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Abstract

Feature alignment is an approach to improving robust-
ness to distribution shift that matches the distribution of
feature activations between the training distribution and test
distribution. A particularly simple but effective approach to
feature alignment involves aligning the batch normalization
statistics between the two distributions in a trained neural
network. This technique has received renewed interest lately
because of its impressive performance on robustness bench-
marks. However, when and why this method works is not
well understood. We investigate the approach in more de-
tail and identify several limitations. We show that it only
significantly helps with a narrow set of distribution shifts
and we identify several settings in which it even degrades
performance. We also explain why these limitations arise by
pinpointing why this approach can be so effective in the first
place. Our findings call into question the utility of this ap-
proach and Unsupervised Domain Adaptation more broadly
for improving robustness in practice.

1. Introduction

A foundational assumption made in most of machine
learning is that the training distribution is identical to the test
distribution. However, this assumption is commonly violated
in practice, which can substantially decrease the performance
of models [10, 24]. This can be especially problematic in
high-stakes applications such as autonomous vehicles. One
way of improving robustness is to exploit unlabeled test data
to adapt the model to the new distribution. This process is
called Unsupervised Domain Adaptation (UDA) [32].

A common approach in UDA, known as feature align-
ment or domain alignment, is to align the feature acti-
vations between the source and target distributions [5—

, 13,17, 20, 26, 29, 30, 32]. Feature alignment has also
been applied beyond UDA in domains such as causal infer-
ence [15, 28]. Simple forms of feature alignment normalize
the features of a trained model so that the training set and
test set have the same first and second order statistics in
some feature space [19, 30], while other approaches match
distributions in more complicated ways, such as by being
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indistinguishable to an adversarial discriminator [8, 20].

We focus on one simple feature alignment method: Adap-
tive Batch Normalization (AdaBN) [19]. Like many other
popular and effective feature alignment methods (e.g. Cari-
ucci et al. [5], Roy et al. [26], Sun and Saenko [31], Sunet
al. [30], Wang et al. [33]), AdaBN is normalization-based,
meaning it matches first and second order statistics between
the two feature distributions. It is also a post-hoc method,
meaning it aligns features for a model that has already been
trained, making it particularly simple and applicable even for
unforseen distribution shifts. Given a neural network trained
on source data with Batch Normalization (BN) [14], AdaBN
re-estimates the BN statistics of that model using the target
data. In other words, AdaBN aligns the mean and variance
of each channel in the network across the two distributions.

Despite its simplicity, in recent work Nado et al. [21],
Schneider et al. [27] showed that aligning batch norm statis-
tics between the train and test distributions can be used to
achieve state-of-the-art accuracy on the robustness bench-
mark ImageNet-C [10]. Schneider et al. [27] argue that
we should therefore start using normalization-based feature
alignment methods whenever we evaluate robustness. Nado
et al. [21] additionally find that aligning BN statistics does
not help as much for some other types of distribution shift.
However, neither paper describes why this method works
well on ImageNet-C or why it does not help as much with
other types of distribution shift.

We build on this work by investigating when and why
methods like AdaBN help. Our findings include:

e Showing that aligning BN statistics can actually de-
grade accuracy on several types of distribution shift,
both conceptually and in practice.

o Identifying implicit symmetry assumptions made by
these methods and showing how violations of these
assumptions can cause performance degradation.

e Demonstrating and explaining how aligning BN statis-
tics primarily helps with distribution shifts that involve
changes in local image statistics.

Our findings have several implications. While aligning
BN statistics is an effective method for improving robustness
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in some settings, it only significantly helps on a narrow set of
distribution shifts and can even degrade performance. These
limitations may prevent it from being useful in practical ap-
plications. Furthermore, we find that existing justifications
of feature alignment are inadequate for explaining when
and why these methods work. Future work on UDA should
explicitly identify the properties of data distributions and
neural networks that these methods rely on in practice. Fi-
nally, some of our findings apply to UDA more broadly,
calling into question whether UDA is a strong approach to
improving the robustness of machine learning systems in the
first place. More work is therefore needed to make UDA
practical for improving robustness.

