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Abstract

Feature alignment is an approach to improving robust-

ness to distribution shift that matches the distribution of

feature activations between the training distribution and test

distribution. A particularly simple but effective approach to

feature alignment involves aligning the batch normalization

statistics between the two distributions in a trained neural

network. This technique has received renewed interest lately

because of its impressive performance on robustness bench-

marks. However, when and why this method works is not

well understood. We investigate the approach in more de-

tail and identify several limitations. We show that it only

significantly helps with a narrow set of distribution shifts

and we identify several settings in which it even degrades

performance. We also explain why these limitations arise by

pinpointing why this approach can be so effective in the first

place. Our findings call into question the utility of this ap-

proach and Unsupervised Domain Adaptation more broadly

for improving robustness in practice.

1. Introduction

A foundational assumption made in most of machine

learning is that the training distribution is identical to the test

distribution. However, this assumption is commonly violated

in practice, which can substantially decrease the performance

of models [10, 24]. This can be especially problematic in

high-stakes applications such as autonomous vehicles. One

way of improving robustness is to exploit unlabeled test data

to adapt the model to the new distribution. This process is

called Unsupervised Domain Adaptation (UDA) [32].

A common approach in UDA, known as feature align-

ment or domain alignment, is to align the feature acti-

vations between the source and target distributions [5–

8, 13, 17, 20, 26, 29, 30, 32]. Feature alignment has also

been applied beyond UDA in domains such as causal infer-

ence [15, 28]. Simple forms of feature alignment normalize

the features of a trained model so that the training set and

test set have the same first and second order statistics in

some feature space [19, 30], while other approaches match

distributions in more complicated ways, such as by being

indistinguishable to an adversarial discriminator [8, 20].

We focus on one simple feature alignment method: Adap-

tive Batch Normalization (AdaBN) [19]. Like many other

popular and effective feature alignment methods (e.g. Cari-

ucci et al. [5], Roy et al. [26], Sun and Saenko [31], Sunet

al. [30], Wang et al. [33]), AdaBN is normalization-based,

meaning it matches first and second order statistics between

the two feature distributions. It is also a post-hoc method,

meaning it aligns features for a model that has already been

trained, making it particularly simple and applicable even for

unforseen distribution shifts. Given a neural network trained

on source data with Batch Normalization (BN) [14], AdaBN

re-estimates the BN statistics of that model using the target

data. In other words, AdaBN aligns the mean and variance

of each channel in the network across the two distributions.

Despite its simplicity, in recent work Nado et al. [21],

Schneider et al. [27] showed that aligning batch norm statis-

tics between the train and test distributions can be used to

achieve state-of-the-art accuracy on the robustness bench-

mark ImageNet-C [10]. Schneider et al. [27] argue that

we should therefore start using normalization-based feature

alignment methods whenever we evaluate robustness. Nado

et al. [21] additionally find that aligning BN statistics does

not help as much for some other types of distribution shift.

However, neither paper describes why this method works

well on ImageNet-C or why it does not help as much with

other types of distribution shift.

We build on this work by investigating when and why

methods like AdaBN help. Our findings include:

• Showing that aligning BN statistics can actually de-

grade accuracy on several types of distribution shift,

both conceptually and in practice.

• Identifying implicit symmetry assumptions made by

these methods and showing how violations of these

assumptions can cause performance degradation.

• Demonstrating and explaining how aligning BN statis-

tics primarily helps with distribution shifts that involve

changes in local image statistics.

Our findings have several implications. While aligning

BN statistics is an effective method for improving robustness
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in some settings, it only significantly helps on a narrow set of

distribution shifts and can even degrade performance. These

limitations may prevent it from being useful in practical ap-

plications. Furthermore, we find that existing justifications

of feature alignment are inadequate for explaining when

and why these methods work. Future work on UDA should

explicitly identify the properties of data distributions and

neural networks that these methods rely on in practice. Fi-

nally, some of our findings apply to UDA more broadly,

calling into question whether UDA is a strong approach to

improving the robustness of machine learning systems in the

first place. More work is therefore needed to make UDA

practical for improving robustness.

2. Related Work

We focus on feature alignment methods that work by

aligning the Batch Normalization statistics between the

source and target distributions for a trained neural network.

In this section, we describe how this relates to other feature

alignment methods, and we describe why existing justifica-

tions for feature alignment do not adequately explain their

practical success.

