
Asymmetric metric learning for knowledge transfer

Mateusz Budnik Yannis Avrithis

Inria, Univ Rennes, CNRS, IRISA

Abstract

Knowledge transfer from large teacher models to smaller

student models has recently been studied for metric learning,

focusing on fine-grained classification. In this work, focusing

on instance-level image retrieval, we study an asymmetric

testing task, where the database is represented by the teacher

and queries by the student. Inspired by this task, we intro-

duce asymmetric metric learning, a novel paradigm of using

asymmetric representations at training. This acts as a simple

combination of knowledge transfer with the original metric

learning task.

We systematically evaluate different teacher and student

models, metric learning and knowledge transfer loss func-

tions on the new asymmetric testing as well as the standard

symmetric testing task, where database and queries are rep-

resented by the same model. We find that plain regression is

surprisingly effective compared to more complex knowledge

transfer mechanisms, working best in asymmetric testing. In-

terestingly, our asymmetric metric learning approach works

best in symmetric testing, allowing the student to even out-

perform the teacher.

Our implementation is publicly available,1 including

trained student models for all loss functions and all pairs of

teacher/student models.2

1. Introduction

Originating in metric learning, loss functions based on

pairwise distances or similarities [18, 71, 46, 72, 5] are

paramount in representation learning. Their power is most

notable in category-level tasks where classes at inference are

different than classes at learning, for instance fine-grained

classification [46, 72], few-shot learning [69, 62] local de-

scriptor learning [19] and instance-level retrieval [16, 53].

There are different ways to use them without supervi-

sion [31, 80, 6] and indeed, they form the basis for modern

1https://github.com/budnikm/aml
2This work was supported by Conseil Régional de Bretagne and

Rennes Métropole (Images & Réseaux AAP-PME-2017 grant MobilAI).

It was performed using HPC resources of GENCI–IDRIS (Grant 2019-

AD011011245).

unsupervised representation learning [44, 21, 8].

Powerful representations come traditionally with pow-

erful network models [22, 28], which are expensive. The

search for resource-efficient architectures has lead to the de-

sign of lightweight networks for mobile devices [26, 58, 84],

neural architecture search [48, 41] and model scaling [64].

Training of small networks may be facilitated by knowledge

transfer from larger networks [23]. However, both network

design and knowledge transfer are commonly performed on

classification tasks, using standard cross-entropy.

Focusing on fine-grained classification and retrieval, sev-

eral recent methods have extended metric learning loss func-

tions to allow for knowledge transfer from teacher to student

models [9, 38, 82, 47]. However, two questions are in order:

(a) since transferring a representation from one model to

another is inherently a continuous task, can’t we just use

regression? (b) apart from knowledge transfer, is the original

metric learning task still relevant and what is a simple way

to combine the two?

In this work, we focus on the task of instance-level image

retrieval [49, 52], which is at the core of metric learning in

the sense of using pairwise distances or similarities. In its

most well-known form [16, 53], the task is supervised, but

the supervision is originating from automated data analysis

rather than humans. As such, apart from noisy, supervision

is often incomplete, in the sense that although class labels

per example may exist, not all pairs of examples of the same

class are labeled. Hence, one has to work with pairs rather

than examples, unlike e.g. face recognition [11].

Our work is motivated by the scenario where a database

(gallery) of images is represented and indexed according to a

large model, while queries are captured from mobile devices,

where a smaller model is the only option. In such scenario,

rather than re-indexing the entire database, it is preferable to

adapt different smaller models for different end-user devices.

In this case, knowledge transfer from the large (teacher) to

the small (student) model is not just helping, but the student

should really learn to map inputs to the same representation

space. We call this task asymmetric testing.

More importantly, even if we consider the standard sym-

metric testing task, where both queries and database exam-

ples are represented by the same model at inference, we

8228



introduce a novel paradigm of using asymmetric representa-

tions at training, as a knowledge transfer mechanism. We

call this paradigm asymmetric metric learning. By repre-

senting anchors by the student and positives/negatives by

the teacher, one can apply any metric learning loss function.

This achieves both metric learning and knowledge trans-

fer, without resorting to a linear combination of two loss

functions.

In summary, we make the following contributions:

• We study the problem of knowledge transfer from a

teacher to a student model for the first time in pair-

based metric learning for instance-level image retrieval.

• In this context, we study the asymmetric testing task,

where the database is represented by the teacher and

queries by the student.

• In both symmetric and asymmetric testing, we sys-

tematically evaluate different teacher and student mod-

els, metric learning loss functions (subsection 3.3) and

knowledge transfer loss functions (subsection 3.4), serv-

ing as a benchmark for future work.

• We introduce the asymmetric metric learning paradigm,

an extremely simple mechanism to combine metric

learning with knowledge transfer (subsection 3.2).

2. Related work

Metric learning Historically, metric learning is about un-

supervised learning of embeddings according to a pairwise

distances [65] or similarities [59, 3]. Modern deep metric

learning is mostly supervised, with pair labels specifying

a set of positive and negative examples per anchor exam-

ple [78]. Standard loss functions are contrastive [18] and

triplet [78, 71], operating on one or two pairs, respectively.

Global loss functions rather operate on an arbitrary number

of pairs [46, 72, 5], similarly to learning to rank [7, 77]. The

large number of potential tuples gives rise to mining [20, 75]

and memory [73, 76] mechanisms. At the other extreme, ex-

tensions of cross-entropy operate on single examples [70, 11].

We focus on pair-based functions in this work, due to the

nature of the ground truth [53, 54]. Unsupervised metric

learning is gaining momentum [31, 80, 6], but we focus

on the supervised case, given that it requires no human ef-

fort [53, 16].