2. Related Work

We focus on feature alignment methods that work by
aligning the Batch Normalization statistics between the
source and target distributions for a trained neural network.
In this section, we describe how this relates to other feature
alignment methods, and we describe why existing justifica-
tions for feature alignment do not adequately explain their
practical success.

Feature Alignment Methods. Several UDA methods
closely resemble AdaBN by similarly aligning normaliza-
tion statistics of trained models. Sun et al. [30] whiten and
re-color the target distribution to match the mean and covari-
ance of the source distribution in the input. Sun and Saenko
[31] extend this by matching the mean and covariance in a
neural network layer, rather than in the input. Because these
are post-hoc methods based on normalization like AdaBN,
our findings directly apply to them as well.

Some UDA methods are normalization-based but require
modifying the training of neural networks as well. Cariucci
et al. [5] modify AdaBN by learning a linear combination
of source and target Batch Normalization statistics. Wang
et al. [33] introduce a new layer for UDA that uses domain-
specific Batch Normalization statistics and that automatically
adapts to the transferability of different channels. Some, but
not all, of our findings apply to these methods as well.

In a related vein, adversarial alignment methods such as
Ganin et al. [8], Long et al. [20] learn feature representa-
tions for which a discriminator cannot distinguish source and
target data. Unlike the normalization-based approaches that
we focus on in this work, adversarial methods aim to learn
feature representations that are completely indistinguishable
instead of only matching first and second order statistics,
and again modify the training of networks, which can be ex-
pensive. These methods can improve performance, but they
are also much less efficient than post-hoc feature alignment
methods.

Justifications of Feature Alignment are Inadequate.
Many papers that introduce feature alignment methods in-
tuitively suggest that matching feature distributions makes
the features more domain-invariant and consequently miti-
gates the effects of distribution shift [5, 7, 30, 31]. However,
aligning the features between two distributions is not suffi-
cient for good test performance in general because aligning
the marginal distributions pg(z) and pr(z) in some fea-
ture space may not align the class-conditional distributions
ps(zly) and pr(zly) [16, 35].

Some papers (e.g. Ganin et al. [8], Long et al. [20])
motivate aligning feature distributions by referring to David
et al. [2], which introduces generalization bounds for UDA.
For a given hypothesis class H and feature space, these
bounds guarantee good test performance as long as (i) the
two distributions are “indistinguishable” with respect to H,
and (ii) there is a hypothesis h € H that simultaneously
does well on both distributions. However, Johansson et al.
[16], Zhao et al. [35] recently described problems with
this theory, and in the Supplementary Material we argue
that these generalization bounds are probably vacuous in
practice. In contrast to this work, we focus on empirically
understanding when and why aligning BN statistics works
in practice.

Several impossibility theorems show that successful UDA
requires strong assumptions on the source and target distribu-
tions [3, 4]. Nevertheless, many feature alignment methods
are effective in practice. This raises the question: What
properties of distribution shifts and neural networks does
feature alignment exploit to improve robustness? We answer
this question for AdaBN in the process of investigating its
limitations.

3. Failure Modes of AdaBN

In this section, we characterize when normalization-based
methods hurt accuracy. Prior work showed that feature
alignment can degrade performance under label shift, i.e.
ps(y) # pr(y) [16, 25, 35]. We extend these earlier obser-
vations by showing that label shift also has a more severe
impact on deep layers than on shallow layers.

We then construct two additional failure modes that can
occur even when the label distribution doesn’t change, i.e.
ps(y) = pr(y), and even under the covariate shift assump-
tion, i.e. when pg(y|x) = pr(y|z). In particular, we show
that normalization-based alignment methods can fail when
either different examples or spatial locations are shifted in
qualitatively different ways, and we show that both types of
shift can arise in practice. This suggests that these methods
would be unreliable in safety-critical applications involving
unforeseen distribution shifts.

