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Abstract

Video super-resolution (VSR) approaches tend to have
more components than the image counterparts as they need
to exploit the additional temporal dimension. Complex de-
signs are not uncommon. In this study, we wish to untangle
the knots and reconsider some most essential components
for VSR guided by four basic functionalities, i.e., Propaga-
tion, Alignment, Aggregation, and Upsampling. By reusing
some existing components added with minimal redesigns,
we show a succinct pipeline, BasicVSR, that achieves ap-
pealing improvements in terms of speed and restoration
quality in comparison to many state-of-the-art algorithms.
We conduct systematic analysis to explain how such gain
can be obtained and discuss the pitfalls. We further show
the extensibility of BasicVSR by presenting an information-
refill mechanism and a coupled propagation scheme to fa-
cilitate information aggregation. The BasicVSR and its ex-
tension, IconVSR, can serve as strong baselines for future
VSR approaches.

1. Introduction

Compared to single-image super-resolution, which fo-
cuses on the intrinsic properties of a single image for the
upscaling task, video super-resolution (VSR) poses an ex-
tra challenge as it involves aggregating information from
multiple highly-related but misaligned frames in video se-
quences.

Various approaches have been proposed to address the
challenge. Some designs can be highly complex. For in-
stance, in the representative method EDVR [32], a multi-
scale deformable alignment module and multiple attention
layers are adopted for aligning and integrating the features
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Figure 1. Speed and performance comparison. Without bells
and whistles, BasicVSR outperforms state-of-the-art methods with
high efficiency. Built upon BasicVSR, IconVSR further im-
proves the performance. Comparisons are performed on UDM10
dataset [34].

from different frames. In RBPN [9], multiple projection
modules are used to sequentially aggregate features from
multiple frames. Such designs are effective but inevitably
increase the runtime and model complexity (see Fig. 1).
In addition, unlike SISR, the potentially complex and dis-
similar designs of VSR methods pose difficulties in imple-
menting and extending existing approaches, hampering re-
producibility and fair comparisons.

There is a need to step back and reconsider the di-
verse designs of VSR models, with the aim to search for
a more generic, efficient, and easy-to-implement baseline
for VSR. We start our search by decomposing popular VSR
approaches into submodules based on functionalities. As
summarized in Table 1, most existing methods entail four
inter-related components, namely, propagation, alignment,
aggregation, and upsampling. Such a decomposition allows
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Table 1. Components in existing VSR methods. We categorize components based on their functionalities: i) Propagation refers to the way
in which features are propagated temporally, ii) Alignment concerns on the spatial transformation applied to misaligned images/features, iii)
Aggregation defines the steps to combine aligned features, and iv) Upsampling describes the method to transform the aggregated features
to the final output image. Bolded texts correspond to designs that were reported to achieve better performance in the literature.

Sliding-Window Recurrent
EDVR [31] MuCAN [20] | TDAN [30] |BRCN [ 1| FRVSR [25] | RSDN[12] BasicVSR IconVSR
Propagation Local Local Local Bidirectional | Unidirectional | Unidirectional | Bidirectional | Bidirectional (coupled)
Alignment Yes (DCN) Yes (correlation) | Yes (DCN) No Yes (flow) No Yes (flow) Yes (flow)
Aggregation | Concatenate + TSA| Concatenate | Concatenate | Concatenate | Concatenate | Concatenate | Concatenate | Concatenate + Refill
Upsampling Pixel-Shuffle Pixel-Shuffle |Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle Pixel-Shuffle

us to systematically study various options under each com-
ponent and understand their pros and cons.

Through extensive experiments, we find that with mini-
mal redesigns of existing options, one could already reach a
strong yet efficient baseline for VSR without bells and whis-
tles. In this paper, we highlight one of such possibilities,
named BasicVSR. We observe that, among the four afore-
mentioned components, the choices of propagation and
alignment components could lead to a big swing in terms
of performance and efficiency. Our experiments suggest the
use of bidirectional propagation scheme to maximize infor-
mation gathering, and an optical flow-based method to esti-
mate the correspondence between two neighboring frames
for feature alignment. By simply streamlining these prop-
agation and alignment components with the commonly-
adopted designs for aggregation (i.e. feature concatenation)
and upsampling (i.e. pixel-shuffle [27]), BasicVSR outper-
forms existing state of the arts [9, 12, 32] in both perfor-
mance (up to 0.61 dB) and efficiency (up to 24 x speedup).

