
Exponential Moving Average Normalization

for Self-supervised and Semi-supervised Learning

Zhaowei Cai, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Zhuowen Tu, Stefano Soatto

Amazon Web Services

{zhaoweic,ravinash,smmaji,fowlkec,ztu,soattos}@amazon.com

Abstract

We present a plug-in replacement for batch normaliza-

tion (BN) called exponential moving average normaliza-

tion (EMAN), which improves the performance of exist-

ing student-teacher based self- and semi-supervised learn-

ing techniques. Unlike the standard BN, where the statis-

tics are computed within each batch, EMAN, used in the

teacher, updates its statistics by exponential moving aver-

age from the BN statistics of the student. This design re-

duces the intrinsic cross-sample dependency of BN and en-

hances the generalization of the teacher. EMAN improves

strong baselines for self-supervised learning by 4-6/1-2

points and semi-supervised learning by about 7/2 points,

when 1%/10% supervised labels are available on ImageNet.

These improvements are consistent across methods, network

architectures, training duration, and datasets, demonstrat-

ing the general effectiveness of this technique. The code will

be made available online.

1. Introduction

Supervised learning has achieved remarkable success on

a variety of visual tasks, benefiting from the availability of

large-scale annotated datasets such as ImageNet [37], MS-

COCO [31], and ShapeNet [6]. However, in some domains

such as medical imaging, large amounts of annotations are

expensive or time-consuming to collect. Learning effective

representations with small amounts (semi-supervised) or no

(unsupervised or self-supervised) manual annotation is thus

an important problem in computer vision [3, 8, 9, 17, 19, 28,

29, 39, 41, 45].

Although many choices exist for semi- and self-

supervised learning [3,15,29,34,50], an effective approach

is the family of student-teacher models [9, 17, 19, 22, 28,

41, 47], where the outputs of the teacher are used to guide

the learning of the student on the unlabeled data. Within

this family, a common approach is to update the teacher

using exponential moving average (EMA) of the student

student

BN

BN

teacher

BN

BN

im_v1 im_v2

EMA

out_v1 out_v2

student

BN

BN

teacher

EMAN

EMAN

im_v1 im_v2

EMA

out_v1 out_v2

loss loss

Figure 1. The EMA-teacher framework with standard BN (left)

and the proposed EMAN (right). θ are the model parameters, and

µ and σ2 BN statistics. EMA denotes exponential moving average

updates. im v1 and im v2 are two different views of the same

image. No gradient is backpropagated through the teacher model.

parameters over its training trajectory [41], which we call

EMA-teacher, as shown in Figure 1 (left). As discussed

in [1,24,26], the temporally averaged teacher, as interpreted

as the temporal ensembling of the student checkpoints, can

improve generalization. Due to this property, it has been

adopted in recent self-supervised learning methods [17,19].

While the objective and the update mechanisms are dif-

ferent for the student and the teacher, both networks use

the standard batch normalization (BN) [25], as in the early

EMA-teacher frameworks [41]. However, this can lead to

two potential problems:

1. Cross-sample dependency. This is an intrinsic prop-

erty of BN where the output of a sample is dependent

on all other samples in the same batch. This cross-

sample information leakage may allow the model to

“cheat” in semi- or self-supervised learning. To avoid

this, some special designs on normalization were ap-

plied in [8, 17, 19, 21]. For example, [21] switched

to layer normalization [2]; MoCo [19] designed Shuf-

fleBN where a mini-batch uses BN statistics from other

randomly sampled mini-batch; and SimCLR [8] and

BYOL [17] used Synchronized BN (SyncBN).

2. Model parameter mismatch. In the teacher network, its

parameters are averaged from the student parameters

194

of previous iterations, but the batch-wise BN statistics

are instantly collected at current iteration. This could

lead to potential mismatch between the model param-

eters and the BN statistics in the parameter space.

We present a simple replacement for standard BN used

in the EMA-teacher framework, called exponential mov-

ing average normalization (EMAN). As shown in Figure

1 (right), the EMAN statistics (mean µ′ and variance σ′2)

in the teacher are exponentially moving averaged from the

student BN statistics, similar to the other parameters. The

EMAN is simply a linear transform, without batch-wise

statistics computation, and thus has removed cross-sample

dependency presented in BN in the teacher. Since the nor-

malization statistics and model parameters are both updated

using EMA, we expect this to improve stability of train-

ing by reducing the potential model parameter mismatches

when using BN. This simple design requires only a few

lines of code, and can replace other complex normaliza-

tion schemes (e.g. ShuffleBN, SyncBN, etc.) within various

semi- and self-supervised learning techniques.

We have evaluated EMAN within various EMA-

teacher frameworks, including recent state-of-the-art semi-

supervised learning (FixMatch [39]) and self-supervised

learning (MoCo [19] and BYOL [17]) techniques. On self-

supervised learning, EMAN improves the performance of

MoCo/BYOL by 4-6/1-2 points when 1%/10% labels are

available on ImageNet [37]. On semi-supervised learning,

EMAN improves the performance of FixMatch by about 7/2

points for 1%/10% labels, leading to the new state-of-the-

art performances of 63.0/74.0 top-1 accuracy for 1%/10%

labels on ImageNet. These improvements are consistent

across methods, network architectures, training duration,

and datasets, demonstrating the effectiveness of EMAN as

a general technique. In addition, EMAN is just as efficient

as standard BN, and does not require cross-GPU commu-

nication or synchronization of ShuffleBN or SyncBN. We

thus believe that EMAN can be of interest for other future

student-teacher variants.