For each of the three failure modes we exhibit, we first
provide a simple conceptual example of why the failure
mode is possible, then demonstrate the failure on real data.
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(a) Source distribution. (b) Target distribution. (c) Mean-normalized target distribution.

Figure 1: An illustration of how aligning the means between the original and shifted distributions can hurt accuracy when there
is label shift. Aligning the variances does not change the accuracy in this case. The blue curve is the PDF for y = —1 and the
orange (dashed) curve is the PDF for y = +1. The dashed line indicates the decision boundary of the classifier. Both classes
are initially equally likely (Figure 1a). After shifting the label distribution, the accuracy of the original classifier remains high
(Figure 1b), but decreases after normalizing the mean (Figure 1c).

Table 1: Accuracy of each method on CIFAR-10 (C-10), TinyImageNet (TIN), ImageNet (IN), CIFAR-10-C (C-10-C),

TinyImageNet-C (TIN-C), ImageNet-C (IN-C), ImageNetV2 (INV2), and Stylized ImageNet (SIN).

METHOD C-10 TIN

IN | C-10-C  TIN-C

IN-C | INV2  SIN

ORIGINAL MODEL  94.8 63.8 76.1
ADABN 92.8 603 75.6

72.3 24.7 38.1 63.2 7.1
83.6 40.1 46.9 60.9 10.2

3.1. Experimental Setup

We begin by describing the experimental setup that we use
for the remainder of the paper. Code for the experiments is
availableat https://github.com/collin-burns/
feature—-alignment.

Datasets. We evaluate models on a diverse set of distri-
bution shift datasets. In several experiments we use the
robustness benchmarks CIFAR-10-C, TinyImageNet-C, and
ImageNet-C [10]. These datasets include 15 noise, blur,
weather, and digital corruptions with 5 severities for each;
we apply AdaBN on each corruption and severity indepen-
dently then average the resulting accuracies. We also run
experiments on ImageNetV?2 [24] and Stylized ImageNet [9].
ImageNetV2 was constructed by trying to reproduce how
the ImageNet dataset was collected. This distribution shift
reduces the accuracy of our ImageNet-trained model from
76% to 63%. Stylized ImageNet [9] changes the texture and
style of ImageNet images in a variety of ways. This more se-
vere shift reduces the accuracy all the way down to 10%. As
we are working in the context of domain adaptation, for each
dataset we assume we have access to all of the unlabeled
target data.

Using these datasets has two main advantages. First,
ImageNet-C, ImageNetV2, and Stylized ImageNet are qual-
itatively distinct shifts, but they are readily comparable be-

cause they are all based on ImageNet. Second, the corruption
datasets make it possible to compare different severities of
shift while controlling for other factors, which we make use
of in some experiments.

Models. We use the pre-trained ResNet-50 model included
in the torchvision package [23] for all ImageNet exper-
iments. For all CIFAR-10 and TinylmageNet experiments,
we use a 40-2 WideResNet [34] trained for 100 epochs using
SGD with momentum 0.9, initial learning rate 0.1, weight
decay 0.0005, dropout rate 0.3, and batch size 128. For data
augmentation, we use random cropping with zero-padding 4
and random horizontal flips. We show the performance of
these models on each dataset in Table 1.

3.2. Shifted Label Distribution

We now show how it can hurt to normalize the feature
distributions when pg(y) # pr(y). Similar observations
were made in prior work [16, 25, 35], but we extend this
by investigating how it occurs in more detail and by also
showing that deeper layers are more sensitive to label shift
than shallow layers.

