ ⊗ I

]

. (13)

Put simply, the matrix Ai is assembled as follows: in row

j with 1 ≤ j ≤ n, the ones are placed in columns (j −
1) · n + 1 to (j) · n. In a row j with j > n, ones will be

placed at (j − n) + p · n for p ∈ {0, ..., n− 1}. To enforce

the permutation-ness of all the individual xi that make up

x ∈ R
n2×m, we construct a n2 × 2n block-diagonal matrix

A = diag(A1,A2, . . . ,Am).

Introducing linear constraints into QUBO. We now ex-

tend our formulation by introducing the equality constraints

Ax = b into the optimization.

Proposition 2. The constrained minimization:

argmin
x∈B

x⊤Q′x s.t. Ax = b (14)

can be turned into an (unconstrained) QUBO

argmin
x∈B

x⊤Qx+ s⊤x, (15)

where Q = Q′ + λA⊤A and s = −2λA⊤b.
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Table 1. Evaluations on Willow Dataset.
Car Duck Motorbike Winebottle Average

Exhaustive 0.84 ± 0.104 0.91 ± 0.115 0.82 ± 0.10 0.95 ± 0.096 0.88 ± 0.104

EIG 0.81 ± 0.083 0.86 ± 0.102 0.77 ± 0.059 0.87 ± 0.107 0.83 ± 0.088

ALS 0.84 ± 0.095 0.90 ± 0.102 0.81 ± 0.078 0.94 ± 0.092 0.87 ± 0.092

LIFT 0.84 ± 0.102 0.90 ± 0.103 0.81 ± 0.078 0.94 ± 0.092 0.87 ± 0.094

Birkhoff 0.84 ± 0.094 0.90 ± 0.107 0.81 ± 0.079 0.94 ± 0.093 0.87 ± 0.093

D-Wave(Ours) 0.84 ± 0.104 0.90 ± 0.104 0.81 ± 0.080 0.93 ± 0.095 0.87 ± 0.096

Both Q′ and Q are sparse matrices. We provide their

sparsity patterns and the proof of Prop. 2 in our supplement.

We finally map this modified QUBO (Q, s) onto D-Wave.

Encoding, Sampling and Interpretation. We fix the

gauge by letting the first matrix to be identity: X1 = I.

Once QuantumSync terminates, the measured bitstring can

be directly interpreted as the solution permutations after re-

ordering into m − 1 matrices of dimension n × n. To ex-

plain the posterior landscape, we propose to sample from

many low-energy states using the same quantum annealing.

Further details are presented in the supplement.

5. Experiments and Evaluations

Real dataset. To showcase that quantum computers of-

fer a promising way to solve the challenging multi-view

matching problems, we extract four categories (duck, car,

winebottle, motorbike) of Willow Object Classes [29] com-

posed of 40 RGB images each, acquired in the wild (see

Fig. 3). The images suffer from significant pose, lighting

and environment variation. Hence, ten keypoints are manu-

ally annotated on each image. We use the first four of these

keypoints and create 35 small problems for each category

by creating a fully connected graph composed of all four

consecutive frames. We follow [101] and extract local fea-

tures from a set of 227 × 227 patches centered around the

annotated landmarks, using Alexnet [64] pretrained on Ima-

geNet [35]. The feature map responses of Conv4 and Conv5

layers are then matched by the Hungarian algorithm [74] to

initialize the synchronization. As the data is manually an-

notated, the ground-truth relative maps are known.

Synthetic dataset. For a controlled evaluation of our

method, similar to [16], we generate synthetic datasets com-

posed of graphs with m = |V| nodes and |E| = m(m − 1)
edges. At each node i we generate n points mappable by a

permutation Pij to n other points at node j. Hence, all the

permutation matrices Pi or Pij are total i.e., of size n× n.

While the graph is by default fully connected, in certain ex-

periments we randomly drop certain edges to have a com-

pleteness C where 0.5 < C < 1. For instance, C = 0.75
means that only 75% of the edges are actively present. We

optionally perturb the relative permutations by swapping a

percentage of the rows and columns. We call this the swap

ratio and denote it as σ, where 0 ≤ σ ≤ 0.25.

Evaluation methodology. We implement our algorithm on

D-Wave Advantage 1.1 and compare it against the state-of-

Figure 3. A random car example from Willow Object Classes [29].

the-art methods MatchEIG [72], MatchALS [109], Match-

Lift [57], MatchBirkhoff [16] as well as to the exhaus-

tive solution obtained by enumerating all possible permuta-

tions. In all of our evaluations we report the number of bits

correctly detected and call this metric accuracy. For syn-

thetic evaluations involving noise, we generate seven ran-

dom problems with the same σ and average the results.

5.1. Evaluations on D­Wave Advantage

In this section, we describe our experiments on D-Wave

Advantage system 1.1, which is an AQC with 5436 qubits

arranged on a graph of cells with eight qubits each. Ev-

ery qubit operates under≈15.8mK temperature and is con-

nected to 15 other qubits from the same or other cells which

enables compact minor embeddings, i.e., mappings of tar-

get QUBOs to the processor topology with shorter chains

of physical qubits compared to the previous 2000Q [18].