2. Related Work

Semi-supervised learning leverages unlabeled data to

improve the model performance, and has a long history

in machine learning [7, 51]. We primarily focus on re-

cent deep-learning based approaches. Pseudo-Labeling [29]

generates synthetic labels from the confident predictions to

learn on the unlabeled data. Temporal ensembling of pre-

dictions was proposed to improve robustness in [28]. Con-

sistency regularization based methods [28, 33, 39, 41] learn

by requiring the predictions to be consistent after perturba-

tions on inputs and/or model parameters. For example, Π-

model [28] perturbs the model weights, uses dropout [40],

and enforces that the clean and noisy predictions be consis-

tent. Mean-teacher [41] proposed the EMA-teacher frame-

work, and learns by enforcing consistency between the stu-

dent and teacher models. FixMatch [39] assumes consis-

tency between the weakly and strongly augmented inputs.

A broader survey of semi-supervised learning techniques

can be found in [7, 51].

Unsupervised or self-supervised learning aims to learn

representations from data without annotations. It has been

particularly effective in natural language processing [12,

36]. Early self-supervised learning approaches in computer

vision were based on proxy tasks, e.g. solving jigsaw puz-

zles [34], colorization [50] and rotation prediction [15]. Re-

cently, the contrastive learning [18] using instance discrim-

ination has achieved promising results [8, 9, 19, 32, 42, 45].

For example, MoCo [19] and SimCLR [8, 9] have nar-

rowed the gap between supervised and unsupervised learn-

ing in some domains. BYOL [17] found that, instead of

a contrastive loss, optimizing a feature regression loss can

achieve better results than prior work [8,9,19]. An extensive

survey of self-supervised learning can be found in [27].

The student-teacher framework was first introduced

in [4] and developed in [22] to distill knowledge from the

pretrained teacher model to the new student model. While

in [9,22], the teacher is a pretrained and frozen model, other

variants are available for different purposes. For example,

in [39] the teacher and the student are identical; in [38] the

teacher is an ensemble of multiple networks; in [4, 9, 22]

the teacher is a more complex network than the student for

model compression; in [28] the teacher is a temporal en-

semble of student checkpoints with the step of one epoch;

in [17, 19, 41], the teacher is a more smoothly temporal en-

semble than [28] by exponential moving average.

Normalization is a critical component to enable faster

convergence and reduce the dependency on initialization for

modern deep networks. While BN [25] is widely used, it in-

troduces some issues, such as requiring large batch sizes for

accurate statistics, and mismatch between how BN is used

during training and inference. To address these, other nor-

malization techniques have been proposed. Layer Normal-

ization (LN) [2] normalizes along the channel and spatial

dimension, Instance Normalization (IN) [43] along only the

spatial dimension, and Group Normalization (GN) [44] op-

erates similar to LN but divides the channels into groups.

MABN [48] shares some similarities with our EMAN, but

mainly focuses on the stability of small batch size training

and updates its statistics inside a single network. In self-

supervised learning, to avoid the possible information leak-

age via BN, [21] used LN, SimCLR [8] and BYOL [17]

use SyncBN, and MoCo [19] uses ShuffleBN where a mini-

batch uses BN statistics from other randomly sampled mini-

batch. Although these normalization schemes work well in

some specific cases, our experiments will show that they do

not generalize well across various semi- and self-supervised

learning methods.

195

3. Preliminaries

3.1. EMA­Teacher Framework

The EMA-teacher framework, with architecture shown

in Figure 1 (left), was first introduced in the Mean Teacher

[41], to improve the non-smooth temporal ensembling of

[28]. The teacher parameters θ′ are updated by exponential

moving average (EMA) from the student parameters θ,

θ′ := mθ′ + (1−m)θ, (1)

where the momentum m is a number close to 1, e.g. 0.999.

The student network is exactly the same as the standard su-

pervised network, where the parameters θ are learned by

standard SGD. In general, there is no gradient backpropa-

gation through the teacher model, and the teacher model is

discarded once training finished.

This EMA teacher can be interpreted as a smooth tempo-

ral ensembling of the student checkpoints along the training

trajectories. As discussed in [1,24,26], this temporal weight

averaging mechanism can stabilize training trajectories and

present better performances than the standard SGD update.

In consistency based semi- and self-supervised learning,

training could be less stable [1], where the EMA-teacher

framework with improved generalization can help. Due to

its good performance, this EMA-teacher has derived differ-

ent variants for different tasks [17, 19].

While the EMA-teacher has the special update rule for

the learnable parameters, it does not for its normalization

operators. Instead, the standard BN is used in both student

and teacher models as in [41].

3.2. Batch Normalization

BN [25] can stabilize the learning and enable faster con-

vergence, and thus has been widely adopted. It has differ-

ent training and inference modes. During training, BN first

computes the mean and the variance of the layer inputs for

the current batch {xi}ni=1,

µB =
1

n

n
∑

i=1

xi,

σ2
B =

1

n

n
∑

i=1

(xi − µB)
2,

(2)

where n is batch size. Next, every sample x in the current

batch is normalized using the batch-wise statistics µB and

σ2
B

, and then an affine transformation with learnable param-

eters γ and β is applied,

x̂ = BN(x) = γ
x− µB
√

σ2
B
+ ǫ

+ β, (3)

where ǫ is a small constant for numerical stability.

At inference, however, it is not desirable to use the batch-

wise statistics, µB and σ2
B

, since the output of an input

should be deterministic and not dependent on other inputs in

the same batch. The population statistics, E[µ] and E[σ2],
should be used instead. But this requires an additional stage

of statistics gathering on a large sample population, which

could be undesirable. In many implementations, a more

practical and efficient strategy is widely used, collecting the

proxy statistics µ and σ2 by exponential moving average

during training,

µ := αµ+ (1− α)µB,

σ2 := ασ2 + (1− α)σ2
B,

(4)

where the momentum α here is usually 0.9. With the proxy

statistics µ and σ2, the BN at inference becomes

x̂ = BN(x) = γ
x− µ√
σ2 + ǫ

+ β, (5)

which differs from its training mode of (3). This practical

strategy is very common in many implementations, e.g. as

default in PyTorch and TensorFlow.

