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Figure 1: Example of large-factor super-resolution (16x). (a) The low-resolution input (LR). (b) ESRGAN [33] trains the SR generator
from scratch, which often produces artifacts and unnatural textures. (c) PULSE [26] achieves more realistic results by GAN inversion,
which, however, cannot faithfully recover the structures of the ground-truth. (d) With the proposed generative latent bank, GLEAN is able
to generate output that not only is close to the ground-truth, but also possesses realistic textures. (e) The ground-truth (GT).

Abstract

We show that pre-trained Generative Adversarial Net-
works (GANs), e.g., StyleGAN, can be used as a latent bank
to improve the restoration quality of large-factor image
super-resolution (SR). While most existing SR approaches
attempt to generate realistic textures through learning with
adversarial loss, our method, Generative LatEnt bANk
(GLEAN), goes beyond existing practices by directly lever-
aging rich and diverse priors encapsulated in a pre-trained
GAN. But unlike prevalent GAN inversion methods that re-
quire expensive image-specific optimization at runtime, our
approach only needs a single forward pass to generate
the upscaled image. GLEAN can be easily incorporated
in a simple encoder-bank-decoder architecture with multi-
resolution skip connections. Switching the bank allows the
method to deal with images from diverse categories, e.g.,
cat, building, human face, and car. Images upscaled by
GLEAN show clear improvements in terms of fidelity and
texture faithfulness in comparison to existing methods as
shown in Fig. 1.

1. Introduction

In this study, we explore a new way to employ GAN [9]
for image super-resolution. We are interested in the regime
of high magnification factors (8 x to 64 x), which typical SR
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methods fail to handle since most details and textures are
lost during downsampling. Since the problem is severely
underspecified, informative priors become inevitable in this
setting, especially in restoring the textural details. Studying
large-factor image SR is meaningful as it can potentially
improve the state of the arts in SR, and more generally con-
ditional generative models for images.

The notion of GAN has been extensively used in SR with
the aim to enrich texture details in an upscaled image. There
are two popular approaches to deploy GANSs for this task.
The more common paradigm [21, 33, 32] trains a genera-
tor to handle the upscaling task, where adversarial training
is performed by using a discriminator to differentiate real
images from the upscaled images produced by the genera-
tor. Another possible way to exploit GAN for the task is by
GAN inversion [ 1, 11, 26, 27]. In this setting, one will need
to ‘invert’ the generation process of a pre-trained GAN by
mapping an image back to the latent space. A restored im-
age can then be reconstructed from the optimal vector in the
latent space.

While both methods are capable of generating more real-
istic results than approaches that solely rely on ¢5 loss, they
have some inherent shortcomings. The first paradigm typi-
cally trains the SR generator from scratch using a combined
objective function consisting of a fidelity term and an adver-
sarial loss. In this setting, the generator is responsible for
both capturing the natural image characteristics and main-
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taining the fidelity to the ground-truth. This inevitably lim-
its the capability of approximating the natural image mani-
fold. As a result, these methods often produce artifacts and
unnatural textures. As shown in Fig. 1, while ESRGAN [33]
faithfully recovers the structures (e.g. pose, ear shape) of the
cat, it struggles to produce realistic textures.

The second paradigm resolves the aforementioned prob-
lem by making better use of the latent space of GAN
through optimization. However, as the low-dimensional la-
tent codes and the constraints in the image space are insuf-
ficient to guide the restoration process, these methods often
generate images with low fidelity. As shown in Fig. 1, de-
spite being realistic, the output of a representative method,
PULSE [26], fails to recover the structures of the ground-
truth faithfully. In addition, as the optimization is usually
conducted in an iterative manner for each image at runtime,
these approaches are often time-consuming.

In our approach, we leverage pre-trained GANSs such as
StyleGAN [17] to provide rich and diverse priors for the
task. Unlike most GAN inversion methods, which also
use pre-trained GANSs, our method does not involve image-
specific optimization at runtime. Once trained, the model
only needs a single forward pass to upscale an image, which
is more practical for applications that demand fast response.
The idea is partially inspired by the classic notion of dic-
tionary [38]. But unlike conventional approaches that con-
struct a finite and imagery-derived dictionary, we exploit
GAN as a more effective way for storing priors.