Conceptual Example. Consider binary classification
when y is sampled uniformly from {-1,1}, and
x ~ N(2y,1). The Bayes classifier is f(z) = sign(z).
Suppose we shift the label distribution so that p(y = —1) =

2527



Accuracy on CIFAR-10-C

—&— Excluding Last 0
Excluding Last 1
—&— Excluding Last 4

—&— Excluding Last 16

0.2 0.4 0.6 0.8 1.0
Fraction of Total Classes

(a) CIFAR-10-C Excluding Last Layers

Accuracy on CIFAR-10-C

—&— Excluding First 0
Excluding First 1

—4&— Excluding First 4

—8— Excluding First 16

0.2 0.4 0.6 0.8 1.0
Fraction of Total Classes
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Figure 2: The effect of updating the Batch Normalization statistics (AdaBN) on CIFAR-10-C in all but the last £ BN layers
(left) and all but the first £ BN layers (right) as a function of the number of classes kept in the target shift, for & € {0, 1,4, 16}.
There are 37 BN layers in total. AdaBN does worse as the number of classes decreases. We can mitigate this decrease by
excluding some of the final Batch Normalization layers from feature alignment, but not by excluding some of the first Batch
Normalization layers. This indicates that deep layers are more sensitive to label shift than shallow layers.

% for the target distribution. The new mean is then —%. If we
normalize the mean to match the original mean of zero, this
pushes the y = —1 mode from A/(—2,1) to N'(—3, 1) and
increases the classification error substantially, as illustrated
in Figure 1. This is despite the fact that the classifier would

have had high accuracy without any normalization.

In Practice. 'We now exhibit this issue on CIFAR-10.
From the discussion above, we should expect the accuracy
of AdaBN to degrade as it is applied to a smaller fraction
of classes. We confirm this and show the results in Figure 2
(blue curve). Specifically, we evaluate the accuracy of Ad-
aBN applied to subsets of CIFAR-10-C classes, while still
allowing the classifier to output any of the 10 classes. Mak-
ing some classes occur with probability zero is an extreme
form of class reweighting, but one that could still arise in
practice. For simplicity, we use the first k£ classes for dif-
ferent values of k. In the worst case of a single class, the
accuracy falls below 50%.

Shallow vs Deep Layers. Intuitively, shallow layers cap-
ture low-level information like edges and colors, which
should be mostly class-agnostic, while deeper layers capture
more abstract, class-specific representations. This suggests
that only updating the Batch Normalization statistics in the
earlier layers may mitigate the drop in accuracy caused by
applying AdaBN under label shift.

We confirm this and show the results in Figure 2a. When
one doesn’t update the last 16 (out of 37) Batch Normal-
ization layers, accuracy remains high even when AdaBN is
applied to a single class. To check that this is due to exclud-
ing the final layers, we also test not updating the first k£ Batch
Normalization layers and confirm that it does not improve

performance (Figure 2b). We find similar results on other
datasets; see the Supplementary Material for details.

3.3. Shifted Spatial Locations

A second type of failure mode occurs when there are dif-
ferent shifts for different spatial locations. This can occur if,
for example, a border is added to every image, as this results
in the distribution of boundary pixels changing dramatically
without the distribution of interior pixels changing at all. We
illustrate this in Figure 3 (top row). Unlike the previous
failure mode, this can arise even under the covariate shift
assumption and when the class distribution is fixed.

Conceptual Example. Again consider binary classifica-
tion when y is sampled uniformly from {—1,+1}. Let
x = (21, 22), where 1 ~ N'(4 + 2y, 1) and 22 ~ N(4,1).
The classifier f(x) = sign(z1 — 4) has high accuracy.