4. Exponential Moving Average Normalization

In the EMA-teacher framework, as introduced in Section

3.1, both the student and the teacher use the standard BN

during training,

y = f(BN(x), θ),

y′ = f(BN(x), θ′).
(6)

where f is the intermediate layers of relu-conv, which

takes the output of normalization as input. The standard

BN is well aligned with the model parameters for a typical

network (e.g. the student) which is updated by SGD, since

the parameters are optimized with those batch-wise statis-

tics. However, it is no longer the case for the teacher that

is updated by EMA. Two reasons suggested that. First, the

teacher is used to generate pseudo ground-truth to guide the

learning of the student. With batch-wise BN, these gener-

ated pseudo labels will be cross-sample dependent, which

is not desirable. For example, the pseudo label of x1 is de-

pendent on x2 if x1 and x2 are in the same training batch.

Second, there is a possible mismatch between the model pa-

rameters θ′ and batch-wise BN statistics (µB and σ2
B

) in the

teacher model. The former is averaged from the student pa-

rameters of previous iterations, but the latter is instantly col-

lected at current iteration, and the former is not optimized

for the latter. This mismatch could lead to non-smoothness

in the parameter space.

To resolve these issues, we propose using exponential

moving average normalization (EMAN) for the teacher dur-

ing training (student still uses BN),

y′ = f(EMAN(x), θ′), (7)

196

Algorithm 1 PyTorch-like Pseudocode of EMAN Update

f_s, f_t: encoder networks for student and teacher

params_s = f_s.parameters() # learnable parameters
params_t = f_t.parameters() # learnable parameters
for s, t in zip(params_s, params_t):

t = momentum*t + (1-momentum)*s

buffers_s = f_s.buffers() # BatchNorm proxy statistics
buffers_t = f_t.buffers() # BatchNorm proxy statistics
for s, t in zip(buffers_s, buffers_t):

t = momentum*t + (1-momentum)*s

where

x̂ = EMAN(x) = γ
x− µ′

√
σ′2 + ǫ

+ β, (8)

where µ′ and σ′2 are also exponentially moving averaged

from the student µ and σ2, in the same way of (1),

µ′ := mµ′ + (1−m)µ,

σ′2 := mσ′2 + (1−m)σ2.
(9)

The key difference between (3) and (8) is the normaliza-

tion factors. They are batch-wise µB and σ2
B

in (3), but

EMA updated µ′ and σ′2 in (8). This new normalization

technique for the teacher is simply a linear transform which

is no longer dependent on batch statistics. EMAN elim-

inates cross-sample dependence in the teacher, and there

is no mismatch between the model parameters (θ′) and its

normalization factors (µ′ and σ′2). Note that although the

student is still cross-sample dependent, this is a less seri-

ous issue than the cross-sample dependency in the teacher.

EMAN is better aligned with the EMA-teacher framework

than the standard BN (and probably other normalization),

and as we show next, it is generally applicable in different

EMA-teacher variants for different tasks [17, 19, 39, 41].

4.1. Applications

We have applied EMAN to recent state-of-the-art semi-

supervised learning (FixMatch [39]) and self-supervised

learning (MoCo [19] and BYOL [17]) methods. Applying

EMAN to these three techniques is simple, requiring a few

lines of code change, as shown in Algorithm 1, where the

learnable parameter update is adopted as in [17, 19, 41].

FixMatch [39] uses identical teacher and student mod-

els, with architecture shown in Figure 2 (left). The teacher

generates pseudo labels after thresholding, which are then

used to guide the learning of the student with standard

cross-entropy loss. A tricky mechanism in FixMatch is to

concatenate the strongly and weakly augmented images first

and then forward them to the model together. In this case,

the teacher and the student are using exactly the same BN

statistics. We first reframe FixMatch in the EMA-teacher

framework (with standard BN), motivated by its success.

However, this change leads to much worse performance,

with possible reasons discussed above in this section.

cat(im_s, im_w)

logit_wlogit_s

pseudo-label

network

BN

BN

student

BN

BN

teacher

EMAN

EMAN

im_s im_w

EMA

logit_s logit_w

pseudo-label
CE lo

ss
CE loss

Figure 2. The architecture change of FixMatch using EMAN.

im s/im w is the strongly/weakly augmented view of an image,

cat concatenation. The other symbols are similar as Figure 1.

MoCo [19] has bridged the gap between supervised and

unsupervised learning in multiple visual tasks. It can be

interpreted as a variant of EMA-teacher, where the key

(teacher) model is EMA updated from the query (student)

model, and a contrastive loss is constructed between their

outputs. MoCo also found it problematic to use BN in both

student and teacher, due to possible information leakage.

The model would probably “cheat” with local BN statis-

tics to find a low-loss trivial solution rather than learning

good representations. Instead, MoCo uses ShuffleBN in the

teacher, in which the batch-wise BN statistics are computed

inside a randomly shuffled mini-batch samples across dis-

tributed GPUs. This ensures that the batch statistics used

to compute the query and the key come from two different

subsets, avoiding the cheating issue to some extent.

BYOL [17] can also be interpreted as a EMA-teacher

variant similar to MoCo, although the student/teacher is

named as online/target network. It differs from the other

contrast based self-supervised learning [8,19,45] by formu-

lating the self-supervised learning problem as a regression

task, bridging the student and teacher outputs with a simple

L2 loss. [14] hypothesizes that the reason why BYOL does

not need contrastive loss is BN also plays an role of im-

plicit contrast term, not just normalization. To have stronger

implicit contrast and avoid knowledge leakage, SyncBN is

adopted in both student and teacher models, in which the

BN statistics are collected globally across GPU cards and

machines. This requires efficient synchronization technique

and leads to slower training speed.