Feature Alignment Methods. Several UDA methods

closely resemble AdaBN by similarly aligning normaliza-

tion statistics of trained models. Sun et al. [30] whiten and

re-color the target distribution to match the mean and covari-

ance of the source distribution in the input. Sun and Saenko

[31] extend this by matching the mean and covariance in a

neural network layer, rather than in the input. Because these

are post-hoc methods based on normalization like AdaBN,

our findings directly apply to them as well.

Some UDA methods are normalization-based but require

modifying the training of neural networks as well. Cariucci

et al. [5] modify AdaBN by learning a linear combination

of source and target Batch Normalization statistics. Wang

et al. [33] introduce a new layer for UDA that uses domain-

specific Batch Normalization statistics and that automatically

adapts to the transferability of different channels. Some, but

not all, of our findings apply to these methods as well.

In a related vein, adversarial alignment methods such as

Ganin et al. [8], Long et al. [20] learn feature representa-

tions for which a discriminator cannot distinguish source and

target data. Unlike the normalization-based approaches that

we focus on in this work, adversarial methods aim to learn

feature representations that are completely indistinguishable

instead of only matching first and second order statistics,

and again modify the training of networks, which can be ex-

pensive. These methods can improve performance, but they

are also much less efficient than post-hoc feature alignment

methods.

Justifications of Feature Alignment are Inadequate.

Many papers that introduce feature alignment methods in-

tuitively suggest that matching feature distributions makes

the features more domain-invariant and consequently miti-

gates the effects of distribution shift [5, 7, 30, 31]. However,

aligning the features between two distributions is not suffi-

cient for good test performance in general because aligning

the marginal distributions pS(x) and pT (x) in some fea-

ture space may not align the class-conditional distributions

pS(x|y) and pT (x|y) [16, 35].

Some papers (e.g. Ganin et al. [8], Long et al. [20])

motivate aligning feature distributions by referring to David

et al. [2], which introduces generalization bounds for UDA.

For a given hypothesis class H and feature space, these

bounds guarantee good test performance as long as (i) the

two distributions are “indistinguishable” with respect to H,

and (ii) there is a hypothesis h ∈ H that simultaneously

does well on both distributions. However, Johansson et al.

[16], Zhao et al. [35] recently described problems with

this theory, and in the Supplementary Material we argue

that these generalization bounds are probably vacuous in

practice. In contrast to this work, we focus on empirically

understanding when and why aligning BN statistics works

in practice.

Several impossibility theorems show that successful UDA

requires strong assumptions on the source and target distribu-

tions [3, 4]. Nevertheless, many feature alignment methods

are effective in practice. This raises the question: What

properties of distribution shifts and neural networks does

feature alignment exploit to improve robustness? We answer

this question for AdaBN in the process of investigating its

limitations.

3. Failure Modes of AdaBN

In this section, we characterize when normalization-based

methods hurt accuracy. Prior work showed that feature

alignment can degrade performance under label shift, i.e.

pS(y) 6= pT (y) [16, 25, 35]. We extend these earlier obser-

vations by showing that label shift also has a more severe

impact on deep layers than on shallow layers.

We then construct two additional failure modes that can

occur even when the label distribution doesn’t change, i.e.

pS(y) = pT (y), and even under the covariate shift assump-

tion, i.e. when pS(y|x) = pT (y|x). In particular, we show

that normalization-based alignment methods can fail when

either different examples or spatial locations are shifted in

qualitatively different ways, and we show that both types of

shift can arise in practice. This suggests that these methods

would be unreliable in safety-critical applications involving

unforeseen distribution shifts.

For each of the three failure modes we exhibit, we first

provide a simple conceptual example of why the failure

mode is possible, then demonstrate the failure on real data.
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(a) Source distribution.

4 2 0 2 4
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
D
F(
x)

(b) Target distribution.
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(c) Mean-normalized target distribution.

Figure 1: An illustration of how aligning the means between the original and shifted distributions can hurt accuracy when there

is label shift. Aligning the variances does not change the accuracy in this case. The blue curve is the PDF for y = −1 and the

orange (dashed) curve is the PDF for y = +1. The dashed line indicates the decision boundary of the classifier. Both classes

are initially equally likely (Figure 1a). After shifting the label distribution, the accuracy of the original classifier remains high

(Figure 1b), but decreases after normalizing the mean (Figure 1c).