Conditioning and retrieving from a GAN-based dictio-
nary is a new and non-trivial question we need to address
in this work. We show that pre-trained GANs can be em-
ployed as a latent bank in a succinct encoder-bank-decoder
architecture. This novel architecture allows us to lift the
burden of learning both fidelity and texture generation si-
multaneously in a typical encoder-decoder network since
the latent bank already captures rich texture priors. In ad-
dition, we show that it is pivotal to condition the bank by
passing both the latent vectors and multi-resolution convo-
lutional features from the encoder to achieve high-fidelity
results. Symmetrically, multi-resolution cues need to be
passed from the bank to the decoder. We show the effec-
tiveness of the proposed method in handling images with
challenging poses and structures apart from the large mag-
nification factor. We also demonstrate how the method can
be generalized to different categories, e.g., human faces,
cats, buildings, by switching different pre-trained GAN la-
tent banks.

2. Related Work

Image Super-Resolution. Many existing SR algorithms [4,

, 7,8, 12, 34, 42] directly learn a mapping from the low-
resolution images to high-resolution images with a pixel-
wise constraint (e.g. /5 loss). While these methods achieve

remarkable results in terms of PSNR, training solely with
pixel-wise constraints often results in perceptually uncon-
vincing outputs with severe over-smoothing artifacts [21,

]. To alleviate the problem, GANs [21, 28, 33, 35] are
employed to approximate the natural image manifold, yield-
ing more photo-realistic results. For instance, SRGAN [21]
adopts adversarial loss and perceptual loss [15] in addition
to /5 loss, improving the visual quality of the outputs. How-
ever, as the generator needs to learn both fidelity and natural
image characteristics, unnatural artifacts could still be ob-
served in the outputs, especially if one trains the generator
from scratch.

Recent interests have shifted to large-factor SR beyond
the typical upscaling factors (2x or 4x) [3, 13, 30, 44].
Dahl et al. [3] propose a fully probabilistic pixel recursive
network for upsampling extremely coarse images with res-
olution 8x8. RFB-ESRGAN [30] builds upon ESRGAN
and adopts multi-scale receptive field blocks for 16x SR.
VarSR [13] achieves 8 x SR by matching the latent distribu-
tions of LR and HR images to recover the missing details.
Zhang et al. [44] perform 16 x reference-based SR on paint-
ings with a non-local matching module and a wavelet tex-
ture loss. To handle even larger magnification factors, one
would need to rely on stronger priors. SR methods special-
ized on large magnification factors are typically dedicated
to the human face category as one could exploit the strong
structural prior of faces. Facial priors including facial at-
tributes [22], facial landmarks [19, 25], and identity [10]
have been studied. Our work goes beyond previous works
and pushes the limit to 64x and generalizes to more cate-
gories. Such a large magnification factor is challenging due
to its highly ill-posed nature.

GAN Inversion. Given a degraded image z, GAN
inversion-based methods [!, 11, 26, 27] in general pro-
duce a natural image best approximating z by optimiz-
ing z* = argmin, .z £ (G(z),x), where Z is the latent
space and L(,-) denotes the task-specific objective func-
tion. For instance, PULSE [26] iteratively optimizes the
latent code of StyleGAN [17] with a pixel-wise constraint
between the input and output. mGANprior [11] optimizes
multiple latent codes to increase the expressiveness of the
model. DGP [27] further finetunes the generator together
with the latent code to reduce the gap between the distribu-
tions of the training and testing images. A common issue
with GAN inversion is that important spatial information
may not be faithfully kept due the low-dimensionality of
the latent code. Thus, these methods often generate undesir-
able results that do not resemble the ground-truth. Different
from GAN inversion, GLEAN conditions the pre-trained
generator on both the latent codes and multi-resolution con-
volutional features, providing additional spatial guidance
for restoration. In addition, GLEAN does not require it-
erative optimization during inference.
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Figure 2: Overview of GLEAN. In addition to the latent vectors c;, the generator (i.e., the generative latent bank) is also conditioned
on the multi-resolution features f;. With a pre-trained GAN capturing the natural image prior, this encoder-bank-decoder design lifts the
burden of learning both fidelity and naturalness in the conventional encoder-decoder architecture. E;, S; and D; denote the encoder blocks,
latent bank blocks and decoder blocks, respectively. This example corresponds to an input size of 32x32 and an output size of 256 x 256.