We use the features x; and 2 to model different spatial
dimensions in a convolutional channel. Since Batch Normal-
ization computes the mean and variance over both a batch
of examples and all spatial locations within a channel, we
simultaneously normalize x over both samples and coordi-
nates. Specifically, AdaBN matches the mean and variance
of a shifted input x by transforming the input to be

X=—X—p-1)+ps-1, )

where 1 := (1,1) € R?. Imagine we shift the distribution by
making xo = 0 for each example. This doesn’t change the
accuracy of f, but it decreases the mean and variance of x.
The original mean and variance were the average mean and
variance over each dimension: 15 = % (E[z1] + E[zs]) = 4

and 02 = i(var(z1) + var(zz)) = 1. Under the shift,
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E[zs] = var(xzs) = 0, so the mean and variance become
e = £(E[z1] +0) = 2 and 07 = §(var(z1) +0) = 3.

For the values given above, we have 7] = /2 (x1—2)+4.
The mode corresponding to y = —1 is initially centered at
r1 = 2, so after normalizing it shifts to ; = 4. Since the
decision boundary of f passes through z; = 4, the new error
of f conditionedony = —11is %, which is higher than it was
before applying AdaBN.

Table 2: Accuracy on the Black Border distribution shift.

METHOD C-10 TIN

ORIGINAL MODEL  65.0 22.6
ADABN 525 11.8

In Practice. 'We now exhibit an analogous failure mode on
real data. Our example uses the “black border” transforma-
tion, where we remove all boundary pixels by replacing them
with zero. Similar to the conceptual example, this shifts the
distribution of some spatial locations but not others. We
evaluate the robustness of models to this transformation on
CIFAR-10 and TinyImageNet, where we chose the width of
the border to be 1/4 the length of the image, so that 25% of
the area of the image remains.

The results are given in Table 2. Applying AdaBN to this
transformation hurts accuracy relative to the original model,
almost cutting it in half for TinyImageNet.

To verify that the drop in performance comes from shifted
spatial locations, we visualize the effect of Batch Normal-
ization on the activations of the model. We show representa-
tive channel activations after the first and twenty-first Batch
Normalization layers in Figure 3. For both layers, AdaBN
changes the scale of the activations so that the mean is closer
to that of a typical in-distribution activation. Since the border
pixels are either darker than a normal input (top) or brighter
than a normal input (bottom), matching the mean throws
off the scale of the center of the image, which contains the
actual content.

3.4. Shifted Examples

Finally, we show that normalization-based feature align-
ment can fail if different examples are subject to different
shifts. One example of this is with label shift, but we show
that it is a more general phenomenon that can occur even
when ps(y) = pr(y). Specifically, it can naturally occur
when the distribution of a single spatial location is multi-
modal, such as for a mixture distribution.

Conceptual Example. Consider binary classification
again, but this time suppose z|y is a mixture of Gaussians.
For simplicity, we focus on y = —1 and assume that we

(a) Default model,
original, L1.

(b) Default model,
transformed, L1.

(c) AdaBN,
transformed, L1.

s .
| u ﬂ
=
(d) Default model, (e) Default model, (f) AdaBN,

original, L21. transformed, L.21.  transformed, L21.

Figure 3: A representative channel in the 1st Batch Normal-
ization layer (top row, L1) and 21st Batch Normalization
layer (bottom row, L21). The scales of the images (the min-
imum and maximum values, corresponding to black and
white) are the same. Updating the Batch Normalization
statistics (Figures 3c and 3f) changes the magnitude of the
activations even though the original activations are more
appropriate (Figures 3a and 3d).

normalize separately for each class. Define the source distri-
bution by drawing z|(y = —1) from the mixture distribution
iIN(-9,1) + $N(—1,1). The classifier f(z) = sign(z)
initially has low error conditioned on y = —1. Suppose we
now reweight the modes of z|(y = —1) so that we instead
sample from 3N (—9,1) + $N(—1,1). This decreases both
the variance and the mean. Normalizing to have the original
mean and variance then pushes the N(—1,1) mode to be
greater than 0, resulting in a larger classification error. We
illustrate this in Figure 4.