To map logical qubits which are connected to more than 15
other logical qubits, chaining of physical qubits is neces-

sary, i.e., entanglement between qubit states. These chains

are maintained by auxiliary magnetic fields and can break

during annealings. The mechanism of resolving broken

chains is majority voting. Minor embeddings are performed

automatically via [24], and each annealing takes 20µs –

apart from AQC problem transmission overheads which can

sum up to 0.1 sec, minor embedding time (which, how-

ever, can be pre-computed for multiple problem sizes) and

AQC waiting time. We access D-Wave machines remotely

through Leap2 [32]. The total AQC runtime spent in the ex-

periments amounts to ≈15.5 min. (> 5 · 105 annealings in

total). We show exemplary embeddings in our supplement.

Evaluations on the real dataset. We begin by putting D-

Wave to test on synchronizing real data. Tab. 1 shows the

accuracy of the best (lowest energy) solution we attain for

different categories, as well as averaged over all classes. It

is seen that while quantum solution is not the top-performer,

it is certainly on par with the well engineered approaches of

Car Duck Motorbike Winebottle

0.75

0.8

0.85

0.9

0.95
single-best

2-best

3-best

4-best

5-best

6-best

Figure 4. Samples from the quantum annealer can be helpful in

improving the solution quality or reporting uncertainty.
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Figure 5. Evaluations on the synthetic dataset (n = 4, m = 4).

the state of the art. Moreover, on a theoretical note, it en-

joys polynomial speedup. Note that the exhaustive solution

performs the best on this dataset. This further encourages

research on making better quantum computers reducing the

gap between the true and the machine-computed optima.

Explaining the posterior. While not being a true Bayesian

inference, quantum annealing can provide samples from the

energy landscape or the Hamiltonian. The samples could be

used either, for instance, in associating a confidence to so-

lutions or maybe in scenarios like active learning. To assess

the usability of the samples, instead of looking into the low-

est energy solution, we look at k-lowest energy solutions of

the previous real data evaluation. We process them jointly

and correct the erroneous bits by replacing them with the

most frequent ones over all the samples. Fig. 4 shows on

the real benchmark that for increasing k values, the accu-

racy also increases. This validates that different samples

from a quantum annealer can be informative in exploring

the energy landscape i.e., posterior defined in Sec. 4.

Evaluations on the synthetic dataset. We now interrogate

various characteristics of our quantum approach, Quantum-

Sync. Our results are plotted in Fig. 5. First, we inspect the

behaviour under increasing noise. Fig. 5(a) shows that all

the methods can handle low noise regimes. The increasing

noise similarly impacts the methods we test. Our approach

while not being superior to any, is on par. Fig. 5(b) shows

that QuantumSync is significantly impacted from the in-

creased problem sizes (mn2). This shows perhaps the most

important limitation of current quantum computers, i.e., we

can only reliably handle the problems of size < 64. Note

that, this is also the size of our real sub-Willow dataset. The

rest of the plots (c,d) show the impact of connectivity (graph

completeness) on the solution quality. With noise (σ = 0.1
for this case) sparse graphs cause significant problems.

Parameter selection. We now evaluate, with the help

of our synthetic data, how the solution and its probability

changes w.r.t. the chain strength χ and λ. Both parameters

strongly influence the probability to measure optimal solu-

tions. χ being too high keeps the chains unbroken during

annealings, but adversely affects the solutions. Too low χ
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Figure 6. For different n and an increasing number of views m,

(a) plots the number of qubits required to map a problem; and (b)

at χ = 3.0, shows the required maximum chain length required to

embed the problem on Advantage 1.1. (c) plots the average num-

ber of measured optimal solutions in 200 samples, for different

pairs of n and m (averaged over 50 repetitions).

lead to broken chains which, however, in many cases can be

resolved with majority voting. Initial trial experiments help

us to identify χ = 3.0 and λ = 2.5 as optimal parameters

which are kept fixed in our experiments. Note that the ab-

lative study for λ on a classical computer in Sec. 5.2 also

suggests λ > 2.0 as a suitable value for a range of (n,m).
Tab. 2 highlights the effect of varying χ in the tests with

n = 3,m = 3 and n = 4,m = 4 on Advantage 1.1. We

report the number of logical qubits of the target problem nl,

the number of physical qubits required to embed the prob-

lem on AQC nph, the average maximum chain length of the

embedding l and the average number of annealings leading

to the optimal solution out of 200 samples. Each test for

each χ is repeated 50 times.