Our experiments show that using standard BN in both

teacher and student models results in poor performances

in all these three techniques. Although different solutions

have been proposed to avoid that, e.g. Shuffle BN in MoCo

and SycnBN in BYOL, they do not generalize well in other

techniques as will be shown in our experiments. To have

a general and simpler solution, we apply EMAN in all

197

0 10 20 30 40 50 60 70 80 90 100

epoch

0

10

20

30

40

50

60

70

to
p

-1
 a

c
c
u

ra
c
y
 (

%
)

FixMatch on ImageNet with 10% Labels

baseline

BN

EMAN

(a)

0 10 20 30 40 50 60 70 80 90 100

epoch

0

5

10

15

20

25

30

35

40

45

to
p

-1
 a

c
c
u

ra
c
y
 (

%
)

MoCo KNN Accuracy on ImageNet

ShuffleBN

BN

EMAN

(b)

0 5 10 15 20 25 30 35 40 45 50

epoch

0

5

10

15

20

25

30

35

40

45

to
p

-1
 a

c
c
u

ra
c
y
 (

%
)

BYOL KNN Accuracy on ImageNet

SyncBN

BN

EMAN

(c)

Figure 3. The training accuracy curves of FixMatch, MoCo and BYOL on ImageNet, by using different normalization schemes.

three techniques, as in Figure 1 and 2. EMAN can im-

prove over the standard BN by a large margin, and even

surpass the ShuffleBN/SyncBN counterparts, universally in

FixMatch/MoCo/BYOL. In addition, the training will be

simpler and more efficient since EMAN requires no cross-

GPU communication or synchronization as needed in Shuf-

fleBN/SyncBN. We expect EMAN to be applicable to other

student-teacher variants.

5. Experiments

ImageNet [37] is mainly used in all experiments, which

contains ∼1.28 million images for training and 50K images

for validation. The proposed EMAN has been evaluated on

the state-of-the-art self-supervised learning (MoCo [19] and

BYOL [17]) and semi-supervised learning (FixMatch [39]).

For MoCo, the official implementation was used, but Fix-

Match and BYOL were reimplemented in PyTorch [35].

The default network is ResNet-50 [20] and the default hy-

perparameters in the corresponding papers were used, un-

less noted otherwise. For FixMatch, the batch size for la-

beled (unlabeled) images is 64 (320) with initial learning

rate 0.03. For BYOL, the batch size is 512 with initial

learning rate 0.9. All experiments were run on a machine

with 8 V100 GPU cards. The self-supervised pretrained

models were evaluated by 1) linear classification follow-

ing [8, 9, 17, 19]; and 2) kNN classification with k = 20
following [5,30,45,52], on top of the frozen representation.

The other settings will be introduced in the following spe-

cific experimental sections. More experimental details can

be found in the appendix.

5.1. The Effect of EMAN

The effect of the proposed EMAN was evaluated. For

FixMatch, only 10% labels were used and the rest data as

unlabeled. For MoCo and BYOL, we showed the accura-

cies of the kNN classifier along the training, since it is too

expensive to train additional linear classifier. The kNN clas-

sifier used 10% train (50% val) as training set (query)

student teacher FixMatch MoCo BYOL

default default 67.1 54.4 55.4

BN BN 58.9 52.5 52.0

SyncBN SyncBN 52.0 53.3 55.4

BN ShuffleBN 55.8 54.4 52.6

GN GN 63.3 49.3 failed

IN IN 61.3 46.5 failed

BN EMAN 69.2 55.8 56.2

Table 1. Accuracy with different normalization.

for efficiency purpose (the observations are consistent with

all train/val data). FixMatch/MoCo/BYOL was trained

for 100/100/50 epochs, where FixMatch drops learning rate

by 10 times at 60th and 80th epoch, and MoCo/BYOL uses

cosine learning schedule. All training uses linear warm-up

learning rate for 5 epochs.

FixMatch was reframed to the EMA-teacher framework

as in Figure 2, using standard BN, denoted as “BN” in Fig-

ure 3 (a). However, this architecture change leads to much

worse performance than the baseline FixMatch (“base-

line”). Switching to standard BN also leads to worse per-

formance than the baseline MoCo (ShuffleBN) and BYOL

(SyncBN), as shown in Figure 3 (b) and (c). By simply

changing the standard BN to the proposed EMAN in the

teacher model, significant boosts are available in all Fix-

Match/MoCo/BYOL, e.g. roughly 10/6/7 points. This sim-

ple change also surpassed all three very strong baseline Fix-

Match/MoCo/BYOL by about 2/4/3 points.

To check the generalization, SyncBN and ShuffleBN

were also evaluated in the other techniques, as shown in

Table 1, where MoCo and BYOL were measured by lin-

ear classification on 10% labeled data. Although they work

well within their own technique (i.e., ShuffleBN in MoCo

and SyncBN in BYOL), they do not generalize very well

across techniques. For example, SyncBN is 1.1 points

worse than ShuffleBN in MoCo and even 6.9 points worse

than BN in FixMatch; and ShuffleBN is 2.8 points worse

than SyncBN in BYOL and even 3.1 points worse than BN

in FixMatch. In contrast, EMAN generalizes very well in

198

Method
1% labels 10% labels 100% labels

top-1 top-5 top-1 top-5 top-1 top-5

Supervised [3, 20] 25.4 48.4 56.4 80.4 76.1 92.9

L
in

ea
r

MoCo 43.2 71.0 58.8 82.6 67.5 88.1

MoCo-EMAN 48.9 75.3 60.5 83.5 67.7 88.0

MoCo (2×) 51.5 77.6 64.2 86.0 72.4 90.9

MoCo-EMAN (2×) 56.8 80.4 65.7 86.4 72.3 90.6

MoCo (800) 50.4 76.6 63.0 85.4 70.3 90.0

MoCo-EMAN (800) 55.4 79.3 64.0 85.3 70.1 89.3

BYOL 51.3 76.3 64.8 86.2 71.4 90.2

BYOL-EMAN 55.1 78.9 66.7 87.3 72.2 90.7

F
in

et
u

n
e

MoCo 44.8 73.4 63.3 86.1 76.1 92.9

MoCo-EMAN 50.4 77.8 64.9 87.1 76.0 93.0

MoCo (2×) 53.1 79.9 67.9 88.6 79.2 94.6

MoCo-EMAN (2×) 59.2 83.7 69.7 89.8 78.9 94.3

MoCo (800) 50.9 78.1 66.3 87.7 77.2 93.6

MoCo-EMAN (800) 57.4 82.3 68.1 88.5 77.4 93.6

BYOL 52.1 77.3 67.7 88.5 77.0 93.5

BYOL-EMAN 54.6 78.6 68.1 88.6 77.1 93.5

Table 2. The linear and the finetuning evaluation on ImageNet.