Image retrieval Instance-level image retrieval, either us-

ing local features [66] or global pooling [36], has relied on

SIFT descriptors [43] for more than a decade. Convolutional

networks quickly outperformed shallow representations, us-

ing different pooling mechanisms [56, 68] and fine-tuning

on relevant datasets, initially with cross-entropy on noisy

labels from the web [2] and then with contrastive [53] and

triplet [16] loss on labels generated from the visual data

alone. While the best performance comes from large net-

works [22, 52], we focus on small networks [58, 64] for

the first time. Our asymmetric test scenario is equivalent to

that of prior studies [27, 60], but with different motivation

and settings. Feature translation [27] is meant for retrieval

system interoperability, so both networks may be large and

none is adapted. The recent backward-compatible training

(BCT) [60] is meant to avoid re-indexing of the database like

here, but the new model used for queries is actually more

powerful than the old one used for the database, or trained

on more data.

Small networks While large networks [22, 28] excel in

performance, they are expensive. One solution is to com-

press existing architectures, e.g. by quantization [15] or

pruning [42]. Another is to manually design more efficient

networks, e.g. by using bottlenecks [30], separable convolu-

tions [26], inverted residuals [58] or point-wise group convo-

lutions [84]. MobileNetV2 [58] is such a network that we

use as a student in this work. More recently, neural architec-

ture search [48, 41, 63, 25] is making this process automatic,

although expensive. Alternatively, a small model can first

be designed (or learned) and then its architecture scaled by

adding depth [22], width [83], resolution [29] or a compound

of the above [64]. We use the latter as another student in this

work. We show that pruning [74] cannot compete designed

or learned architectures.

Knowledge transfer Rather than training a small network

directly, it is easier to optimize the same small network (stu-

dent) to mimic a larger one (teacher), essentially transferring

knowledge from the teacher to the student. In classification,

this can be done e.g. by regression of the logits [1] or by

cross-entropy on soft targets, known as knowledge distilla-

tion [23]. BCT [60] fixes the classifier (last layer) of the

student to that of the teacher, similarly to [24]. Such ideas

do not apply in this work, since there is no parametric clas-

sifier. Metric learning is mostly about pairs rather than

individual examples, and indeed recent knowledge transfer

methods are based on pairwise distances or similarities. This

includes e.g. learning to rank [9] and regression on quan-

tities involving one or more pairs like distances [82, 47],

log-ratio of distances [38], or angles [47]. The most general

form is relational knowledge distillation (RKD) [47]. Di-

rect regression on features is either not considered or shown

inferior [82], but we show it is much more effective than

previously thought. We also show that the original metric

learning task is still beneficial when training the student and

we combine with knowledge transfer in a simple way.

Asymmetry Asymmetric distances or similarities are com-

mon in approximate nearest neighbor search, where queries

may be quantized differently than the database, or not at

8229



, , : anchor, positive, negative (student). , , : anchor, positive, negative (teacher).

fθ: student (with parameters θ). g: teacher (fixed). , : distance measurements.

, : attraction, repulsion (mutual). , : attraction, repulsion (unilateral).

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

(a) symmetric (b) regression (c) relational (d) asymmetric (this work)

Figure 1. Metric learning and knowledge transfer. (a) Symmetric: Positive (negative) pairs of examples mutually attracted (repulsed) in

student space; teacher not used.(b) Regression (absolute ML+KD [82]): Examples in student space attracted to corresponding examples in

teacher space; labels not used. (c) Relational (relative ML+KD [82] or distance-wise RKD [47]): Distances encouraged to be the same in

both spaces; labels not used. (d) Asymmetric (this work): Anchors in student space attracted to (repulsed from) positives (negatives) in

teacher space; both labels and teacher used.

all [12, 17, 34, 32, 45, 10]. In image retrieval, there are

efforts to reduce the asymmetry of k-nearest neighbor re-

lations [35], or use asymmetry to mitigate the effect of

quantization [33], or handle partial similarity [85] or align-

ment [67]. In classification, it is common to use asymmet-

ric image-to-class distances [4] or region-to-image match-

ing [37]. In metric learning, asymmetry has been used in

sample weighting [40], different mappings per view [81],

or hard example mining [79]. Asymmetric similarities are

used between cross-modal embeddings [14, 39, 13], but not

for knowledge transfer. They are also used over the same

modality to adjust embeddings to a memory bank [21] or

to treat a set of examples as a whole [69], but again not for

knowledge transfer.

3. Asymmetric metric learning

3.1. Preliminaries

Let X ⊂ X be a training set, where X is an input space.

Two sources of supervision are considered. The first is a set

of labels: a subset of all pairs of examples in X is labeled

as positive or negative and the remaining are unlabeled. For-

mally, for each anchor a ∈ X , a set P (a) ⊂ X of positive

and a set N(a) ⊂ X of negative examples are given. The

second is a teacher model g : X → R
d, mapping input ex-

amples to a feature (embedding) space of dimensionality d.

The objective is to learn the parameters θ of a student model

fθ : X → R
d, such that anchors are closer to positives than

negatives, the teacher and student agree in some sense, or

both. When labels are not used, an additional set of examples

U(a) may be used for each anchor a, e.g. a neighborhood of

a space or the entire set X \ {a}. The teacher is assumed to

have been trained on X using labels only.

Training amounts to minimizing the error function

J(X; θ) :=
∑

a∈X

ℓ(a; θ) (1)

with respect to parameters θ over X . There is one loss term

per anchor a ∈ X , which however may depend on any

other example in X; hence, J is not additive in X . The

loss function ℓ may depend on the labels or the teacher only,

discussed respectively in subsection 3.3 and subsection 3.4; it

may depend on the teacher indirectly via a similarity function,

as discussed in subsection 3.2.

At inference, a test set Z ⊂ X and a set of queriesQ ⊂ X
are given, both disjoint from X . For each query q ∈ Q, a

set P (q) ⊂ Z of positive examples is given. Symmetric

testing is the task of ranking positive examples P (q) before

all others in Z by descending similarity to q in the student

space, for each query q ∈ Q. Asymmetric testing is the same,

except that similarities are between queries in the student

space and test examples in the teacher space.