Thanks to its simplicity and versatility, BasicVSR pro-
vides a viable starting point for extending to more elabo-
rated networks. By using BasicVSR as a foundation, we
present IconVSR that comprises two novel extensions to
improve the aggregation and the propagation components.
The first extension is named information-refill. This mech-
anism leverages an additional module to extract features
from sparsely selected frames (keyframes), and the fea-
tures are then inserted into the main network for feature re-
finement. The second extension is a coupled propagation
scheme, which facilitates information exchange between
the forward and backward propagation branches. The two
modules not only reduce error accumulation during propa-
gation due to occlusions and image boundaries, but also al-
low the propagation to access complete information in a se-
quence for generating high-quality features. With these two
new designs, IconVSR surpasses BasicVSR with a PSNR
improvement of up to 0.31 dB.

We believe that our work is timely, given the increasing
number of approaches centered around the research of VSR.
A strong, simple yet extensible baseline is needed. Guided
by the main functionalities in VSR approaches, we recon-
sider some essential components in existing pipelines and

present an efficient baseline for VSR. We show that sim-
ple components, when integrated properly, would synergize
and lead to state-of-the-art performance. We further present
an example of extending BasicVSR with two novel modules
to refine the propagation and aggregation components.

2. Related Work

Existing VSR approaches [10, 21, 28, 34,20, 12, 13] can
be mainly divided into two frameworks — sliding-window
and recurrent. Earlier methods [1, 29, 33] in the sliding-
window framework predict the optical flow between low-
resolution (LR) frames and perform spatial warping for
alignment. Later approaches resort to a more sophisticated
approach of implicit alignment. For example, TDAN [30]
adopts deformable convolutions (DCNs) [5, 37] to align
different frames at the feature level. EDVR [32] further
uses DCNSs in a multi-scale fashion for more accurate align-
ment. DUF [16] leverages dynamic upsampling filters to
handle motions implicitly. Some approaches take a recur-
rent framework. RSDN [12] proposes a recurrent detail-
structural block and a hidden state adaptation module to
enhance the robustness to appearance change and error ac-
cumulation. RRN [14] adopts a residual mapping between
layers with identity skip connections to ensure a fluent in-
formation flow and preserve the texture information over
long periods. The aforementioned studies have led to many
new and sophisticated components to address the propaga-
tion and alignment problems in VSR. Here, we reinvestigate
some of the components and find that bidirectional propaga-
tion coupled with a simple optical flow-based feature align-
ment suffice to outperform many state-of-the-art methods.

The information-refill mechanism in IconVSR is remi-
niscent of the concept of interval-based processing [4, 15,

, 35, 36, 38, 39]. These methods divide video frames
into independent intervals characterized by keyframes and
non-keyframes. The keyframes and non-keyframes are then
processed by different pipelines. For instance, FAST [35]
applies SRCNN [6, 7] to super-resolve the keyframes. Non-
keyframes are then restored using the upscaled keyframes
and the motion vectors stored in the compressed video
codec. IconVSR inherits the concept of keyframes, but
unlike existing methods that process the intervals indepen-
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(a) BasicVSR architecture
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(b) Forward and backward propagation branches

Figure 2. An overview of BasicVSR. BasicVSR is a generic and efficient baseline for VSR. With minimal redesigns of existing components
including optical flow and residual blocks, it outperforms existing state of the arts with high efficiency. (a) BasicVSR adopts a typical
bidirectional recurrent network. The upsampling module U contains multiple pixel-shuffle and convolutions. The red and blue colors
represent the backward and forward propagations, respectively. (b) The propagation branches contain only generic components. S, W,
and R refer to the flow estimation module, spatial warping module, and residual blocks, respectively.

dently, we make one advancement by connecting the inter-
vals through the propagation branches. With this design,
long-term information can be propagated across the inter-
connected intervals, further improving the effectiveness.

3. Methodology

Video super-resolution, by nature, involves a long and
complex processing pipeline since it needs to aggregate in-
formation from not only the spatial dimension but also the
temporal dimension. Existing studies typically focus on
one aspect of the functionalities to make advancement and
may not collectively consider the synergy of various com-
ponents. There is an urge to revisit various components
macroscopically and uncover a generic baseline that inher-
its the strengths of existing approaches. In this work, we
conduct extensive analysis and present a simple, strong and
versatile baseline, BasicVSR, which can serve as a back-
bone with abundant flexibilities in design.