The default model is ResNet-50 trained for 200 epochs. “2×”

means ResNet-50 of 2× width and “800” means 800 epochs.

all three techniques and achieved the best results. Other

cross-sample independent normalization techniques were

also evaluated in Table 1, including Group Normalization

(GN) [44] and Instance Normalization (IN) [43]. But they

all lead to inferior performances. Also note that EMAN is

as simple as BN, unlike ShuffleBN in MoCo and SyncBN

in BYOL which rely on cross-GPU communication or syn-

chronization. For example, switching SyncBN to EMAN in

BYOL, the training can be speeded up by about 30% with

PyTorch implementation on a machine with 8 GPUs.

5.2. Self­supervised Evaluation

We self-supervised pre-train MoCo and BYOL models

with EMAN on unlabeled data and then evaluate learned

representations on multiple downstream classification tasks.

Linear Classification and Finetuning The linear and fine-

tuning evaluation were on different percentages of labeled

ImageNet data, including 1%, 10% and 100%. Only the la-

beled data were used in these experiments. For 1% (10%)

labels, five (three) different sets of samples were run and

the averaged numbers are shown in Table 2. We searched

the best learning rate from {15,30,60} ({0.2,0.4,0.8}) for

MoCo (BYOL) linear evaluation, since they are quite sen-

sitive in these experiments. When finetuning, we found it

was important to have different learning rates for the pre-

trained encoder and the randomly initialized top classifier.

We thus used learning rate of 1.0 (0.1) for top classifier for

1% (10%) labels, and searched the best learning rate from

{0.0001,0.001,0.01} for the pretrained encoder when fine-

tuning. All experiments were trained for 50 epochs, with

Method Arch Epochs
1% labels 10% labels

top-1 top-5 top-1 top-5

Supervised [3] res50 100 25.4 48.4 56.4 80.4

InstDisc [45] res50 - - 39.2 - 77.4

PIRL [32] res50 800 - 57.2 - 83.5

CPC v2 [21] res161 - 52.7 77.9 73.1 91.2

MoCo-v2 [10] res50 800 50.9 78.1 66.3 87.7

SimCLR [8] res50 1000 48.3 75.5 65.6 87.8

PCL [30] res50 200 - 75.6 - 86.2

SwAV [5] res50 800 53.9 78.5 70.2 89.9

BYOL [17] res50 1000 53.2 78.4 68.8 89.0

MoCo-EMAN res50 800 57.4 82.3 68.1 88.5

BYOL-EMAN res50 200 55.1 78.9 68.1 88.6

Table 3. Comparison with other self-supervised models.

learning rate dropped by 10 times at 30th and 40th epoch.

For linear evaluation in Table 2, while EMAN models

have comparable performances as the baselines for 100%

labels, they improve over the baselines by 1-2 points of top-

1 accuracy for 10% labels. The gains become bigger (4-5

points) when only 1% labels are available. The observa-

tions are consistent across different techniques (MoCo and

BYOL), different architectures (ResNet-50 and ResNet-50

of 2× width), and different epochs (200 and 800). Note that

the evaluation on 1%/10% labels is more practical than that

on 100% labels, since when full dataset is annotated, the

advantage of self-supervised pretraining will be reduced.

For example, compared with supervised baseline, the self-

supervised models are usually worse for 100% labels, but

have significant gains (>30/10 points) for 1%/10% labels,

indicating the self-supervised pretraining is much more use-

ful when there is insufficient supervision available.

Finetuning usually achieved better results than the linear

classification, in Table 2, with increasing gains for more an-

notations, but they could be worse if the hyperparameters

are not carefully tuned as introduced above, especially for

fewer labels. The gains by EMAN over those strong base-

lines are still consistent with the linear classification, and

even larger in most of the experiments with 1% labels.

Comparison with the State-of-the-art The EMAN mod-

els were compared with the state-of-the-art self-supervised

learning methods for 1%/10% labels in Table 3. To have

fair comparison, only the results of ResNet-50 was shown

where possible. The reported BYOL [17] was pretrained

for 1000 epochs, with 53.2/68.8 top-1 accuracy for 1%/10%

labels, but our BYOL-EMAN achieved 55.1/68.1, which

was pretrained only for 200 epochs. Our MoCo-EMAN

achieved the accuracy of 57.4 for 1% labels, which is much

higher than the other methods in the table, and 68.1 for 10%

labels. Note that, the comparison between these methods is

not completely fair. For example, the SwAV [5], with higher

accuracy for 10% labels, used much more expensive multi-

crop strategy, which could also benefit our EMAN models.

199

Method Epochs
kNN retrieval

top-1 mAP recall

Supervised 90 74.8 57.9 37.0

MoCo 200 54.5 32.4 18.5

MoCo-EMAN 200 58.0 39.8 24.3

MoCo 800 60.0 41.4 25.6

MoCo-EMAN 800 62.8 47.9 30.5

BYOL 200 62.8 37.5 20.1

BYOL-EMAN 200 64.9 39.8 20.4

InstDisc [45] - 46.5 - -

LA [52] - 49.4 - -

PCL [30] 200 54.5 39.5† 24.2†

SwAV [5] 800 59.2 35.9† 17.5†

Table 4. The kNN and image retrieval evaluation on ImageNet. †

indicates numbers run by us from the pretrained model.

kNN Classification and Image Retrieval Although the

linear classification is a common strategy to evaluate the

self-supervised models in recent years [8,17,19], it requires

additional training, which is not the most direct way to eval-

uate the representations. Instead, we also compared the

kNN accuracies on full train/val data in Table 4, fol-

lowing [5, 30, 45, 52]. With this more direct evaluation, the

EMAN still has consistent improvements over the MoCo

and BYOL baselines. And they also outperform [45, 52]

and recent PCL [30] and SwAV [5].