3.2. Asymmetric similarity

We use cosine similarity in this work: sim(v,v′) :=
〈v,v′〉 /(‖v‖ ‖v′‖) for v,v′ ∈ R

d. The symmetric similar-

ity ssymθ (a, x) between an anchor a ∈ X and a positive or

negative example x ∈ P (a)∪N(a) is obtained by represent-

ing both in the feature space of the student:

ssymθ (a, x) := sim(fθ(a), fθ(x)). (2)

This is the standard setting in related work in metric learning.

By contrast, we introduce the asymmetric similarity

sasymθ (a, x), where the anchor a is represented by the stu-

8230



dent, while positive and negative examples x are represented

by the teacher:

sasymθ (a, x) := sim(fθ(a), g(x)). (3)

In this setting, g(x) is fixed for all x ∈ X , because the

teacher is fixed.

Figure 1 illustrates the idea. When used with loss func-

tions discussed in subsection 3.3, (3) (Figure 1(d)) uses both

the labels and the teacher, essentially combining metric learn-

ing and knowledge transfer. With the same loss functions, (2)

(Figure 1(a)) uses the labels only, focusing on metric learn-

ing only. Instead, as discussed in subsection 3.4, relational

distillation [82, 47] uses the teacher only, focusing on knowl-

edge transfer only (Figure 1(b,c)). In practice, these other

solutions require a linear combination of two error functions

for metric learning and knowledge transfer.

3.3. Loss functions using labels

When using the labels, we have access to positive and

negative examples P (a) andN(a) per anchor a. The teacher

g may be used in addition to labels or not by using the

asymmetric (3) or symmetric (2) similarity, respectively. We

write either as sθ(a, x) below.

Contrastive The contrastive loss [18] encourages inde-

pendently positive examples p to be close to the anchor a
and negative examples n farther from a by margin m in the

student space:

ℓC(a; θ) :=
∑

n∈N(a)

[sθ(a, n)−m]+ −
∑

p∈P (a)

sθ(a, p). (4)

Triplet The triplet loss [71] encourages positive examples

p to be closer to the anchor a than negative examples n by

margin m in the student space:

ℓT(a; θ) :=
∑

(p,n)∈L(a)

[sθ(a, n)− sθ(a, p) +m]+, (5)

where typicallyL(a) := P (a)×N(a). Positive and negative

examples are not used independently: if similarities are

ranked correctly, the corresponding loss term is zero.

Multi-similarity The multi-similarity loss [72] treats pos-

itives and negatives independently:

ℓMS(a; θ) :=
1

α
log



1 +
∑

p∈P (a)

e−α(sθ(a,p)−m)





+
1

β
log



1 +
∑

n∈N(a)

eβ(sθ(a,n)−m)



 .

(6)

Here, multiple examples are taken into account together by

a nonlinear function: positives (negatives) that are farthest

from (nearest to) the anchor receive the greatest relative

weight.

3.4. Loss functions using the teacher only

When not using the labels, the only source of supervision

is the teacher model g. Symmetric similarity (2) is not an

option here; we either use use (3) or other ways to compare

the two models. Given anchor a, the loss may depend on

a alone, or also the additional examples U(a). We write

S(a, x) := sim(g(a), g(x)) for the similarity of a and some

x ∈ U(a) in the teacher space.

Regression The simplest option is regression, encouraging

the representations of the same input example a by the two

models to be close by using asymmetric similarity (3):

ℓR(a; θ) := −sasymθ (a, a) = − sim(fθ(a), g(a)). (7)

For each anchor, it does not depend on any other example.

It is the same as the absolute version of metric learning

knowledge distillation (ML+KD) [82] and as contrastive

loss (4) on asymmetric similarity (3) (using only the anchor

as a positive for itself ).

Relational distillation Given an anchor a and one or more

other vectors x, . . . ∈ R
d, relational knowledge distillation

(RKD) [47] is based on a number of relational measurements

ψ(a,x, . . . ). One such ψ(a,x, . . . ) is the distance ‖a− x‖
for x ∈ R

d. Another is the angle sim(a− x,a− y) formed

by a,x,y, for x,y ∈ R
d. The loss is called distance-wise

and angle-wise, respectively. The RKD loss encourages the

same measurements by both models,

ℓRKD(a; θ) :=
∑

(x,... )∈U(a)n

r(ψ(fθ(a), fθ(x), . . . ), ψ(g(a), g(x), . . . )),

(8)

where n is e.g. 1 for distance and 2 for angle and r is a

regression loss, taken as Huber [47]. RKD encompasses

regression by ψ taken as the identity mapping on the anchor

feature alone and r taken as − sim. It also encompasses the

relative setting of ML+KD [82] by ψ(a,x) := ‖a− x‖ and

the direct match baseline of DarkRank [9] by ψ(a,x) :=

‖a− x‖
2

.

DarkRank Let V (a, x) := {y ∈ U(a) : S(a, y) ≤
S(a, x)} be the set of examples in U(a) that are mapped

farther away from anchor a than x in the teacher space. For

each x ∈ U(a), DarkRank [9] encourages those examples

to be farther away from a than x in the student space:

ℓDR(a; θ) :=

−
∑

x∈U(a)



ssymθ (a, x)− log
∑

y∈V (a,x)

es
sym

θ
(a,y)



 .
(9)

8231



NETWORK TEACHER d
GFLOPS PARAM (M)

ABS % ABS %

VGG16 [54] 512 79.40 14.71

ResNet101 [54] 2048 42.85 42.50

MobileNetV2

1280 1,74 2.22

VGG16 512 1.94 2.44 2.88 19.6

ResNet101 2048 2.50 5.83 4.85 11.4

EfficientNet-B3

1536 5.36 10.70

VGG16 512 5.56 7.00 11.48 78.0

ResNet101 2048 6.26 14.6 13.84 32.6

Table 1. FLOPS and parameters for the networks used in this work,

absolute and relative to teacher (%). Top: the teacher networks

are adapted for image retrieval, i.e. the fully connected layers

are removed. Bottom: the student networks adapted in the same

way and also with an added layer (or not) to match the output

dimensionality of the teacher.