3.1. BasicVSR

Aiming at discovering generic frameworks for facilitat-
ing analysis and development of VSR methods, we confine
our search to commonly-adopted elements such as optical
flow and residual blocks. An overview of BasicVSR is de-
picted in Fig. 2.

Propagation. Propagation is one of the most influential
components in VSR. It specifies how the information in a
video sequence is leveraged. Existing propagation schemes
can be divided into three main groups: local, unidirectional

and bidirectional propagations. In what follows, we discuss
the weaknesses of the former two to motivate our choice of
bidirectional propagation in BasicVSR.

e Local Propagation. The sliding-window methods [9,
, 32] take the LR images within a local window as
inputs and employ the local information for restora-
tion. In this design, the accessible information is re-
stricted in a local neighborhood. The omittance of
distant frames inevitably limits the potential of the
sliding-window methods. To verify our claim, we start
with a global receptive field (in the temporal dimen-
sion) and gradually reduce the receptive field. We sep-
arate the test sequences into K segments and use our
BasicVSR to restore each segment independently. The
PSNR difference to the case K=1 (global propaga-
tion) is depicted in Fig. 3.

First, the difference in PSNR is reduced (i.e. better
performance) when the number of segments decreases
(i.e. temporal receptive field increases). This suggests
that the information in distant frames is beneficial to
the restoration and should not be neglected. Second,
the difference in PSNR is the largest at the two ends
of each segment, indicating the necessity of adopting
long sequences to accumulate long-term information.

e Unidirectional Propagation. The aforementioned
problem can be resolved by adopting a unidirectional
propagation [8, 12, 14, 25], where the information is
sequentially propagated from the first frame to the last
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Figure 3. Local vs Global propagation. When the number of seg-
ments K is reduced, the increased temporal receptive field leads
to higher PSNR. This demonstrates the importance of aggregat-
ing long-term information. Values smaller than zero (dotted line)
indicate a lower PSNR than the case K=1.

frame. However, in this setting, the information re-
ceived by different frames is imbalanced. Specifically,
the first frame receives no information from the video
sequence except itself, whereas the last frame receives
information from the whole sequence. Hence, subop-
timal results are expected for the earlier frames.

To demonstrate the effects, we compare BasicVSR (us-
ing bidirectional propagation) with its unidirectional
variant (with comparable network complexity). From
Fig. 4, we see that the unidirectional model obtains
a significantly lower PSNR than bidirectional propa-
gation at early timesteps, and the difference gradually
reduces as more information is aggregated with the in-
crease in the number of frames. Moreover, a consistent
performance drop of 0.5 dB is observed with only par-
tial information employed. These observations reveal
the suboptimality of unidirectional propagation. One
can improve the output quality by propagating infor-
mation back from the last frame of the sequence.

e Bidirectional Propagation. The above two problems
can be simultaneously addressed by bidirectional prop-
agation, in which the features are propagated forward
and backward in time independently. Motivated by
this, BasicVSR adopts a typical bidirectional propa-
gation scheme. Given an LR image z;, its neighboring
frames z;_; and x;4;, and the corresponding features
propagated from its neighbors, denoted as hlf_l and

h?,,, we have
hY = Fy(xz, x40, h®
i — Lo\ T4y Ti41, i+1)>
f s )
h; = F(xi,xi—1,hj_y),

where Iy, and Fy denote the backward and forward
propagation branches, respectively.

Alignment. Spatial alignment plays an important role in
VSR as it is responsible to align highly related but mis-
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Figure 4. Unidirectional vs Bidirectional. In unidirectional prop-
agation, earlier timesteps receive less information, leading to infe-
rior performance. Values smaller than zero (dotted line) indicates
a lower PSNR than the bidirectional counterpart. Note that the
unidirectional model outperforms the bidirectional model only for
the last frame, owing to the zero feature initialization in the bidi-
rectional model.

aligned images/features for subsequent aggregation. Main-
stream works can be divided into three categories: without
alignment, image alignment, and feature alignment. In this
section, we conduct experiments to analyze each of the cat-
egories and to validate our choice of feature alignment.