Table 1: Accuracy of each method on CIFAR-10 (C-10), TinyImageNet (TIN), ImageNet (IN), CIFAR-10-C (C-10-C),

TinyImageNet-C (TIN-C), ImageNet-C (IN-C), ImageNetV2 (INV2), and Stylized ImageNet (SIN).

METHOD C-10 TIN IN C-10-C TIN-C IN-C INV2 SIN

ORIGINAL MODEL 94.8 63.8 76.1 72.3 24.7 38.1 63.2 7.1

ADABN 92.8 60.3 75.6 83.6 40.1 46.9 60.9 10.2

3.1. Experimental Setup

We begin by describing the experimental setup that we use

for the remainder of the paper. Code for the experiments is

available at https://github.com/collin-burns/

feature-alignment.

Datasets. We evaluate models on a diverse set of distri-

bution shift datasets. In several experiments we use the

robustness benchmarks CIFAR-10-C, TinyImageNet-C, and

ImageNet-C [10]. These datasets include 15 noise, blur,

weather, and digital corruptions with 5 severities for each;

we apply AdaBN on each corruption and severity indepen-

dently then average the resulting accuracies. We also run

experiments on ImageNetV2 [24] and Stylized ImageNet [9].

ImageNetV2 was constructed by trying to reproduce how

the ImageNet dataset was collected. This distribution shift

reduces the accuracy of our ImageNet-trained model from

76% to 63%. Stylized ImageNet [9] changes the texture and

style of ImageNet images in a variety of ways. This more se-

vere shift reduces the accuracy all the way down to 10%. As

we are working in the context of domain adaptation, for each

dataset we assume we have access to all of the unlabeled

target data.

Using these datasets has two main advantages. First,

ImageNet-C, ImageNetV2, and Stylized ImageNet are qual-

itatively distinct shifts, but they are readily comparable be-

cause they are all based on ImageNet. Second, the corruption

datasets make it possible to compare different severities of

shift while controlling for other factors, which we make use

of in some experiments.

Models. We use the pre-trained ResNet-50 model included

in the torchvision package [23] for all ImageNet exper-

iments. For all CIFAR-10 and TinyImageNet experiments,

we use a 40-2 WideResNet [34] trained for 100 epochs using

SGD with momentum 0.9, initial learning rate 0.1, weight

decay 0.0005, dropout rate 0.3, and batch size 128. For data

augmentation, we use random cropping with zero-padding 4
and random horizontal flips. We show the performance of

these models on each dataset in Table 1.

3.2. Shifted Label Distribution

We now show how it can hurt to normalize the feature

distributions when pS(y) 6= pT (y). Similar observations

were made in prior work [16, 25, 35], but we extend this

by investigating how it occurs in more detail and by also

showing that deeper layers are more sensitive to label shift

than shallow layers.

Conceptual Example. Consider binary classification

when y is sampled uniformly from {−1, 1}, and

x ∼ N (2y, 1). The Bayes classifier is f(x) = sign(x).
Suppose we shift the label distribution so that p(y = −1) =
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(a) CIFAR-10-C Excluding Last Layers
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(b) CIFAR-10-C Excluding First Layers

Figure 2: The effect of updating the Batch Normalization statistics (AdaBN) on CIFAR-10-C in all but the last k BN layers

(left) and all but the first k BN layers (right) as a function of the number of classes kept in the target shift, for k ∈ {0, 1, 4, 16}.

There are 37 BN layers in total. AdaBN does worse as the number of classes decreases. We can mitigate this decrease by

excluding some of the final Batch Normalization layers from feature alignment, but not by excluding some of the first Batch

Normalization layers. This indicates that deep layers are more sensitive to label shift than shallow layers.

7

8
for the target distribution. The new mean is then − 3

2
. If we

normalize the mean to match the original mean of zero, this

pushes the y = −1 mode from N (−2, 1) to N (− 1

2
, 1) and

increases the classification error substantially, as illustrated

in Figure 1. This is despite the fact that the classifier would

have had high accuracy without any normalization.

In Practice. We now exhibit this issue on CIFAR-10.

From the discussion above, we should expect the accuracy

of AdaBN to degrade as it is applied to a smaller fraction

of classes. We confirm this and show the results in Figure 2

(blue curve). Specifically, we evaluate the accuracy of Ad-

aBN applied to subsets of CIFAR-10-C classes, while still

allowing the classifier to output any of the 10 classes. Mak-

ing some classes occur with probability zero is an extreme

form of class reweighting, but one that could still arise in

practice. For simplicity, we use the first k classes for dif-

ferent values of k. In the worst case of a single class, the

accuracy falls below 50%.