We also evaluate on the task of image retrieval (find the

most relevant entries for each query) on ImageNet which

also requires no additional training. This task is a prac-

tical application of self-supervised pretraining, since the

accurate annotations are usually unavailable in many sce-

narios of image retrieval. We used train as the retrieval

database and val as queries, and followed [49] to use the

top 1000 retrievals for the evaluation of mean averaged pre-

cision (mAP) and recall. Table 4 shows the EMAN also has

consistent and nontrivial improvements over the baselines

for this task. The PCL [30] and SwAV [5] are compared,

but they have shown much worse results.

It has also been shown that the unsupervised learning

is still lagging behind supervised learning for kNN classi-

fication and image retrieval, although SwAV [5] has pre-

sented minor gap to supervised learning for linear evalua-

tion. However, the EMAN models can learn better feature

representations for these two tasks.

Low-shot Classification Given the superior performances

of EMAN in the regimes of few annotations in Table 2, low-

shot classification was evaluated, with k samples per class.

Following [16, 30], we trained linear SVMs [11] on top of

the frozen representations. We searched the best SVM cost

parameter C ∈ 2[−5,5], and averaged the numbers of 5 dif-

ferent sets of samples.

The results in Table 5 have demonstrated that EMAN

still improves the MoCo/BYOL baselines in low-shot cases,

Method Epochs k=1 k=2 k=4 k=8 k=16

Im
ag

eN
et

Supervised 90 46.8 57.2 64.4 68.6 71.0

PCL [30]† 200 29.5 36.3 42.3 46.9 50.9

SwAV [5]† 800 23.5 33.6 43.5 51.7 57.8

MoCo 200 22.8 28.7 34.7 40.7 46.0

MoCo-EMAN 200 29.3 36.0 41.6 46.9 50.8

MoCo 800 31.4 38.3 44.1 49.5 53.9

MoCo-EMAN 800 35.8 43.7 49.8 54.0 57.2

BYOL 200 25.6 34.2 42.5 49.4 54.7

BYOL-EMAN 200 27.4 36.8 45.6 52.6 57.5

V
O

C
0

7

Supervised 90 56.0 69.6 74.9 79.9 82.7

PCL [30] 200 47.9 59.6 66.2 74.5 78.3

MoCo 200 47.0 58.9 65.3 72.5 76.3

MoCo-EMAN 200 50.1 59.7 67.2 74.1 77.9

BYOL 200 42.8 55.4 63.2 72.8 77.7

BYOL-EMAN 200 44.6 56.5 65.4 73.9 78.8

iN
at

u
ra

li
st MoCo 1000 21.1 25.4 31.3 36.2 41.8

MoCo-EMAN 1000 24.0 28.4 33.3 38.0 41.7

BYOL 200 16.8 22.3 29.0 35.0 40.4

BYOL-EMAN 200 18.0 23.9 30.5 36.3 41.5

Table 5. The low-shot evaluation. † indicates numbers run by us

from the pretrained model.

Method Pretrained Schd.
1% labels 10% labels

top-1 top-5 top-1 top-5

baseline None 1× - - 67.1 86.7

EMAN None 1× - - 69.2 88.3

baseline MoCo 1× 51.2 73.5 70.2 89.0

EMAN MoCo 1× 58.1 80.4 72.0 90.2

EMAN MoCo-EMAN 1× 60.9 82.5 72.6 90.5

baseline None 3× - - 71.1 88.9

EMAN None 3× - - 72.8 90.3

EMAN MoCo 3× 61.4 82.1 73.9 91.0

EMAN MoCo-EMAN 3× 63.0 83.4 74.0 90.9

Table 6. The FixMatch results on ImageNet.

as low as k = 1 sample per class. For example, in the ex-

periments of ImageNet, MoCo-EMAN is about 4-6 points

better than MoCo. The gains for BYOL are smaller, but still

1-3 points. Note that, our MoCo-EMAN can achieve 35.8%

top-1 accuracy for 1000-way 1-shot ImageNet, which is

12.3 points higher than SwAV [5]. Pascal VOC2007 [13]

and iNaturalist [23] have also been tested. Since the domain

of VOC is similar to ImageNet, we directly used the frozen

ImageNet representations for VOC experiments. However,

it is not the case for iNaturalist, where ImageNet represen-

tations have poor performances, so we train MoCo/BYOL

from scratch on iNaturalist for 1000/200 epochs. The im-

provements by EMAN are still consistent on both datasets.

5.3. Semi­supervised Evaluation

The semi-supervised learning experiments of FixMatch

are shown in Table 6, where “1×” means training 50 (100)

epochs with learning rate dropped at 30/40th (60/80th)

200

Method Arch
1% labels 10% labels

top-1 top-5 top-1 top-5

Supervised [3] res50 25.4 48.4 56.4 80.4

Pseudo-label [3, 29] res50 - 51.6 - 82.4

S4L Rotation [3] res50 - 53.4 - 83.8

UDA [46] res50 - - 68.8 88.5

FixMatch [39] res50 - - 71.5 89.1

SimCLR-v2 [9] res50 60.0* - 70.5* -

FixMatch-EMAN res50 63.0 83.4 74.0 90.9

Table 7. The comparison with other semi-supervised models. *

means rough numerical estimates from the plots since no exact

numbers for ResNet-50, self-distilled, were reported in [9].

epoch, for 1% (10%) labels. For 10% labels, the top-1 ac-

curacy is improved to 69.2 by EMAN from the baseline

of 67.1. No results were reported for 1% labels since the

default hyperparameters do not work very well. The de-

fault FixMatch is trained from scratch. However, as seen

in Section 5.2, the self-supervised pretrained models can be

a significant help for semi-supervised scenarios. Therefore,

we also trained FixMatch initialized from the self-suprvised

pretrained models, with initial learning rate of 0.003. When

finetuned from MoCo, the 1× baseline FixMatch has 3.1

points of improvement and FixMatch-EMAN 2.8 points for

10% labels. For 1% labels, the gains by EMAN over the

baseline FixMatch become bigger (∼7 points). When fine-

tuned from MoCo-EMAN, additional gains are available,

which is consistent with the observations of Section 5.2. Fi-

nally, we have trained 3× longer models with cosine learn-

ing rate schedule, and the improvements are still consistent.