It is an application of the listwise loss [7, 77], where the

ground truth ranking is obtained by the teacher rather than

some form of annotation.

4. Experiments

4.1. Setup

Datasets We use the SfM dataset [54] for training, contain-

ing 133k images for training and 30k images for validation.

We use the revisited ROxford5k and RParis6k datasets [52]

for testing, each having 70 query images. All datasets depict

particular architectural landmarks under very diverse view-

ing conditions. We follow the standard evaluation protocol,

using the medium and hard settings [52]. We report mean

average precision (mAP) here, while mean precision at 10

(mP@10) results are included in the supplementary material.

Comparisons are based on mAP. Also included in the supple-

mentary material are additional symmetric and asymmetric

testing results for both datasets and both metrics in the pres-

ence of 1M distractors [52], denoted as R1M. To compare

with pruning [74], we also use the original Oxford5k [49]

and Paris6k [50] datasets, reporting mAP only.

Networks All models are pre-trained for classification on

ImageNet [57] and then fine-tuned for image retrieval on

SfM, following the setup of the same work. We use VGG-

16 [61] and ResNet101 [22] as teacher models with the

feature dimensionality d of 512 and 2048, respectively. We

use MobileNetV2 [58] and EfficientNet-B3 [64] as student

networks, removing any fully connected layers and stacking

one 1× 1 convolutional layer to match the dimensionality

of the teacher. All networks use generalized mean-pooling

(GeM) [54] on the last convolutional feature map.

Complexity and parameters Table 1 gives the number of

parameters and computational complexity (in FLOPS) for

EP a N(a)

0

5

10

300

Figure 2. Asymmetric hard negative mining. One anchor a shown

on the first column, followed by the hard negatives N(a) mined for

this anchor, over different epochs. The anchor is represented by the

student and the database of potential negatives by the teacher.

the networks used in this work. It is important to note that

the versions of the teachers are already adapted for image

retrieval by removing the fully connected layers, hence our

version of VGG16 has significantly fewer parameters than

the original (around 138M). Student networks are adapted

in the same way, that is, fully connected layers removed. In

addition, each student is shown with or without the 1 × 1
convolutional layer per teacher.

Implementation details The image resolution is limited

to 362 × 362 at training (fine-tuning). At testing, a multi-

scale representation is used, with initial resolution of 1024×
1024 and scale factors of 1, 1√

2
and 1

2 . The representation

is pooled by GeM over the features of the three scaled in-

puts. We use supervised whitening, trained on the same SfM

dataset [54]. In asymmetric testing, whitening is learned

in the teacher space. Our implementation is based on the

official code of [54] in PyTorch [51], as well as [72, 47, 9].

Teacher models are taken from [54]. Our implementation is

publicly available, including trained student models for all

loss functions and all pairs of teacher/student models3.

Training and hyper-parameters We follow the training

setup of [54] for loss functions that use labels. We use

the validation set to determine the hyperparameter values

and the best model. We train all models using the SGD with

learning rate decay of 0.99 per epoch. Symmetric training (2)

takes place for 100 epochs or until convergence based on the

validation set. For asymmetric training (3), this is extended

to 300 epochs. Each epoch consists of 2000 tuples. A

mini-batch has 10 tuples, each composed of 1 anchor, 1

corresponding positive and 5 negatives. For unsupervised

losses we create tuples of the same overall size. We use

weight decay of 10−6 in each experiment.

3https://github.com/budnikm/aml

8232



STUDENT TEACHER LAB LOSS SELF POS NEG MINING

SYMMETRIC TESTING ASYMMETRIC TESTING

ASYM MEDIUM HARD MEDIUM HARD

ROxf RPar ROxf RPar ROxf RPar ROxf RPar

MobileNetV2 VGG16

X Contr (4) X X hard X 57.3 67.1 31.1 41.3 38.3 49.8 18.4 23.8

X Contr (4) X X X hard X 57.3 68.4 31.5 42.2 42.9 55.9 22.6 31.4

X Contr (4) X hard X 55.9 66.7 31.1 40.6 34.1 47.3 17.0 24.5

X Contr (4) X X hard X 55.5 67.0 30.4 40.9 38.2 52.2 15.3 28.9

Reg (7) X – X 53.3 67.5 28.9 40.9 48.0 57.9 26.5 32.6

Table 2. Contrastive–regression ablation. Symmetric and asymmetric testing mAP on ROxford5k and RParis6k [52]. LAB: using labels in

student model training. POS, NEG: Using positives, negatives. SELF: Using anchor (by teacher) as positive for itself (by student). ASYM:

Using asymmetric similarity (3) at training. The second row is Contr+ (10). GeM pooling and learned whitening [54] used in all cases.

Loss functions For contrastive loss (4), we set the margin

m = 0.7 and the initial learning rate η to 10−5 and 10−3

for symmetric and asymmetric training, respectively. For

triplet (5), we set m = 0.1 and η = 10−8 . For multi-

similarity (6) we set m = 0.6, α = 1, β = 1 and η =
10−8 for all setups. For regression (7), we set η = 10−3.

We use the DA variant or RKD [47] (8), with the angle-

wise and distance-wise loss weighted by a factor of 2 and

1 respectively, and η = 10−2. For DarkRank (DR) (9),

we set η = 10−6 for the VGG16 teacher; for ResNet101,

η = 10−5 for MobileNetV2 and η = 10−7 for EfficientNet-

B3. We do not discriminate between the student training

being supervised or not, since labels are already used for

teacher training.