Shallow vs Deep Layers. Intuitively, shallow layers cap-

ture low-level information like edges and colors, which

should be mostly class-agnostic, while deeper layers capture

more abstract, class-specific representations. This suggests

that only updating the Batch Normalization statistics in the

earlier layers may mitigate the drop in accuracy caused by

applying AdaBN under label shift.

We confirm this and show the results in Figure 2a. When

one doesn’t update the last 16 (out of 37) Batch Normal-

ization layers, accuracy remains high even when AdaBN is

applied to a single class. To check that this is due to exclud-

ing the final layers, we also test not updating the first k Batch

Normalization layers and confirm that it does not improve

performance (Figure 2b). We find similar results on other

datasets; see the Supplementary Material for details.

3.3. Shifted Spatial Locations

A second type of failure mode occurs when there are dif-

ferent shifts for different spatial locations. This can occur if,

for example, a border is added to every image, as this results

in the distribution of boundary pixels changing dramatically

without the distribution of interior pixels changing at all. We

illustrate this in Figure 3 (top row). Unlike the previous

failure mode, this can arise even under the covariate shift

assumption and when the class distribution is fixed.

Conceptual Example. Again consider binary classifica-

tion when y is sampled uniformly from {−1,+1}. Let

x = (x1, x2), where x1 ∼ N (4 + 2y, 1) and x2 ∼ N (4, 1).
The classifier f(x) = sign(x1 − 4) has high accuracy.

We use the features x1 and x2 to model different spatial

dimensions in a convolutional channel. Since Batch Normal-

ization computes the mean and variance over both a batch

of examples and all spatial locations within a channel, we

simultaneously normalize x over both samples and coordi-

nates. Specifically, AdaBN matches the mean and variance

of a shifted input x by transforming the input to be

x̃ =
σs

σt

(x− µt · 1) + µs · 1 , (1)

where 1 := (1, 1) ∈ R
2. Imagine we shift the distribution by

making x2 = 0 for each example. This doesn’t change the

accuracy of f , but it decreases the mean and variance of x.

The original mean and variance were the average mean and

variance over each dimension: µs =
1

2
(E[x1] + E[x2]) = 4

and σ2

s = 1

2
(var(x1) + var(x2)) = 1. Under the shift,
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E[x2] = var(x2) = 0, so the mean and variance become

µt =
1

2
(E[x1] + 0) = 2 and σ2

t = 1

2
(var(x1) + 0) = 1

2
.

For the values given above, we have x̃1 =
√
2(x1−2)+4.

The mode corresponding to y = −1 is initially centered at

x1 = 2, so after normalizing it shifts to x̃1 = 4. Since the

decision boundary of f passes through x1 = 4, the new error

of f conditioned on y = −1 is 1

2
, which is higher than it was

before applying AdaBN.

Table 2: Accuracy on the Black Border distribution shift.

METHOD C-10 TIN

ORIGINAL MODEL 65.0 22.6

ADABN 52.5 11.8

In Practice. We now exhibit an analogous failure mode on

real data. Our example uses the “black border” transforma-

tion, where we remove all boundary pixels by replacing them

with zero. Similar to the conceptual example, this shifts the

distribution of some spatial locations but not others. We

evaluate the robustness of models to this transformation on

CIFAR-10 and TinyImageNet, where we chose the width of

the border to be 1/4 the length of the image, so that 25% of

the area of the image remains.

The results are given in Table 2. Applying AdaBN to this

transformation hurts accuracy relative to the original model,

almost cutting it in half for TinyImageNet.

To verify that the drop in performance comes from shifted

spatial locations, we visualize the effect of Batch Normal-

ization on the activations of the model. We show representa-

tive channel activations after the first and twenty-first Batch

Normalization layers in Figure 3. For both layers, AdaBN

changes the scale of the activations so that the mean is closer

to that of a typical in-distribution activation. Since the border

pixels are either darker than a normal input (top) or brighter

than a normal input (bottom), matching the mean throws

off the scale of the center of the image, which contains the

actual content.

3.4. Shifted Examples

Finally, we show that normalization-based feature align-

ment can fail if different examples are subject to different

shifts. One example of this is with label shift, but we show

that it is a more general phenomenon that can occur even

when pS(y) = pT (y). Specifically, it can naturally occur

when the distribution of a single spatial location is multi-

modal, such as for a mixture distribution.