Comparison with the State-of-the-art The FixMatch-

EMAN models are compared with the state-of-the-art semi-

supervised methods in Table 7. For 10% labels the proposed

FixMatch-EMAN achieves 74.0 top-1 accuracy, beating out

the original FixMatch [39] by 2.5 points. Note that this is

very close to the fully supervised learning accuracy of 76.1

in Table 2. For 1% labels, the best previously reported re-

sults are SimCLR-v2 of roughly 60.0, with knowledge dis-

tillation being trained for 300 epochs after self-supervised

pretraining and semi-supervised finetuning. Our FixMatch-

EMAN achieved 63.0, which is about 3.0 points higher than

SimCLR-v2, with simpler pipeline and fewer epochs (150).

Finally, we note the specifically designed semi-supervised

learning algorithms (in Table 7) outperform self-supervised

pre-trainning followed by semi-superivised finetuning (in

Table 3) for annotation insufficient scenarios.

5.4. Ablation Studies

The ablation experiments, with results in Table 8, fol-

lowed the experimental settings of Table 1. MoCo and

BYOL were evaluated by linear classification as in Section

5.2 on 10% labeled data.

student teacher FixMatch MoCo BYOL

default default 67.1 54.4 55.4

BN BN 58.9 52.5 52.0

BN EMAN 69.2 55.8 56.2

BN EMAN (m=0.9) 69.0 51.2 -

BN EMAN (m=0.99999) 54.6 failed -

BN teacher PN (α=0.9) 61.4 54.6 52.4

BN student PN (α=0.9) 68.6 52.4 failed

BN teacher PN (α=0.999) 60.9 55.5 54.8

BN student PN (α=0.999) 69.2 55.7 56.2

Table 8. The ablation experiments. “PN” means proxy norm, m

EMAN momentum of (9) and α BN momentum of (4).

EMAN Momentum We have tested different EMAN mo-

mentums of (9), but the momentum for parameter update of

(1) is remained the same 0.999 as in [19, 41]. When m =
0.9 of EMAN, the statistics are updated much faster than the

parameters, and the accuracy drops for MoCo but remains

almost the same for FixMatch. When m = 0.99999, the

statistics are updated much slower, and both MoCo and Fix-

Match have much worse performances. These have shown

that the normalization statistics should well aligned with the

parameters to ensure stable performance.

Other EMAN-similar Designs Two other designs, achiev-

ing similar goals of EMAN in Section 4, were also evalu-

ated. Both of them use (8) in the teacher during training,

but the difference is what proxy statistics µ′ and σ′2 to use.

The first design is to use the collected proxy statistics of

the teacher following (4) up to the previous iteration. This

is similar to run the inference mode (5) during training in

standard BN, but update the proxy statistics using (4) on the

fly. The second design is to simply copy the proxy statistics

from the student, by setting m = 0 in (9). They are denoted

as “teacher PN” and “student PN” in Table 8, respectively.

When using the default BN momentum α = 0.9, both de-

signs usually lead to worse performance than EMAN. By

setting α = 0.999 to have better aligned statistics with

the parameters, better results are available, and the “student

PN” achieved very close performances to EMAN.

6. Conclusion

In this paper, we proposed a simple normalization tech-

nique, exponential moving average normalization (EMAN),

for EMA-teacher based semi- and self-supervised learning.

It resolves the issues of cross-sample dependency and pa-

rameter mismatch when using the standard BN in EMA-

teacher framework. This simple design improves the state

of the art in semi- and self-supervised learning. These im-

provements are consistent across different techniques, net-

work architectures, training duration, and datasets, showing

that EMAN is generally applicable.

201

References

[1] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and An-

drew Gordon Wilson. There are many consistent explana-

tions of unlabeled data: Why you should average. In ICLR,

2019. 1, 3

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016. 1, 2

[3] Lucas Beyer, Xiaohua Zhai, Avital Oliver, and Alexander

Kolesnikov. S4L: self-supervised semi-supervised learning.

In ICCV, pages 1476–1485, 2019. 1, 6, 8

[4] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-

Mizil. Model compression. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery

and data mining, pages 535–541, 2006. 2

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learn-

ing of visual features by contrasting cluster assignments. In

NeurIPS, 2020. 5, 6, 7

[6] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, et al. Shapenet: An

information-rich 3d model repository. arXiv:1512.03012,

2015. 1

[7] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien.

Semi-supervised learning (chapelle, o. et al., eds.; 2006).

IEEE Transactions on Neural Networks, 20(3):542–542,

2009. 2

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In ICML, volume 119, pages 1597–

1607, 2020. 1, 2, 4, 5, 6, 7

[9] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad

Norouzi, and Geoffrey Hinton. Big self-supervised models

are strong semi-supervised learners. In NeurIPS, 2020. 1, 2,

5, 8

[10] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv:2003.04297, 2020. 6

[11] Corinna Cortes and Vladimir Vapnik. Support-vector net-

works. Mach. Learn., 20(3):273–297, 1995. 7

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: pre-training of deep bidirectional trans-

formers for language understanding. In NAACL-HLT, pages

4171–4186, 2019. 2

[13] Mark Everingham, Luc Van Gool, Christopher K. I.