Mining When using labels, we use hard negative mining

as a default, following [54]. Negatives are mined each epoch

from a random subset of 22k images of the training set.

The negatives closest to the anchor (according to (2) or (3),

depending on the setting) are selected. There is no mining

for positives, because there are only few (1-2) positives per

anchor. When not using labels, we draw additional examples

uniformly at random as a default. There is no mining for

regression.

Example of asymmetric hard example mining Depend-

ing on the similarity we use in the loss function, i.e., sym-

metric (2) or asymmetric (3), we follow the same choice for

hard negative mining. This means that, in mining based on

asymmetric similarity, the features of anchor a come from

the student model fθ(a), while the database is represented

by the teacher g. The database is fixed and does not need

to be re-computed after each epoch. Only the anchors are

updated, which makes training more efficient.

Figure 2 gives an example of the hard negatives mined

for one anchor across different epochs. Before the training

starts (epoch 0) the results are not very informative, which is

not surprising giving that the feature spaces of the teacher

and the student do not match. However, after just a few

epochs we see harder negatives being selected. This example

illustrates how asymmetric similarity acts as a knowledge

transfer mechanism from the teacher to the student model.

4.2. Results

Contrastive–regression ablation As will be shown in the

following results, contrastive loss and regression turn out

be most effective in general. Moreover, by comparing (4)

with (7), contrastive with asymmetric similarity (3) encom-

passes regression by setting each anchor as a positive for

itself, without any other positive or negatives. To better un-

derstand the relation between these two loss functions, we

perform an ablation study where we investigate versions of

contrastive on (3) having negatives, or not, and the anchor

itself as positive, or not.

The results are shown in Table 2 for the case of

VGG16→MobileNetV2. In symmetric testing, it turns out

that the best combination is having both negatives and the

anchor itself. The same happens in almost all cases for other

teacher and student models, as shown in the supplementary

material. We denote this combination as Contr+ and we

include it in subsequent results:

ℓC+(a; θ) :=
∑

n∈N(a)

[sθ(a, n)−m]+

−
∑

p∈P (a)

sθ(a, p)− sθ(a, a),
(10)

where sθ is asymmetric (3). Asymmetric testing is much

more challenging. The best is regression in this case, but

Contr+ is still the second best.