Conceptual Example. Consider binary classification

again, but this time suppose x|y is a mixture of Gaussians.

For simplicity, we focus on y = −1 and assume that we

(a) Default model,

original, L1.

(b) Default model,

transformed, L1.

(c) AdaBN,

transformed, L1.

(d) Default model,

original, L21.

(e) Default model,

transformed, L21.

(f) AdaBN,

transformed, L21.

Figure 3: A representative channel in the 1st Batch Normal-

ization layer (top row, L1) and 21st Batch Normalization

layer (bottom row, L21). The scales of the images (the min-

imum and maximum values, corresponding to black and

white) are the same. Updating the Batch Normalization

statistics (Figures 3c and 3f) changes the magnitude of the

activations even though the original activations are more

appropriate (Figures 3a and 3d).

normalize separately for each class. Define the source distri-

bution by drawing x|(y = −1) from the mixture distribution
1

2
N(−9, 1) + 1

2
N(−1, 1). The classifier f(x) = sign(x)

initially has low error conditioned on y = −1. Suppose we

now reweight the modes of x|(y = −1) so that we instead

sample from 3

4
N(−9, 1) + 1

4
N(−1, 1). This decreases both

the variance and the mean. Normalizing to have the original

mean and variance then pushes the N(−1, 1) mode to be

greater than 0, resulting in a larger classification error. We

illustrate this in Figure 4.

In Practice. In the conceptual example described above,

individual coordinates for a single class were distributed

according to a mixture distribution. To exhibit an analogous

shift on real data, we first identify a surprising phenomenon.

We find that applying AdaBN to the original test data (or

even ImageNetV2) can degrade accuracy by a few percent-

age points (see Table 1). This is because models use data

augmentation during training but not at test time, which can

lead to a discrepancy if one naively aligns the train and test

sets while only applying augmentation to the former.

We find that one can prevent this decrease in accuracy

by updating the Batch Normalization statistics on the target

data while using the augmentation used during training time,

which mimics how the original Batch Normalization statis-

tics were computed. We denote this approach by “AdaBN +

Aug.” We only use augmentations for aligning the features

but do not use them at test time. Table 3 displays the accura-
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(c) Mean-aligned target distribution.

Figure 4: An illustration of how aligning the class-specific means can hurt accuracy when the class feature distribution is

multi-modal. The blue curve is the PDF of x|y = −1 and has two modes. For clarity, we do not show the PDF of x|y = +1.

The dashed line indicates the decision boundary of the classifier. After shifting the feature distribution so that the mode

centered at −9 becomes more likely, the accuracy remains high. However, aligning the source and target means pushes the

mode centered at −1 to be greater than 0, causing a drop in accuracy.

Table 3: Accuracy (in percent) of AdaBN with training augmentations (+ Aug) on each dataset. The change in accuracy from

AdaBN is given in parentheses. AdaBN + Aug does better in most cases, especially on CIFAR-10 and TinyImageNet.

METHOD C-10 TIN IN C-10-C TIN-C IN-C INV2 SIN

ADABN + AUG 94.8 (+2.0) 64.0 (+3.7) 76.0 (+0.4) 86.7 (+3.1) 41.8 (+1.7) 43.3 (-3.6) 63.8 (+2.9) 8.4 (-1.8)

cies for AdaBN + Aug on each dataset. This modification

consistently improves in-distribution accuracy and often im-

proves OOD accuracy. For example, it improves accuracy on

ImageNetV2 from 60.9% to 63.8%, compared to 63.2% for

standard AdaBN, showing that using training augmentations

with AdaBN can be necessary for improving OOD accuracy.

What does this have to do with mixture distributions? For

CIFAR-10 and TinyImageNet, standard random cropping

is part of the training augmentation. See Figure 5 for an

example of this augmentation. Therefore, at training time an

image is visibly cropped with probability p and not cropped

(or only slightly cropped) with probability 1−p, leading to a

(a) Augmented (source) (b) Original (target)

Figure 5: An example of the augmentation used to train our

CIFAR-10 and TinyImageNet models. The source (training)

distribution includes images like Figure 5a while the target

(test) distribution only includes unaugmented examples like

Figure 5b, causing a harmless distribution shift.

mixture distribution. At test time p becomes 0. Furthermore,

analogously to the conceptual example, test accuracy is high

without feature alignment but becomes lower with alignment.