Table 2. The table summarises the effect of varying chain strength

χ on the number of measured optimal solutions out of 200, for

n = 3,m = 3 (first row) and n = 4,m = 4 (second row).
nl / nph / l ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5

18 / 48 / 3.2 120.9 ± 48.8 187.8 ± 11.5 180.9 ± 11.2 150.3 ± 19.9 85.3 ± 23.6
48 / 325 / 9.5 0.1 ± 0.30 9.9 ± 10.08 17.3 ± 14.0 6.1 ± 7.77 1.42 ± 2.72

Different problem sizes and minor embedding. Next, we

systematically analyze which problem sizes can be success-

fully embedded on Pegasus topology of Advantage system

1.1 and solved globally optimally with high probability over

200 samples. In each configuration of n and m which can

be successfully solved on D-Wave, we report the average

number of measurements corresponding to the global op-

timum and its standard deviation over 50 repetitions with

200 annealings each. We also analyze minor embedding

in the same experiments and report the average number of

physical qubits used in the embedding, the maximum chain

lengths along with their standard deviations over 50 runs.

Fig. 6 visualises the experimental outcomes. We see that

with the increasing number of logical qubits, the number of

physical qubits required for the embedding as well as the

maximum chain length increase (Fig. 6-(a),(b)). For n = 3
and m = 3, the ratio is c =

nph

nl
≈ 2.65. It increases to

c ≈ 14.5 for n = 5 and m = 5. This is not surprising,

since longer qubit chains increase the probability of chain
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Figure 7. Studying the problem by exhaustive solutions on a clas-

sical computer. We solve seven random synthetic problems with

n = 3, m = |V| = 3 and σ = 0.2 by searching over binary

variables (binary) or permutation matrices (perm.) exhaustively

for the global optimum. We show: (a) the energies attained for

both cases, (b) the gap (absolute difference) between the lowest

energies in (a), (c) the ratio of correctly guessed bits as a function

of the regularizer (λ) for the binary constraints, (d) same plot in

(c) but for permutation matrices. Note, due to significant noise,

the global optimum is not always the same as ground truth.

breaks and, hence, decrease the overall probability to mea-

sure optimal solution. Fig. 6-(c) shows the number of opti-

mal measurements out of 200, for varying n and m. We see

that our QuantumSync can solve the cases n = 3,m = 8,

with probability to measure optimal solution in a single an-

nealing ρ = 4.39%; n = 4,m = 4, with ρ = 12.5%, and

n = 5,m = 4, with ρ < 1%. At the same time, for prob-

lems with n = 3 and m < 7, ρ > 62%. Note that certain

problems are unmappable to D-Wave due to their size and

thus we cannot report the statistics for those.

5.2. Ablation Studies on a Classical Computer

We now study the global minima of our problem on a

classical computer and we design seven random problem

instances that are globally solvable on standard hardware.

Hence, we choose n = 3, m = |V| = 3 and C = 1 (fully

connected graph). For such a small size, we could exhaus-

tively search for the global optimum both over binary vari-

ables and permutation matrices. Note that while the latter

is the reasonable (actual) search space, an AQC can only

optimize over the former. Hence, we are interested in quan-

tifying the gap between the two and verify that our formu-

lation indeed allows a QUBO-solver to achieve the global

optimum for the problem at hand.

How can we choose the regularization coefficient λ? The

coefficient λ is one of the most important hyper-parameters

of our algorithm as it balances the data term vs permutation

penalty. Hence, we investigate its behavior. Fig. 7 shows

that over those seven experiments where σ = 0.2, while

the lowest energies between the two solutions can differ (a
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Figure 8. Effect of noise on the accuracy of the solution obtained

by optimizing either over binary variables or permutation matri-

ces. (a) Energy levels when the solution is restricted to binary

variables or permutation matrices. (b) Accuracy attained by these

two restricted solutions.

and b), for a wide variety of λ-choices the accuracy attained

by binary optimization and permutation optimization can be

very comparable (c vs d). As long as λ is not small (e.g., <

2), we observe almost identical performance. This positive

result has motivated us to settle for a single value λ = 2.5
for all of our evaluations (including Sec. 5.1).

Are permutation constraints effective? As D-Wave can-

not search over the permutations but only over binary vari-

ables, it is of interest to see whether our permutation-ness

regularization really works. To investigate that, we de-

sign random experiments (n = 3,m = 3) with increas-

ing noise (swap ratio) where the GT is known. We then

form the constrained Q matrix and solve it via exhaustive

search on a classical computer. Averaged over seven exper-

iments, Fig. 8 shows that: (i) for low noise regime, optimiz-

ing over general binary variables B or over permutations P
are indifferent and global optimum can always be found, (ii)

for higher noise levels, while the energies attained seem to

differ, the final accuracy is very similar. Hence, we con-

clude that injecting permutation constraints into Q as pro-

posed is useful and makes it possible to use binary vari-

ables instead of permutations. This justifies why an adia-

batic computer such as D-Wave could obtain global optima.

6. Conclusion

We presented QuantumSync, the first quantum approach

to synchronization. We specifically focused on the group of

permutations and showed how to formulate such problems

for an adiabatic computer. We then used the cutting-edge

quantum hardware to solve real-world problems with global

guarantees. Our forward-looking experiments demonstrate

that quantum computing hardware has reached the level that

it can be applied to real-world problems with high potential

to improve upon the known classical methods. We believe

that our technique can inspire new generations of better al-

gorithms for related and other computer vision problems,

and we expect to see more work in the field in near future.
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