In Practice. In the conceptual example described above,
individual coordinates for a single class were distributed
according to a mixture distribution. To exhibit an analogous
shift on real data, we first identify a surprising phenomenon.
We find that applying AdaBN to the original test data (or
even ImageNetV2) can degrade accuracy by a few percent-
age points (see Table 1). This is because models use data
augmentation during training but not at test time, which can
lead to a discrepancy if one naively aligns the train and test
sets while only applying augmentation to the former.

We find that one can prevent this decrease in accuracy
by updating the Batch Normalization statistics on the target
data while using the augmentation used during training time,
which mimics how the original Batch Normalization statis-
tics were computed. We denote this approach by “AdaBN +
Aug.” We only use augmentations for aligning the features
but do not use them at test time. Table 3 displays the accura-
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Figure 4: An illustration of how aligning the class-specific means can hurt accuracy when the class feature distribution is
multi-modal. The blue curve is the PDF of x|y = —1 and has two modes. For clarity, we do not show the PDF of z|y = +1.
The dashed line indicates the decision boundary of the classifier. After shifting the feature distribution so that the mode
centered at —9 becomes more likely, the accuracy remains high. However, aligning the source and target means pushes the
mode centered at —1 to be greater than 0, causing a drop in accuracy.

Table 3: Accuracy (in percent) of AdaBN with training augmentations (+ Aug) on each dataset. The change in accuracy from

AdaBN is given in parentheses. AdaBN + Aug does better in most cases, especially on CIFAR-10 and TinylmageNet.

METHOD C-10 TIN IN |

C-10-C

TIN-C IN-C | INV2 SIN

ADABN + AUG  94.8 (+2.0) 64.0 (+3.7)

76.0 (+0.4) | 86.7 (+3.1)

41.8 (+1.7)  43.3(-3.6) | 63.8(+2.9) 8.4(-1.8)

cies for AdaBN + Aug on each dataset. This modification
consistently improves in-distribution accuracy and often im-
proves OOD accuracy. For example, it improves accuracy on
ImageNetV2 from 60.9% to 63.8%, compared to 63.2% for
standard AdaBN, showing that using training augmentations
with AdaBN can be necessary for improving OOD accuracy.

What does this have to do with mixture distributions? For
CIFAR-10 and TinyImageNet, standard random cropping
is part of the training augmentation. See Figure 5 for an
example of this augmentation. Therefore, at training time an
image is visibly cropped with probability p and not cropped
(or only slightly cropped) with probability 1 — p, leading to a

(a) Augmented (source) (b) Original (target)

Figure 5: An example of the augmentation used to train our
CIFAR-10 and TinyImageNet models. The source (training)
distribution includes images like Figure 5a while the target
(test) distribution only includes unaugmented examples like
Figure 5b, causing a harmless distribution shift.

mixture distribution. At test time p becomes 0. Furthermore,
analogously to the conceptual example, test accuracy is high
without feature alignment but becomes lower with alignment.

To better understand this distribution shift, we visualize
the activations of a convolutional filter in the first Batch
Normalization layer in Figure 6. These activations are for
a network with the image in Figure 5 as its input. We find
that cropping with padding causes a peak in the activations
of this filter (Figure 6a) that disappears when we remove
the augmentation (Figure 6b). Consequently, if one applies
AdaBN to the test set, the mean activation for this filter on
the test set is less than during training. In trying to correct
for this, AdaBN increases all activations (Figure 6¢). This
type of shift in the distribution of activations, which we
also find for other images and layers, appears responsible
for the performance degradation when AdaBN is applied to
the clean test set. In short, while reweighting the training
examples doesn’t hurt the model, AdaBN detects a change
and renormalizes the activations when it shouldn’t.