To better understand this distribution shift, we visualize

the activations of a convolutional filter in the first Batch

Normalization layer in Figure 6. These activations are for

a network with the image in Figure 5 as its input. We find

that cropping with padding causes a peak in the activations

of this filter (Figure 6a) that disappears when we remove

the augmentation (Figure 6b). Consequently, if one applies

AdaBN to the test set, the mean activation for this filter on

the test set is less than during training. In trying to correct

for this, AdaBN increases all activations (Figure 6c). This

type of shift in the distribution of activations, which we

also find for other images and layers, appears responsible

for the performance degradation when AdaBN is applied to

the clean test set. In short, while reweighting the training

examples doesn’t hurt the model, AdaBN detects a change

and renormalizes the activations when it shouldn’t.

4. Understanding AdaBN & Discussion

We now explain when and why AdaBN can improve or

degrade robustness. The best case scenario for AdaBN is

when a shift transforms the activations in a convolutional

channel, xi ∈ R
d×d, according to

x̂i = axi + b · 11T , (2)
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Figure 6: Histograms of all activations for a single CIFAR-10 example and channel in the first Batch Normalization layer. This

shows that features can be multimodal and that changes in the frequency of one mode (the spike of activations centered around

0.5 on the source distribution in Figure 6a, which is heavily downweighted on the target distibution in Figure 6b) can cause

AdaBN to shift another mode (the bulk of the activations, which shift to the right in Figure 6c relative to Figure 6b) when it

would be better not to change the other activations at all.

for each example i. Here, d is the spatial height and width,

and 1 is the d-dimensional vector of all ones.

This is an affine function with coefficients shared across

examples and spatial dimensions. Since this transforma-

tion corresponds to changing the mean and variance (shared

across examples and spatial dimensions), AdaBN exactly

inverts distribution shifts that affect the activations in this

way. This characterization of AdaBN provides insight into

both why it can degrade robustness for some shifts and why

it improves robustness for others.

4.1. Why Can Aligning BN Statistics Hurt?

Equation (2) makes it clear why the failure modes we

presented can occur. Because the coefficients a and b are

fixed across examples and spatial dimensions, AdaBN relies

on the implicit assumption that different samples and spatial

locations are shifted in similar ways. While this is useful be-

cause it makes it possible for AdaBN to efficiently estimate

the new mean and variance under the shift, it also means that

AdaBN can degrade performance when this assumption is

violated. Indeed, every failure mode in Section 3 violates

this assumption. Concerningly, it may not be easy in prac-

tice to assess whether this assumption is being violated or

not. This may make it difficult to trust methods like AdaBN

in high-stakes applications involving arbitrary unforeseen

distribution shifts for which we need high reliability.

4.2. Why Can Aligning BN Statistics Help?

In practice, methods like AdaBN that align first and sec-

ond order activation statistics can yield state-of-the-art ro-

bustness [21, 27]. Moreover, by Equation (2), one can think

of AdaBN as trying to invert a change in the scale and mean

of activations. The empirical success of AdaBN, together

with this interpretation of Equation (2), suggests that one

of the main effects of some distribution shifts is to simply

change the scale and mean of the network’s activations in

each hidden layer.

We now provide intuition for why this might be true.

Consider a convolutional filter in any layer of a CNN. One

can think of it as a feature detector that activates most for

a certain input pattern. Suppose this pattern becomes more

common for all inputs under the distribution shift. Then even

if this pattern was strongly correlated with a specific class

on the source distribution, it will only be weak evidence of

that class on the target distribution. This suggests we should

align the means; if every image becomes greener than it was

before, and green is correlated with being a frog, then under

the shift we should now consider “very green” to be evidence

of a frog but “somewhat green” to be uninformative.

Normalizing the variance, on the other hand, intuitively

corrects for simple changes in the scale of the activations

of a convolutional filter. For instance, if a feature becomes

obscured under shift, such as if edges become blurrier, a

convolutional filter that was trained to detect that feature

may output activations that are closer to zero, decreasing

the variance of this activation. However, the next layer still

expects its inputs to be in a certain range. In this situation,

normalizing the variance may amplify the signal that does

exist by increasing the scale of the activations.

In short, because changes in the prevalence of a pattern

may result in simple changes in the activations of a feature

detector for that pattern, normalization may be an effective

way to partially undo the effects of some distribution shifts.