o Without Alignment. Existing recurrent methods [8,
, 11,12, 14] generally do not perform alignment dur-
ing propagation. The non-aligned features/images im-
pede aggregation and eventually lead to substandard
performance. This suboptimality can be reflected by
our experiment, where we remove the spatial align-
ment module in BasicVSR. In this case, we directly
concatenate the non-aligned features for restoration.
Without proper alignment, the propagated features are
not spatially aligned with the input image. As a re-
sult, the local operations such as convolutions, which
have relatively small receptive fields, are inefficient in
aggregating the information from corresponding loca-
tions. A drop of 1.19 dB of PSNR is observed. This
result suggests that it is pivotal to adopt operations that
have a large enough receptive field to aggregate infor-
mation from distant spatial locations.

e Image Alignment. Earlier works [17, 33] perform
alignment by computing the optical flow and warping
the images before restoration. Recently, Chan et al. [2]
show that moving the spatial alignment from the image
level to the feature level yields a marked improvement.
In this work, we further conduct experiments to verify
their claim. We compare image warping and feature
warping' on a variant of BasicVSR. Resulting from
the inaccuracy of optical flow estimation, the warped

!'We compute optical flow from the images and use the optical flow for
feature warping.
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images inevitably suffer from blurriness and incorrect-
ness. The loss of details eventually leads to degraded
outputs. In our experiments, a drop of 0.17 dB is ob-
served when adopting image alignment. This observa-
tion confirms the necessity of shifting the spatial align-
ment to the feature level.

o Feature Alignment. The inferior performance of re-
moving/image alignment motivates us to resort to fea-
ture alignment. Similar to flow-based methods [17, 25,

], BasicVSR adopts optical flow for spatial align-
ment. But instead of warping the images as in previous
works, we perform warping on the features for better
performance. The aligned features are then passed to
multiple residual blocks for refinement. Formally, we
have

S;{b’f} = S(xi, xit1),

RO =W niz? s, @)

{7 = Ry, 5y (24, i,

and Fyp, ry = Ry 5y o W o S with a slight abuse of
notations. Here S and W denote the flow estimation
and spatial warping modules, respectively, and R, 7y
denotes a stack of residual blocks.

Aggregation and Upsampling. BasicVSR adopts ba-
sic components for aggregation and upsampling. Specif-
ically, given the intermediate features hz{b’f }, an upsam-
pling module composed of multiple convolutions and pixel-

shuffle [27] is used to generate the output HR images:
yi = U (k] 1Y), 3)

where U denotes the upsampling module.

Summary of BasicVSR. The analysis above motivates
the design choice of BasicVSR. For propagation, Ba-
sicVSR has chosen bidirectional propagation with empha-
sis on long-term and global propagation. For alignment,
BasicVSR adopts a simple flow-based alignment but tak-
ing place at feature level. For aggregation and upsam-
pling, popular choices on feature concatenation and pixel-
shuffle suffice. Despite being a simple and succinct method,
BasicVSR achieves great performance in both restoration
quality and efficiency. BasicVSR is also highly versatile as
it can readily accommodate additional components to han-
dle more challenging scenarios, as we show next.

3.2. From BasicVSR to IconVSR

Using BasicVSR as a backbone, we introduce two novel
components — Information-refill mechanism and coupled
propagation (IconVSR), to mitigate error accumulation
during propagation and to facilitate information aggrega-
tion.
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(a) Information-Refill (b) Coupled Propagation

Figure 5. (a) An additional feature extractor is used for feature re-
finement, alleviating the error accumulation during propagation.
Iy, denotes the set of indices of the selected keyframes. E and
C denote the feature extractor and convolution, respectively. (b)
The inter-connected propagation branches facilitate the informa-
tion exchange by passing the outputs of the backward branches to
the forward branches. The proposed components are colored in
purple.

Information-Refill. Inaccurate alignment in occluded re-
gions and on image boundaries is a prominent challenge that
can lead to error accumulation, especially if we adopt long-
term propagation in our framework. To alleviate undesir-
able effects brought by such erroneous features, we propose
an information-refill mechanism for feature refinement.

As shown in Fig. 5(a), an additional feature extractor is
used to extract deep features from a subset of input frames
(keyframes) and their respective neighbors. The extracted
features are then fused with the aligned features h; (Eq. 2)
by a convolution:

ei = E(zi—1, %, Tit1),

c (ei, B;?b“f}) ifi € Tney,
b “)
i{i{b’f} otherwise,
where E and C correspond to the feature extractor and con-
volution, respectively. i, denotes the set of indices of the
selected keyframes. The refined features are then passed to
the residual blocks for further refinement:
hi{b,f} = Ry gy (x5, iL;[b,j'}). (5)
It is noteworthy that the feature extractor and feature fusion
are applied to the sparsely-selected keyframes only. Hence,
the computational burden brought by the information-refill
mechanism is insignificant.
While information-refill inherits the idea of keyframes,
we remark here that unlike existing interval-based meth-
ods [15, 35] that isolate the intervals for independent
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processing, the intervals (separated by the keyframes) in
IconVSR are connected to maintain a global information
propagation.