Symmetric testing According to the left part of Table 3,

Contr+ works best on MobileNetV2, while on Efficient-

Net, either contrastive and Contr+ works best, with the two

options having little difference. The difference to other

loss functions using labels is large, reaching 20% or even

30% on ROxford5k. Triplet is known to be inferior to con-

trastive [54], but the difference is more pronounced in our

knowledge transfer setting. This result is particularly sur-

prising for multi-similarity, which is state of the art in fine-

grained classification [72]. Also surprisingly, regression

works best among loss functions not using labels, including

8233



STUDENT d TEACHER LAB LOSS MINING

SYMMETRIC TESTING ASYMMETRIC TESTING

ASYM MEDIUM HARD MEDIUM HARD

ROxf RPar ROxf RPar ROxf RPar ROxf RPar

VGG16 [54] 512 X Contr (4) hard 60.9 69.3 32.9 44.2

ResNet101 [54] 2048 X Contr (4) hard 65.4 76.7 40.1 55.2

MobileNetV2
512 X Contr (4) hard 53.6 66.4 28.8 39.7

2048 X Contr (4) hard 56.1 68.5 30.3 42.0

EfficientNet-B3
512 X Contr (4) hard 53.8 70.9 26.2 46.0

2048 X Contr (4) hard 59.6 75.1 33.3 51.9

MobileNetV2

512 VGG16

X Contr+ (10) hard X 57.3 68.4 31.5 42.2 42.9 55.9 22.6 31.4

X Contr (4) hard X 57.3 67.1 31.1 41.3 38.3 49.8 18.4 23.8

X Triplet (5) hard X 37.0 62.7 11.6 36.4 1.8 4.3 0.7 2.8

X MS (6) hard X 36.8 62.8 11.5 36.5 1.9 4.3 0.8 2.7

Reg (7) – X 53.3 67.5 28.9 40.9 48.0 57.9 26.5 32.6

RKD (8) random 46.2 64.3 21.8 37.6 2.0 4.1 0.8 2.6

DR (9) random 45.2 60.6 24.6 33.1 1.7 3.8 0.7 2.4

2048 ResNet101

X Contr+ (10) hard X 63.2 75.0 37.9 52.0 47.1 61.5 21.8 37.7

X Contr (4) hard X 60.8 72.1 36.1 47.6 32.3 51.5 9.6 28.2

X Triplet (5) hard X 45.5 68.0 19.6 43.4 1.3 3.7 0.7 2.4

X MS (6) hard X 44.5 68.1 17.9 43.2 1.4 3.6 0.7 2.3

Reg (7) – X 59.8 73.1 35.7 49.5 49.2 65.0 23.3 40.7

RKD (8) random 56.1 69.8 31.8 44.2 1.6 4.1 0.8 2.5

DR (9) random 43.4 59.3 20.8 31.6 1.5 3.7 0.6 2.3

EfficientNet-B3

512 VGG16

X Contr+ (10) hard X 56.9 69.0 31.1 43.5 44.7 58.0 23.9 32.4

X Contr (4) hard X 56.8 70.4 31.2 45.4 43.8 24.9 23.0 6.1

X Triplet (5) hard X 33.7 64.6 8.0 40.3 1.4 4.0 0.6 2.5

X MS (6) hard X 33.9 64.9 8.1 40.6 1.4 3.9 0.6 2.5

Reg (7) – X 55.0 69.4 27.1 44.5 49.4 58.2 26.0 33.0

RKD (8) random 51.6 67.0 26.2 41.1 1.3 3.8 0.6 2.5

DR (9) random 52.4 65.2 26.5 37.2 1.4 3.8 0.6 2.5

2048 ResNet101

X Contr+ (10) hard X 66.8 77.1 42.5 55.5 45.2 63.7 19.6 40.9

X Contr (4) hard X 66.3 77.4 41.3 55.5 37.4 57.4 10.9 33.7

X Triplet (5) hard X 39.5 69.4 11.6 45.8 1.5 4.0 0.7 2.5

X MS (6) hard X 39.9 69.7 11.7 46.2 1.5 4.0 0.7 2.4

Reg (7) – X 64.9 74.4 40.5 52.4 52.9 65.2 27.8 42.4

RKD (8) random 56.3 73.0 30.5 50.4 1.6 3.8 0.7 2.4

DR (9) random 52.2 66.3 27.3 40.1 2.0 3.5 0.7 2.2

Table 3. Symmetric and asymmetric testing mAP on ROxford5k and RParis6k [52]. LAB: using labels in student model training. ASYM:

Using asymmetric similarity (3) at training (our work). Best result highlighted per teacher-student pair. GeM pooling and learned

whitening [54] used in all cases.

recent knowledge transfer methods RKD [47] and Dark-

Rank [9]. It is second or third best in all cases. This finding

is contrary to [82], where the regression baseline is found in-

ferior. DarkRank is inferior to RKD, in agreement with [47].

The superiority of contrastive or Contr+ over regression

confirms that, by using our asymmetric similarity, the origi-

nal metric learning task is still beneficial. Unlike knowledge

distillation on classification tasks, knowledge transfer alone

is not the best option. Focusing on the best results (con-

trastive or Contr+), we confirm that, with just one exception

(VGG16→EfficientNet on RParis6k hard), knowledge trans-

fer always helps compared to training without the teacher,

using the same d. The gain is more pronounced, reaching

7-10% on ResNet101→MobileNetV2, when the teacher is

stronger and the student is weaker (the exception corresponds

to the weakest teacher and strongest student). MobileNetV2

performs only 2-3% below its teacher. Remarkably, Effi-

cientNet outperforms its teacher: this happens on RParis6k

for VGG16 and on all settings for ResNet101. This is also

the case in the presence of R1M distractors for ResNet101

teacher. This result can be found in the supplement, where

symmetric testing results for all losses and models are in-

cluded on ROxford5k +R1M and RParis6k +R1M.

Asymmetric testing Here, similarities are asymmetric at

testing, with the database being represented by the teacher

and queries by the student. According to the right part of

Table 3, regression is the clear winner in this case. This is

contrary to [60], where regression fails. In a sense, this can

be expected since the student should learn to map images

8234



STUDENT %FLOPS %PARAM TEACHER LAB LOSS
mAP

Oxf Par

VGG16 [54] 100 100 X Contr (4) 82.45 81.37

VGG16-PLFP [74] 57.37 61.05 X Contr (4) 76.20 73.18

MobileNetV2

2.44 19.58 VGG16
X Contr (4) 74.14 78.26

Reg (7) 66.58 74.45

3.14 32.97 ResNet101
X Contr (4) 75.30 83.23

Reg (7) 63.57 76.96

Table 4. Symmetric testing mAP on Paris6k and Oxford5k. FLOPS

and parameters relative to VGG16. LAB: using labels in student

model training. Using asymmetric similarity (3) in all teacher-

student settings. GeM pooling [54] used in all cases but not learned

whitening.

to features exactly like the teacher. Contr+ is clearly the

second best, with the differences varying between 1-2%

on RParis6k and up to 8% on ROxford5k. Contrastive

is the third, with a further loss of roughly 5-10% or more.

Knowledge transfer of weak information like relations or

ranking fails completely in this case. This is totally expected,

because it is the absolute coordinates that should match.

What is unexpected is that triplet and multi-similarity fail

too. The former may be due to also relying on relations: a

positive may not be attracted to an anchor when it is closer

than a negative. The latter may be due to soft weighting:

a positive may not be attracted to an anchor when its loss

contribution is dominated by harder positives.

When compared with symmetric testing using the cor-

responding teacher alone, the loss of using the student on

queries is 8-16%. There is no substantial difference in this

behavior between MobileNetV2 and EfficientNet. Asymmet-

ric testing is considerably more challenging than symmetric.

The closest work in terms of asymmetric testing is feature

translation [27], where a shallow translator is learned in-

stead of fine-tuning the student end-to-end. This approach

performs poorly, with up to 40% mAP loss. Students are still

large networks, so there is no computational gain. Additional

asymmetric testing results for ROxford5k and RParis6k

with R1M distractors can be found in the supplement.

Results on Paris6k and Oxford5k We consider this ex-

periment primarily for comparison with progressive local

filter pruning (PLFP) [74], which performs symmetric test-

ing with a pruned version of VGG16. For the sake of com-

parison, there is no whitening in this case. According to

Table 4, MobileNetV2 has substantially lower FLOPS and

parameters than the pruned VGG16, yet with either teacher

it performs better on Paris and nearly the same on Oxford.

Asymmetric embedding visualization Figure 3 visual-

izes the embeddings of a number of ROxford5k images,

each obtained by a teacher and a student model. In asymmet-

5Corresponding to landmarks: All Saints College, Christ Church Col-

lege, Magdalen College, Radcliffe Camera and Hertford Bridge.

(a) Contr+ (10) (ours) (b) Contr (4) (c) Triplet (5)

(d) Reg (7) (e) RKD (8) (f) DR (9)

Figure 3. T-SNE embeddings of 5 color-coded ROxford5k classes5,

20 random easy [54] examples each, represented by a VGG-16

teacher (circles) and a MobineNetV2 student (diamonds). A line

connects the two representations of each example.

ric testing, matching teacher and student features requires

the same absolute coordinates in the feature space. This is

done best by regression, but Contr+ also works well. Losses

that rely on pairwise or higher-order relations, like RKD or

DR, fail in this task. Triplet also fails, presumably because

it also relies on relations.