3. Methodology

A GAN model that is trained on large-scale natural im-
ages captures rich texture and shape priors. Previous stud-
ies [1, 11, 26, 27] have shown that such priors can be
harvested through GAN inversion to benefit various image
restoration tasks. Nonetheless, it remains underexplored
how to exploit the priors without the expensive optimiza-
tion during inversion.

In this study, we devise GLEAN within a novel encoder-
bank-decoder architecture, which allows one to exploit the
generative priors by needing just a single forward pass. An
overview of the architecture is depicted in Fig. 2. Given a
severely downsampled LR image, GLEAN applies an en-
coder to extract latent vectors and multi-resolution convo-
lutional features, which capture important high-level cues
as well as spatial structure of the LR image. Such cues are
used to condition the latent bank, which further produces
another set of multi-resolution features for the decoder. Fi-
nally, the decoder generates the final output by integrating
the features from both the encoder and the latent bank. In
this work, we adopt StyleGAN [17, 18] as the generative
latent bank due to its exceptional performance. The idea
of latent bank can be extended to other generators such as
BigGAN [2].

3.1. Encoder

To generate the latent vectors, we first use an RRDB-
Net [33] (denoted as Ej) to extract features fy from the
input LR image. Then, we gradually reduce the resolution
of the features by:

fi = Ei(fi-1),

ie{l,---,N}, (1)

where E;, i € {1,---, N}, denotes a stack of a stride-2
convolution and a stride-1 convolution. Finally, a convo-
lution and a fully-connected layer are used to generate the
latent vectors:

C = Enqu(fn), (2)
where C is a matrix whose columns represent the latent vec-
tors for the StyleGAN.

The latent vectors in C' capture a compressed represen-
tation of the images, providing the generative latent bank
with high-level information. To further capture the local
structures of the LR image and to provide additional guid-
ance for structure restoration, we also feed multi-resolution
convolutional features { f;} into the latent bank.

3.2. Generative Latent Bank

Given the convolutional features { f;} and the latent vec-
tors C, we leverage a pre-trained generator as a latent bank
to provide priors for texture and detail generation. As Style-
GAN is originally designed for image generation tasks, it
cannot be directly integrated into the proposed encoder-
bank-decoder framework. In this work, we adapt StyleGAN
to our SR network by making three modifications:

1. Instead of taking one single latent vector as the in-
put, each block of the generator takes a different la-
tent vector to improve expressiveness. More specifi-
cally, we have C=(cy, - - - , cx_1) for k blocks, where
each c; corresponds to one latent vector. We find
that this modification leads to outputs with fewer ar-
tifacts. This modification is also seen in previous
works [11, 36, 46].

2. To allow conditioning on the additional features from
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the encoder, we use an additional convolution in each
style block for feature fusion:

V{SO(C(Jva)v leZOa

L .
Si(ci,gi—1, fn—i), otherwise,

3)

where S; denotes the augmented style block with an
additional convolution, and g; corresponds to the out-
put feature of the :-th augmented style block.

3. Instead of directly generating outputs from the gener-
ator, we output the features {g;} and pass them to the
decoder to better fuse the features from the latent bank
and encoder.

Advantages. The use of generative latent bank is remi-
niscent of the task of reference-based SR [14, 23, 24, 37,

, 45], where external HR reference image(s) are em-
ployed as an explicit imagery dictionary. While the ex-
ternal HR information leads to marked improvements, the
performance is sensitive to the similarity between the in-
puts and references. This sensitivity may eventually lead
to degraded results when the reference images/components
are not well selected. Moreover, the size and diversity
of those imagery dictionaries are limited by the selected
components, impeding the generalization to diverse scenes
in practice. In addition, computationally-intensive global
matching [45] or component detection/selection [23] is of-
ten required to aggregate appropriate information from the
references, hindering the applications to scenarios with tight
computational constraints. Instead of constructing an im-
agery dictionary, GLEAN adopts a GAN-based dictionary
conditioned on a pre-trained GAN. Our dictionary does not
depend on any specific components or images. Instead, it
captures the distribution of the images and has potentially
unlimited size and diversity. Furthermore, GLEAN is com-
putationally efficient without requiring global matching and
reference images/components selection.