Coupled Propagation. In bidirectional settings, features
are typically propagated in two opposite directions inde-
pendently. In this design, the features in each propagation
branch are computed based on partial information, from ei-
ther previous frames or future frames. To exploit the in-
formation in the sequences, we propose a coupled propa-
gation scheme, where the propagation modules are inter-
connected. As depicted in Fig. 5(b), in coupled propagation,
the features propagated backward h? are taken as inputs in
the forward propagation module (c.f. Eq. 1, 3):

h? = Fb($i,xi+lah?+1)7
h{ :Ff(xhxl—lah?’hlf—l)’ (6)
yi = U(h]).

With coupled propagation, the forward propagation branch
receives information from both past and future frames, lead-
ing to features of higher quality and hence better outputs.
More importantly, since coupled propagation requires only
changes of the branch connections, the performance gain
can be obtained without introducing computational over-
head.

4. Experiments

Datasets and Settings We consider two widely-used
datasets for training: REDS [23] and Vimeo-90K [33]. For
REDS, following [32], we use the REDS4 dataset” as our
test set. We additionally define REDSval4*® as our valida-
tion set. The remaining clips are used for training. We use
Vid4 [21], UDM10 [34], and Vimeo-90K-T [33] as test sets
along with Vimeo-90K. We test our models with 4x down-
sampling using two degradations — Bicubic (BI) and Blur
Downsampling (BD).

We use pre-trained SPyNet [24] and EDVR-M* [32] as
our flow estimation module and feature extractor, respec-
tively. We adopt Adam optimizer [18] and Cosine Anneal-
ing scheme [22]. The initial learning rates of the feature ex-
tractor and flow estimator are set to 1x10~% and 2.5x 1075,
respectively. The learning rate for all other modules is set
to 2x10~%. The total number of iterations is 300K, and the
weights of the feature extractor and flow estimator are fixed
during the first 5,000 iterations. The batch size is 8 and the
patch size of input LR frames is 64 x64. We use Charbon-
nier loss [3] since it better handles outliers and improves the
performance over the conventional /5 loss [19]. Detailed
experimental settings are provided in the appendix.

2C]ips 000, 011, 015, 020 of REDS training set.
3Clips 000, 001, 006, 017 of REDS validation set.
4A lightweight version of EDVR.

4.1. Comparisons with State-of-the-Art Methods

We conduct comprehensive experiments by comparing
BasicVSR and IconVSR with 14 models: VESPCN [1],
SPMC [29], TOFlow [33], FRVSR [25], DUF [l6],
RBPN [9], EDVR-M [32], EDVR [32], MuCAN [20],
PFNL [34], RLSP [8], TGA [!3], RSDN [I2], and
RRN [14]. The quantitative results are summarized in Ta-
ble 2 and the speed and performance comparison is pro-
vided in Fig. 1. Note that the parameters of BasicVSR and
IconVSR are inclusive of that in the optical flow network,
SPyNet. So the comparison is fair.

BasicVSR. BasicVSR outperforms existing state of the
arts on various datasets, including REDS4, UDMI10, and
Vid4. BasicVSR also demonstrates high efficiency in ad-
dition to improvements in restoration quality. As shown
in Fig. 1, BasicVSR surpasses RSDN [12] by 0.61 dB
on UDMI10 while having a similar number of parameters.
When compared with EDVR [32], which has a significantly
larger complexity, BasicVSR obtains a marked improve-
ment of 0.33 dB on REDS4 and competitive performances
on Vimeo-90K-T and Vid4. We note that the performance
of BasicVSR on Vimeo-90K-T is slightly lower than that
achieved by sliding-window methods such as EDVR [32]
and TGA [13]. This is expected since Vimeo-90K-T con-
tains sequences with only seven frames, while the success
of BasicVSR partially comes from the aggregation of long-
term information (which is a realistic assumption).
IconVSR. IconVSR further improves the performance by
up to 0.31 dB over BasicVSR with slightly longer runtime.
The performance gain is especially obvious in Vimeo-90K-
T and REDS4, showing that our proposed coupled propa-
gation and information-refill mechanisms are beneficial in
videos (1) lacking long-term information (Vimeo-90K-T)
and (2) containing large and complicated motions (REDS4).
Overall, both BasicVSR and IconVSR are able to achieve
remarkable performance while being faster than most state
of the arts.