Williams, John M. Winn, and Andrew Zisserman. The pas-

cal visual object classes (VOC) challenge. Int. J. Comput.

Vis., 88(2):303–338, 2010. 7

[14] Abe Fetterman and Josh Albrecht. Understanding self-

supervised and contrastive learning with bootstrap your own

latent (byol). https://untitled-ai.github.io/understanding-self-

supervised-contrastive-learning.html, 2020. 4

[15] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. In ICLR, 2018. 1, 2

[16] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan

Misra. Scaling and benchmarking self-supervised visual rep-

resentation learning. In ICCV, pages 6390–6399, 2019. 7

[17] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-

ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-

mad Gheshlaghi Azar, et al. Bootstrap your own latent: A

new approach to self-supervised learning. In NeurIPS, 2020.

1, 2, 3, 4, 5, 6, 7

[18] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-

ality reduction by learning an invariant mapping. In CVPR,

pages 1735–1742, 2006. 2

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and

Ross B. Girshick. Momentum contrast for unsupervised vi-

sual representation learning. In CVPR, pages 9726–9735,

2020. 1, 2, 3, 4, 5, 7, 8

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 5, 6

[21] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali

Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord.

Data-efficient image recognition with contrastive predictive

coding. In ICML, volume 119, pages 4182–4192, 2020. 1,

2, 6

[22] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.

Distilling the knowledge in a neural network. CoRR,

abs/1503.02531, 2015. 1, 2

[23] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,

Chen Sun, Alexander Shepard, Hartwig Adam, Pietro Per-

ona, and Serge J. Belongie. The inaturalist species classi-

fication and detection dataset. In CVPR, pages 8769–8778,

2018. 7

[24] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E.

Hopcroft, and Kilian Q. Weinberger. Snapshot ensembles:

Train 1, get M for free. In ICLR, 2017. 1, 3

[25] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, volume 37, pages 448–456, 2015. 1,

2, 3

[26] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,

Dmitry P. Vetrov, and Andrew Gordon Wilson. Averaging

weights leads to wider optima and better generalization. In

Amir Globerson and Ricardo Silva, editors, UAI, pages 876–

885. AUAI Press, 2018. 1, 3

[27] Longlong Jing and Yingli Tian. Self-supervised visual fea-

ture learning with deep neural networks: A survey. IEEE

Trans. Pattern Anal. Mach. Intell., 2020. 2

[28] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. In ICLR, 2017. 1, 2, 3

[29] Dong-Hyun Lee. Pseudo-label: The simple and effi-

cient semi-supervised learning method for deep neural net-

works. In Workshop on challenges in representation learn-

ing, ICML, volume 3, 2013. 1, 2, 8

[30] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and

Steven CH Hoi. Prototypical contrastive learning of unsu-

pervised representations. arXiv preprint arXiv:2005.04966,

2020. 5, 6, 7

202

[31] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James

Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C. Lawrence Zitnick. Microsoft COCO: common objects in

context. In ECCV, volume 8693, pages 740–755, 2014. 1

[32] Ishan Misra and Laurens van der Maaten. Self-supervised

learning of pretext-invariant representations. In CVPR, pages

6706–6716, 2020. 2, 6

[33] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and

Shin Ishii. Virtual adversarial training: A regularization

method for supervised and semi-supervised learning. IEEE

Trans. Pattern Anal. Mach. Intell., 41(8):1979–1993, 2019.

2

[34] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of

visual representations by solving jigsaw puzzles. In ECCV,

volume 9910, pages 69–84, 2016. 1, 2

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Köpf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, pages 8024–8035, 2019. 5

[36] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya

Sutskever. Improving language understanding by generative

pre-training, 2018. 2

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,

and Fei-Fei Li. Imagenet large scale visual recognition chal-

lenge. Int. J. Comput. Vis., 115(3):211–252, 2015. 1, 2, 5

[38] Zhiqiang Shen, Zhankui He, and Xiangyang Xue. MEAL:

multi-model ensemble via adversarial learning. In AAAI,

pages 4886–4893. AAAI Press, 2019. 2

[39] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao

Zhang, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han

Zhang, and Colin Raffel. Fixmatch: Simplifying semi-

supervised learning with consistency and confidence. In

NeurIPS, 2020. 1, 2, 4, 5, 8

[40] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. J. Mach. Learn.

Res., 15(1):1929–1958, 2014. 2

[41] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In NeurIPS, pages

1195–1204, 2017. 1, 2, 3, 4, 8

[42] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. In ECCV, pages 776–794, 2020.

2

[43] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv:1607.08022, 2016. 2, 6

[44] Yuxin Wu and Kaiming He. Group normalization. In ECCV,

volume 11217, pages 3–19, 2018. 2, 6

[45] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In CVPR, pages 3733–3742, 2018. 1, 2, 4, 5,

6, 7

[46] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong,

and Quoc V Le. Unsupervised data augmentation for consis-

tency training. In NeurIPS, 2020. 8

[47] Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and

Quoc V. Le. Self-training with noisy student improves im-

agenet classification. In CVPR, pages 10684–10695. IEEE,

2020. 1

[48] Junjie Yan, Ruosi Wan, Xiangyu Zhang, Wei Zhang, Yichen

Wei, and Jian Sun. Towards stabilizing batch statistics in

backward propagation of batch normalization. In ICLR,

2020. 2

[49] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis E. H. Tay, Ze-

qun Jie, Wei Liu, and Jiashi Feng. Central similarity quan-

tization for efficient image and video retrieval. In CVPR,

pages 3080–3089, 2020. 7

[50] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful

image colorization. In ECCV, volume 9907, pages 649–666,

2016. 1, 2

[51] Xiaojin Jerry Zhu. Semi-supervised learning literature sur-

vey. Technical report, University of Wisconsin-Madison De-

partment of Computer Sciences, 2005. 2

[52] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local

aggregation for unsupervised learning of visual embeddings.

In ICCV, pages 6001–6011. IEEE, 2019. 5, 7

203