4. Understanding AdaBN & Discussion

We now explain when and why AdaBN can improve or
degrade robustness. The best case scenario for AdaBN is
when a shift transforms the activations in a convolutional
channel, x; € R¥*d, according to

%, =ax; +b-117, )
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Figure 6: Histograms of all activations for a single CIFAR-10 example and channel in the first Batch Normalization layer. This
shows that features can be multimodal and that changes in the frequency of one mode (the spike of activations centered around
0.5 on the source distribution in Figure 6a, which is heavily downweighted on the target distibution in Figure 6b) can cause
AdaBN to shift another mode (the bulk of the activations, which shift to the right in Figure 6c relative to Figure 6b) when it

would be better not to change the other activations at all.

for each example 7. Here, d is the spatial height and width,
and 1 is the d-dimensional vector of all ones.

This is an affine function with coefficients shared across
examples and spatial dimensions. Since this transforma-
tion corresponds to changing the mean and variance (shared
across examples and spatial dimensions), AdaBN exactly
inverts distribution shifts that affect the activations in this
way. This characterization of AdaBN provides insight into
both why it can degrade robustness for some shifts and why
it improves robustness for others.

4.1. Why Can Aligning BN Statistics Hurt?

Equation (2) makes it clear why the failure modes we
presented can occur. Because the coefficients a and b are
fixed across examples and spatial dimensions, AdaBN relies
on the implicit assumption that different samples and spatial
locations are shifted in similar ways. While this is useful be-
cause it makes it possible for AdaBN to efficiently estimate
the new mean and variance under the shift, it also means that
AdaBN can degrade performance when this assumption is
violated. Indeed, every failure mode in Section 3 violates
this assumption. Concerningly, it may not be easy in prac-
tice to assess whether this assumption is being violated or
not. This may make it difficult to trust methods like AdaBN
in high-stakes applications involving arbitrary unforeseen
distribution shifts for which we need high reliability.

4.2. Why Can Aligning BN Statistics Help?

In practice, methods like AdaBN that align first and sec-
ond order activation statistics can yield state-of-the-art ro-
bustness [21, 27]. Moreover, by Equation (2), one can think
of AdaBN as trying to invert a change in the scale and mean
of activations. The empirical success of AdaBN, together

with this interpretation of Equation (2), suggests that one
of the main effects of some distribution shifts is to simply
change the scale and mean of the network’s activations in
each hidden layer.

We now provide intuition for why this might be true.
Consider a convolutional filter in any layer of a CNN. One
can think of it as a feature detector that activates most for
a certain input pattern. Suppose this pattern becomes more
common for all inputs under the distribution shift. Then even
if this pattern was strongly correlated with a specific class
on the source distribution, it will only be weak evidence of
that class on the target distribution. This suggests we should
align the means; if every image becomes greener than it was
before, and green is correlated with being a frog, then under
the shift we should now consider “very green” to be evidence
of a frog but “somewhat green” to be uninformative.

Normalizing the variance, on the other hand, intuitively
corrects for simple changes in the scale of the activations
of a convolutional filter. For instance, if a feature becomes
obscured under shift, such as if edges become blurrier, a
convolutional filter that was trained to detect that feature
may output activations that are closer to zero, decreasing
the variance of this activation. However, the next layer still
expects its inputs to be in a certain range. In this situation,
normalizing the variance may amplify the signal that does
exist by increasing the scale of the activations.

In short, because changes in the prevalence of a pattern
may result in simple changes in the activations of a feature
detector for that pattern, normalization may be an effective
way to partially undo the effects of some distribution shifts.
This is the property that methods like AdaBN exploit.
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4.3. When Does AdaBN Help the Most?

Geirhos et al. [9] argue that most ImageNet classifiers
are overly reliant on the texture and style of images. This
finding implies that most hidden layers in modern ImageNet
classifiers capture low-level features such as texture or style
more than they capture high-level features such as shape.
Furthermore, AdaBN improves robustness by tweaking the
activations of a trained network. This suggests that it is
mostly “fixing” changes in style, since those are what activa-
tions mainly capture in the first place. Indeed, more abstract
shifts in the distribution might not even register in the activa-
tions of the model because it was not trained to detect those
sorts of features.