Qualitative comparisons are shown in Figures 6 and 7.
BasicVSR and IconVSR are able to recover finer details and
sharper edges. For instance, only BasicVSR and IconVSR
successfully recover clear square patterns in Fig. 6 and the
vertical strip patterns in Fig. 7. With the proposed compo-
nents, IconVSR is able to reconstruct images with sharper
edges. More examples are provided in the appendix.

5. Ablation Studies
5.1. From BasicVSR to IconVSR

Information-Refill. We qualitatively visualize the features
before and after information-refill to gain insights into the
mechanism. As shown in Fig. 8(a), before information-
refill, the boundary pixels in the warped feature essentially
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Table 2. Quantitative comparison (PSNR/SSIM). All results are calculated on Y-channel except REDS4 [23] (RGB-channel). Red and
blue colors indicate the best and the second-best performance, respectively. Blanked entries correspond to results unable to be reported.
The runtime is computed on an LR size of 180x320.

BI degradation BD degradation
Params (M) | Runtime (ms) || REDS4 [23] | Vimeo-90K-T [33]| Vid4 [21] | UDMIO [34] | Vimeo-90K-T [33]| Vid4 [21]
Bicubic - - 26.14/0.7292|  31.32/0.8684  |23.78/0.6347|28.47/0.8253| 31.30/0.8687 |21.80/0.5246
VESPCN [1] - - - - 25.35/0.7557 - - -
SPMC [29] - - - - 25.88/0.7752 - - -
TOFlow [33] - - 27.98/0.7990| 33.08/0.9054  |25.89/0.7651 | 36.26/0.9438 |  34.62/0.9212 -
FRVSR [25] 5.1 137 - - - 37.09/0.9522| 35.64/0.9319 |26.69/0.8103
DUF [16] 5.8 974 28.63/0.8251 - - 38.48/0.9605| 36.87/0.9447 |27.38/0.8329
RBPN [9] 12.2 1507 30.09/0.8590|  37.07/0.9435 |27.12/0.8180 | 38.66/0.9596|  37.20/0.9458 -
EDVR-M [32] 3.3 118 30.53/0.8699 | 37.09/0.9446  |27.10/0.8186 | 39.40/0.9663 |  37.33/0.9484  |27.45/0.8406
EDVR [32] 20.6 378 31.09/0.8800| 37.61/0.9489 | 27.35/0.8264 (| 39.89/0.9686 | 37.81/0.9523  |27.85/0.8503
PENL [34] 3.0 295 29.63/0.8502| 36.14/0.9363  |26.73/0.8029 || 38.74/0.9627 - 27.16/0.8355
MuCAN [20] - - 30.88/0.8750|  37.32/0.9465 - - - -
TGA [13] 5.8 - - - - - 37.59/0.9516  |27.63/0.8423
RLSP [8] 4.2 49 - - - 38.48/0.9606| 36.49/0.9403  |27.48/0.8388
RSDN [12] 6.2 94 - - - 39.35/0.9653| 37.23/0.9471  |27.92/0.8505
RRN [14] 3.4 45 - - - 38.96/0.9644 - 27.69/0.8488
BasicVSR (ours) 6.3 63 31.42/0.8909| 37.18/0.9450 |27.24/0.8251/39.96/0.9694 |  37.53/0.9498  |27.96/0.8553
IconVSR (ours) 8.7 70 31.67/0.8948 |  37.47/0.9476 |27.39/0.8279 | 40.03/0.9694 | 37.84/0.9524 | 28.04/0.8570
Bicubic/25.52 dB PFNL/28.59 dB RBPN/28.97dB  EDVR-M/29.79 dB

Frame 075, Clip 020

EDVR/30.21dB  BasicVSR/30.68 dB IconVSR/30.80 dB

GT/PSNR

Figure 6. Qualitative comparison on REDS4 [23]. BasicVSR and IconVSR restores clearer square patterns. IconVSR restores sharper
edges. (Zoom-in for best view)