5. Conclusions

There are certain unexpected or surprising findings in this

work. First, regression is particularly effective in knowl-

edge transfer. It appears that the more the constraints on

student mappings (e.g. ranking → distance/angle relations

→ positions), the better the performance in standard sym-

metric testing. Second, the standard contrastive loss is par-

ticularly effective with asymmetric similarity at training,

outperforming by a large margin state of the art methods

like multi-similarity. A straightforward combination with

regression—treating the anchor itself as positive—performs

best on symmetric testing. These two solutions are the only

ones where knowledge transfer helps, i.e., outperforms the

student trained alone. In the new asymmetric testing task,

regression is unsurprisingly a winner.

We have shown that using the original metric learning task

while transferring knowledge is still beneficial in symmetric

testing. It remains to be investigated whether the same can

happen in asymmetric testing. We consider the same dataset

in teacher and student training, so the latter is as supervised

as the former. An interesting extension would be to consider

a different, unlabeled dataset in student training. This would

be a semi-supervised solution, like data distillation [55].

8235



References

[1] Jimmy Ba and Rich Caruana. Do deep nets really need to be

deep? In NIPS, 2014.

[2] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and

Victor Lempitsky. Neural codes for image retrieval. In ECCV,

2014.

[3] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for

dimensionality reduction and data representation. Neural

computation, 15(6), 2003.

[4] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of

nearest-neighbor based image classification. In CVPR, 2008.

[5] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff.

Deep metric learning to rank. In CVPR, 2019.

[6] Xuefei Cao, Bor-Chun Chen, and Ser-Nam Lim. Unsuper-

vised deep metric learning via auxiliary rotation loss. arXiv

preprint arXiv:1911.07072, 2019.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang

Li. Learning to rank: From pairwise approach to listwise

approach. In ICML, 2007.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709,

2020.

[9] Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Dark-

Rank: Accelerating deep metric learning via cross sample

similarities transfer. In AAAI, 2018.

[10] Damek Davis, Jonathan Balzer, and Stefano Soatto. Asym-

metric sparse kernel approximations for large-scale visual

search. In CVPR, 2014.

[11] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou.

ArcFace: Additive angular margin loss for deep face recogni-

tion. In CVPR, 2019.

[12] Wei Dong, Moses Charikar, and Kai Li. Asymmetric dis-

tance estimation with sketches for similarity search in high-

dimensional spaces. In SIGIR, 2008.

[13] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja

Fidler. VSE++: Improving visual-semantic embeddings with

hard negatives. arXiv preprint arXiv:1707.05612, 2017.

[14] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,

Jeff Dean, Marc’Aurelio Ranzato, and Tomas Mikolov. De-

vise: A deep visual-semantic embedding model. In NIPS,

2013.

[15] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev.

Compressing deep convolutional networks using vector quan-

tization. arXiv preprint arXiv:1412.6115, 2014.

[16] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Lar-

lus. Deep image retrieval: Learning global representations

for image search. ECCV, 2016.

[17] Albert Gordo and Florent Perronnin. Asymmetric distances

for binary embeddings. In CVPR, 2011.

[18] Raia Hadsell, Sumit Chopra, and Yann Lecun. Dimensionality

reduction by learning an invariant mapping. In CVPR, 2006.

[19] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar,

and Alexander C Berg. MatchNet: Unifying feature and

metric learning for patch-based matching. In CVPR, 2015.

[20] Ben Harwood, Vijay Kumar B G, Gustavo Carneiro, Ian Reid,

and Tom Drummond. Smart mining for deep metric learning.

In ICCV, 2017.

[21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual repre-

sentation learning. arXiv preprint arXiv:1911.05722, 2019.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, 2016.

[23] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[24] Elad Hoffer, Itay Hubara, and Daniel Soudry. Fix your classi-

fier: the marginal value of training the last weight layer. arXiv

preprint arXiv:1801.04540, 2018.

[25] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for Mo-

bileNetV3. In ICCV, 2019.

[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. MobileNets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[27] Jie Hu, Rongrong Ji, Hong Liu, Shengchuan Zhang, Cheng

Deng, and Qi Tian. Towards visual feature translation. In

CVPR, 2019.

[28] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In CVPR, 2017.

[29] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat,

Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam,

Quoc V Le, Yonghui Wu, and Zhifeng Chen. GPipe: Efficient

training of giant neural networks using pipeline parallelism.

In NIPS, 2019.

[30] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid

Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and <0.5

mb model size. arXiv preprint arXiv:1602.07360, 2016.

[31] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej

Chum. Mining on manifolds: Metric learning without labels.

In CVPR, 2018.

[32] Mihir Jain, Herve Jégou, and Patrick Gros. Asymmetric

hamming embedding. In ACM Multimedia, 2011.

[33] H. Jégou, M. Douze, and C. Schmid. Improving bag-of-

features for large scale image search. IJCV, 87(3), 2010.

[34] H. Jégou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. PAMI, 33(1):117–128, 2011.

[35] H. Jégou, H. Harzallah, and C. Schmid. A contextual dissim-

ilarity measure for accurate and efficient image search. In

CVPR, 2007.

[36] Hervé Jégou and Andrew Zisserman. Triangulation embed-

ding and democratic kernels for image search. In CVPR,

2014.

[37] Jaechul Kim and Kristen Grauman. Asymmetric region-to-

image matching for comparing images with generic object

categories. In CVPR, 2010.

8236



[38] Sungyeon Kim, Minkyo Seo, Ivan Laptev, Minsu Cho, and

Suha Kwak. Deep metric learning beyond binary supervision.

In CVPR, 2019.

[39] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel.

Unifying visual-semantic embeddings with multimodal neural

language models. arXiv preprint arXiv:1411.2539, 2014.