This is the property that methods like AdaBN exploit.
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4.3. When Does AdaBN Help the Most?

Geirhos et al. [9] argue that most ImageNet classifiers

are overly reliant on the texture and style of images. This

finding implies that most hidden layers in modern ImageNet

classifiers capture low-level features such as texture or style

more than they capture high-level features such as shape.

Furthermore, AdaBN improves robustness by tweaking the

activations of a trained network. This suggests that it is

mostly “fixing” changes in style, since those are what activa-

tions mainly capture in the first place. Indeed, more abstract

shifts in the distribution might not even register in the activa-

tions of the model because it was not trained to detect those

sorts of features.

Relatedly, Li et al. [18] draw a connection between style

transfer methods and domain adaptation. They show that

simply aligning the Batch Normalization statistics between

two images can be used as an effective method for style

transfer. Similarly, AdaBN aligns the Batch Normalization

statistics between two distributions. This suggests that we

can also interpret AdaBN as doing style transfer between

two distributions, mapping the style of the shifted target

distribution back to that of the original source distribution.

These perspectives predict that AdaBN should improve

accuracy the most on distribution shifts involving changes in

style and local image statistics, at least for current models,

but should not substantially change performance on distri-

bution shifts that involve more high-level, abstract changes.

These predictions are supported by the observation that Ad-

aBN improves accuracy much more on ImageNet-C and

Stylized ImageNet than ImageNetV2. Table 1 shows that

AdaBN yields a relative accuracy improvement of 23% for

ImageNet-C and 43% for Stylized ImageNet, shifts that al-

most exclusively involve changes in the style or texture of

images, whereas it slightly degrades performance on Im-

ageNetV2, a recollected version of ImageNet that should

not have major differences in local image statistics. This

observation is further supported by the results in Schneider

et al. [27], which show that aligning BN statistics also does

not help much with ImageNet-A [12] or ObjectNet [1], two

other distribution shift benchmarks that, like ImageNetV2,

do not primarily involve changes in local image statistics.

These findings provide evidence for the idea that AdaBN

improves robustness because it performs a sort of neural

style transfer between the source and target distributions.

While this makes AdaBN particularly well suited for some

types of shift, such as ImageNet-C and Stylized ImageNet, it

also suggests that the lackluster performance of the method

on other types of distribution shifts is an inherent limitation

rather than one that can be easily fixed.

5. Conclusion

Unforeseen Distribution Shifts. Making systems robust

under distribution shift is important for a wide range of ap-

plications [10]. UDA is considered a promising approach

to this problem, but our results show that it must be used

with care. For applications like self-driving cars, UDA meth-

ods should work even when applied to general, unforeseen

distribution shifts. However, we find that aligning batch

normalization statistics may actually degrade robustness on

shifts that can arise in practice. These limitations call into

question the practical utility of aligning batch normaliza-

tion statistics to improve robustness, especially for use in

high-stakes applications.

Learning Representations. We also find that AdaBN dis-

proportionately improves robustness on distribution shifts

that mainly involve changes in local image statistics, such

as changes in style or texture. It cannot help as much on

distribution shifts involving changes in higher-level features

because it only tweaks the activations of a trained network,

which may not capture information about the high-level fea-

tures that changed. This limitation suggests that to improve

robustness for more general distribution shifts, it may be

necessary to focus on learning robust representations rather

than on modifying the activations of trained networks.

On the other hand, UDA methods that require additional

training typically do so at test time. This is too slow for

applications such as autonomous vehicles for which it is

necessary to make predictions efficiently. These drawbacks

may make typical UDA methods a less promising approach

to improving model robustness than other techniques that

train models to have broadly robust feature representations,

such as architectural changes [22] or data augmentation [11].

Future Work. To the best of our knowledge, there has

been limited work on investigating how distribution shifts

affect low-level network activations in a fine-grained way.

Building on our work by analyzing these effects in more

detail may yield additional insights into distribution shifts

and the learned feature representations, and may help us

develop better methods for improving robustness.

Furthermore, while there are theoretical justifications of

feature alignment, they do not adequately explain when or

why these methods work well in practice (Section 2). We

conceptually and empirically addressed this in detail in the

case of AdaBN, a particularly simple but effective method.

Future work should more carefully identify when and why

other methods for robustness are effective in practice.

Finally, we identified numerous drawbacks of current

approaches to UDA. Future work should address these short-

comings to make these methods more useful and reliable for

important applications.
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