Sequence 0238, Clip 002

Bicubic/21.08 dB

PFNL/23.31dB

RBPN/27.18 dB

EDVR-M/25.29 dB

it NN SO L e

s S L

EDVR/26.58 dB  BasicVSR/27.23dB IconVSR/27.75dB GT/PSNR

Figure 7. Qualitative comparison on Vimeo-90K-T [33]. Only BasicVSR and IconVSR are able to recover the vertical strip patterns.
IconVSR restores sharper edges. (Zoom-in for best view)

become zero due to non-existing correspondences. The lost
information inevitably worsens the feature quality, leading
to degraded outputs. With our information-refill mecha-
nism, the additional features can be used to “refill” the
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lost information in regions where the features are poorly
aligned. The retrieved information can then be employed
for the subsequent feature refinement and propagation.

The above effect is especially obvious in regions with



N
— o

2 _ g F

£g s F

o 0 i o S

m = i a g
— g

5= s =

L= S =

‘Eo o 5
= a

(a) Information-Refill (b) Coupled Propagation

Figure 8. (a) Information lost during spatial warping can be com-
pensated by the additional features. (b) With more effective use
of the backward-propagated features, coupled propagation leads
to clearer details and finer edges, especially in regions that are
occluded in previous frames and regions that exist in the whole
sequence. (Zoom-in for best view)

Without refill

With refill

Table 3. Evaluations of IconVSR components. The two compo-
nents bring an improvement of up to 0.28 dB over BasicVSR. The

PSNR is computed on REDS4/REDSval4.

BasicVSR IconVSR (w/o refill) IconVSR
Info-Refill X X v
Coupled-Prop X v v
PSNR 31.42/30.17 31.60/30.38 31.67/30.45
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i —---" =
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Figure 10. Tradeoff in IconVSR. One can reduce the number

of keyframes for faster inference. The PSNR is positively corre-
lated with the number of keyframes /N, indicating the effectiveness
of the information-refill mechanism. The PSNR is calculated on
REDSval4. The total number of frames in each clip is 100, and the

Figure 9. Effect of Information-Refill. The contribution of
information-refill is more obvious in regions with fine details,
where alignment is error-prone. The information from the addi-
tional feature extractor leads to marked improvements.

fine details. In those regions, information from neighboring
frames cannot be effectively aggregated due to alignment
error, often resulting in inferior quality. With information-
refill, the additional features assist in the restoration of the
details, leading to in improved quality. For example, as
shown in Fig. 9, the license plate number can be recon-
structed more clearly with the refill mechanism.

Coupled Propagation. To ablate the coupled propagation
scheme, we disable the information-refill mechanism and
compare IconVSR with BasicVSR. In Fig. 8(b), the yellow
box represents a region occluded in previous frames, and the
forward propagation branch in BasicVSR could not receive
information of that region. The red box denotes a region
that exists in all frames of the sequence, and hence abun-
dant “snapshots” of the region can be found in latter frames.
With coupled propagation, the backward-propagated fea-
tures are employed more effectively, and hence more details
and finer edges can be reconstructed. The PSNR improve-
ment over BasicVSR is summarized in Table 3.

5.2. Tradeoff in IconVSR

Although IconVSR is trained with a fixed keyframe in-
terval, one can reduce the number of keyframes for faster
inference. The PSNR using different numbers of keyframes

keyframes are evenly spaced.

is depicted in Fig. 10, where we see that the PSNR is pos-
itively correlated with the number of keyframes, verifying
the contributions of the information-refill mechanism. In an
extreme case when there is no keyframe, IconVSR degener-

ates to a recurrent network. Nevertheless,

it still achieves a

PSNR of 30.38 dB on REDSval4, which is 0.21 dB higher
than BasicVSR. This demonstrates the effectiveness of our
coupled propagation scheme, which can be used without in-
troducing additional computational overhead.

6. Conclusion

This work devotes attention to the search of generic and
efficient VSR baselines to ease the analysis and extension
of VSR approaches. Through decomposing and analyzing

existing elements, we propose BasicVSR,

a simple yet ef-

fective network that outperforms existing state of the arts
with high efficiency. We build upon BasicVSR and propose
IconVSR with two novel components to further improve the
performance. BasicVSR and IconVSR can serve as strong
baselines for future works, and the discovery on the archi-
tecture designs could potentially be extended to other low-
level vision tasks, such as video deblurring, denoising and

colorization.
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