[40] Shengcai Liao and Stan Z Li. Efficient PSD constrained

asymmetric metric learning for person re-identification. In

ICCV, 2015.

[41] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

DARTS: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018.

[42] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning. In

ICLR, 2018.

[43] D.G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[44] Ishan Misra and Laurens van der Maaten. Self-supervised

learning of pretext-invariant representations. arXiv preprint

arXiv:1912.01991, 2019.

[45] Behnam Neyshabur, Nati Srebro, Ruslan R Salakhutdinov,

Yury Makarychev, and Payman Yadollahpour. The power of

asymmetry in binary hashing. In NIPS, 2013.

[46] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured feature

embedding. In CVPR, 2016.

[47] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Rela-

tional knowledge distillation. In CVPR, 2019.

[48] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018.

[49] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Ob-

ject retrieval with large vocabularies and fast spatial matching.

In CVPR, 2007.

[50] James Philbin, Ondrej Chum, Josef Sivic, Michael Isard,

and Andrew Zisserman. Lost in quantization: Improving

particular object retrieval in large scale image databases. In

CVPR, 2008.

[51] Filip Radenović. CNN image retrieval in PyTorch: Train-

ing and evaluating CNNs for image retrieval in Py-

Torch. https://github.com/filipradenovic/

cnnimageretrieval-pytorch, 2019. [Online; ac-

cessed 26-March-2020].

[52] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis

Avrithis, and Ondřej Chum. Revisiting oxford and paris:

Large-scale image retrieval benchmarking. In CVPR, 2018.

[53] Filip Radenović, Giorgos Tolias, and Ondřej Chum. CNN

image retrieval learns from bow: Unsupervised fine-tuning

with hard examples. ECCV, 2016.

[54] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-

tuning CNN image retrieval with no human annotation. PAMI,

41(7):1655–1668, 2018.

[55] Ilija Radosavovic, Piotr Dollar, Ross Girshick, Georgia

Gkioxari, and Kaiming He. Data distillation: Towards omni-

supervised learning. In CVPR, 2018.

[56] Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and

Stefan Carlsson. Visual instance retrieval with deep convolu-

tional networks. arXiv preprint arXiv:1412.6574, 2014.

[57] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. ImageNet large scale

visual recognition challenge. IJCV, 115(3):211–252, 2015.

[58] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018.

[59] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert

Müller. Nonlinear component analysis as a kernel eigenvalue

problem. Neural computation, 10(5):1299–1319, 1998.

[60] Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto.

Towards backward-compatible representation learning. arXiv

preprint arXiv:2003.11942, 2020.

[61] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[62] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical

networks for few-shot learning. In NIPS, 2017.

[63] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. MnasNet:

Platform-aware neural architecture search for mobile. In

CVPR, 2019.

[64] Mingxing Tan and Quoc V Le. EfficientNet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019.

[65] J. Tenenbaum. Mapping a manifold of perceptual observa-

tions. In NIPS. 1997.

[66] Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. To aggre-

gate or not to aggregate: Selective match kernels for image

search. In ICCV, 2013.

[67] Giorgos Tolias and Ondrej Chum. Asymmetric feature maps

with application to sketch based retrieval. In CVPR, 2017.

[68] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular

object retrieval with integral max-pooling of cnn activations.

ICLR, 2016.

[69] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray

Kavukcuoglu, and Daan Wierstra. Matching networks for one

shot learning. In NIPS, 2016.

[70] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,

Jingchao Zhou, Zhifeng Li, and Wei Liu. CosFace: Large

margin cosine loss for deep face recognition. In CVPR, 2018.

[71] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,

Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learn-

ing fine-grained image similarity with deep ranking. In CVPR,

2014.

[72] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and

Matthew R Scott. Multi-similarity loss with general pair

weighting for deep metric learning. In CVPR, 2019.

[73] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R

Scott. Cross-batch memory for embedding learning. arXiv

preprint arXiv:1912.06798, 2019.

[74] Xiaodong Wang, Zhedong Zheng, Yang He, Fei Yan,

Zhiqiang Zeng, and Yi Yang. Progressive local filter

pruning for image retrieval acceleration. arXiv preprint

arXiv:2001.08878, 2020.

[75] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and

Philipp Krahenbuhl. Sampling matters in deep embedding

learning. In ICCV, 2017.

8237



[76] Zhirong Wu, Alexei A Efros, and Stella X Yu. Improving

generalization via scalable neighborhood component analysis.

In ECCV, 2018.

[77] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang

Li. Listwise approach to learning to rank: theory and algo-

rithm. In ICML, 2008.

[78] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y

Ng. Distance metric learning with application to clustering

with side-information. In NIPS, 2003.

[79] Xinyi Xu, Yanhua Yang, Cheng Deng, and Feng Zheng. Deep

asymmetric metric learning via rich relationship mining. In

CVPR, 2019.

[80] Mang Ye, Xu Zhang, Pong C. Yuen, and Shih-Fu Chang.

Unsupervised embedding learning via invariant and spreading

instance feature. In CVPR, June 2019.

[81] Hong-Xing Yu, Ancong Wu, and Wei-Shi Zheng. Cross-

view asymmetric metric learning for unsupervised person

re-identification. In ICCV, 2017.

[82] Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost Van De Weijer,

Yongmei Cheng, and Arnau Ramisa. Learning metrics from

teachers: Compact networks for image embedding. In CVPR,

2019.

[83] Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. arXiv preprint arXiv:1605.07146, 2016.

[84] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

ShuffleNet: An extremely efficient convolutional neural net-

work for mobile devices. In CVPR, 2018.

[85] Cai-Zhi Zhu, Herve Jégou, and Shin’ichi Satoh. Query-

adaptive asymmetrical dissimilarities for visual object re-

trieval. In ICCV, 2013.

8238