Relatedly, Li et al. [18] draw a connection between style
transfer methods and domain adaptation. They show that
simply aligning the Batch Normalization statistics between
two images can be used as an effective method for style
transfer. Similarly, AdaBN aligns the Batch Normalization
statistics between two distributions. This suggests that we
can also interpret AdaBN as doing style transfer between
two distributions, mapping the style of the shifted target
distribution back to that of the original source distribution.

These perspectives predict that AdaBN should improve
accuracy the most on distribution shifts involving changes in
style and local image statistics, at least for current models,
but should not substantially change performance on distri-
bution shifts that involve more high-level, abstract changes.
These predictions are supported by the observation that Ad-
aBN improves accuracy much more on ImageNet-C and
Stylized ImageNet than ImageNetV2. Table 1 shows that
AdaBN yields a relative accuracy improvement of 23% for
ImageNet-C and 43% for Stylized ImageNet, shifts that al-
most exclusively involve changes in the style or texture of
images, whereas it slightly degrades performance on Im-
ageNetV2, a recollected version of ImageNet that should
not have major differences in local image statistics. This
observation is further supported by the results in Schneider
et al. [27], which show that aligning BN statistics also does
not help much with ImageNet-A [12] or ObjectNet [ 1], two
other distribution shift benchmarks that, like ImageNetV2,
do not primarily involve changes in local image statistics.

These findings provide evidence for the idea that AdaBN
improves robustness because it performs a sort of neural
style transfer between the source and target distributions.
While this makes AdaBN particularly well suited for some
types of shift, such as ImageNet-C and Stylized ImageNet, it
also suggests that the lackluster performance of the method
on other types of distribution shifts is an inherent limitation
rather than one that can be easily fixed.

5. Conclusion

Unforeseen Distribution Shifts. Making systems robust
under distribution shift is important for a wide range of ap-
plications [10]. UDA is considered a promising approach
to this problem, but our results show that it must be used
with care. For applications like self-driving cars, UDA meth-
ods should work even when applied to general, unforeseen
distribution shifts. However, we find that aligning batch
normalization statistics may actually degrade robustness on
shifts that can arise in practice. These limitations call into
question the practical utility of aligning batch normaliza-
tion statistics to improve robustness, especially for use in
high-stakes applications.

Learning Representations. We also find that AdaBN dis-
proportionately improves robustness on distribution shifts
that mainly involve changes in local image statistics, such
as changes in style or texture. It cannot help as much on
distribution shifts involving changes in higher-level features
because it only tweaks the activations of a trained network,
which may not capture information about the high-level fea-
tures that changed. This limitation suggests that to improve
robustness for more general distribution shifts, it may be
necessary to focus on learning robust representations rather
than on modifying the activations of trained networks.

On the other hand, UDA methods that require additional
training typically do so at test time. This is too slow for
applications such as autonomous vehicles for which it is
necessary to make predictions efficiently. These drawbacks
may make typical UDA methods a less promising approach
to improving model robustness than other techniques that
train models to have broadly robust feature representations,
such as architectural changes [22] or data augmentation [ 1].

Future Work. To the best of our knowledge, there has
been limited work on investigating how distribution shifts
affect low-level network activations in a fine-grained way.
Building on our work by analyzing these effects in more
detail may yield additional insights into distribution shifts
and the learned feature representations, and may help us
develop better methods for improving robustness.

Furthermore, while there are theoretical justifications of
feature alignment, they do not adequately explain when or
why these methods work well in practice (Section 2). We
conceptually and empirically addressed this in detail in the
case of AdaBN, a particularly simple but effective method.
Future work should more carefully identify when and why
other methods for robustness are effective in practice.

Finally, we identified numerous drawbacks of current
approaches to UDA. Future work should address these short-
comings to make these methods more useful and reliable for
important applications.
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