3.3. Decoder

GLEAN uses an additional decoder with progressive fu-
sion to integrate the features from the encoder and latent
bank to generate the output image. It takes the RRDBNet
features as inputs and progressively fuse the features with
the multi-resolution features from the latent bank:

0 {Do(fo) ifi =0, @

Di(di—1,9N—21:) otherwise,

where D; and d; denote a 3x3 convolution and its out-
put, respectively. Each convolution is followed by a pixel-
shuffle [31] layer except the final output layer. With the
skip-connection between the encoder and decoder, the in-
formation captured by the encoder can be reinforced and
hence the latent bank could focus more on the texture and
detail generation.

3.4. Training

Similar to existing works [21, 32, 33], we adopt the stan-
dard - loss, perceptual loss [15], and adversarial loss for
training. More details on the loss function can be found in
the supplementary material. To exploit the generative prior,
we keep the weights of the latent bank fixed throughout
training. In our preliminary experiments, finetuning the la-
tent bank with the encoder and decoder demonstrates no no-
ticeable improvements. Moreover, it potentially harms the
generalizability of the model as the latent bank may eventu-
ally bias to the training distribution. It is worth emphasizing
that despite GLEAN is trained with similar objectives as in
existing works (e.g. ESRGAN), the main difference to these
methods is that GLEAN leverages a pre-trained generator to
directly incorporate the priors into the network, further im-
proving the output quality. We show that the improvement
is not due to additional parameters in the generator by com-
paring GLEAN with ESRGAN™, a larger ESRGAN that
has similar FLOPs to GLEAN.

4. Experiments

We adopt pre-trained StyleGAN' [17] or Style-
GAN2? [18] (depending on the availability of pre-trained
models) as our latent bank, and use the publicly available
codes of existing methods for the comparison in this sec-
tion. To maintain fairness, we train our model and baselines
on the same datasets, including FFHQ [17] and LSUN [39],
so that the difference in restoration quality is mainly caused
by the algorithms instead of the training distribution. Test
set is strictly exclusive from the training. Detailed experi-
mental settings are provided in the supplementary material.

Qualitative comparison. The qualitative comparison on
16x SR is shown in Fig. 3. Guided by low-dimensional
vectors and constraints in LR space, the outputs of GAN in-
version methods are unable to maintain a good fidelity. In
particular, PULSE [26] and mGANprior [ 1] fail to restore
a face image with the same identity. In addition, artifacts are
observed in their outputs. Through finetuning the generator
during optimization, the result of DGP [27] demonstrates
significant improvements in both quality and fidelity. How-
ever, a slight difference between the identities of the output
and ground-truth is still observed. For example, the eyes
and lips show noticeable differences.

Methods trained with adversarial loss (SinGAN [29],
ESRGAN™? [33]) can preserve the local structures, but fail
in synthesizing convincing textures and details. Specifi-
cally, SinGAN fails to capture the natural image style, pro-
ducing a painting-like image. Although ESRGANT is capa-

!GenForce: https://github.com/genforce/genforce
2BasicSR: https://github.com/xinntao/BasicSR
3 A larger version of ESRGAN with similar FLOPs to GLEAN.
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Figure 3: Comparisons on 16x SR on CelebA-HQ [16]. Only GLEAN is able to maintain high fidelity while synthesizing realistic
textures and details: GAN inversion methods fail to preserve the identity, and adversarial loss methods struggle to synthesize fine details.
ESRGANT denotes a larger version with similar FLOPs to GLEAN. (Zoom-in for best view)

ESRGAN"  GLEAN (ours

16 %

32X

64 x

Figure 4: Results of 16 x SR on other categories. GLEAN can
be applied to various categories by switching between StyleGANs
trained on different categories. (Zoom-in for best view)

ble of generating a realistic image, it struggles to synthesize
fine details and introduces unnatural artifacts in detailed re-
gions. It is worth emphasizing that although ESRGAN™
achieves competitive results on human faces, its perfor-
mances on other categories such as cats and cars are less
promising (see Fig. 1 and Fig. 4). With the latent bank
providing natural image priors, GLEAN succeeds in both
fidelity and naturalness. For example, when compared to
ESRGAN™, GLEAN reconstructs eyes with better shape

Figure 5: Results on larger scale factors. GLEAN reconstructs
realistic images highly similar to the GT for up to 64 x upscaling
factor. (Zoom-in for best view)

and details. We further extend our method to larger scale
factors in Fig. 5. GLEAN successfully generates perceptu-
ally convincing images resembling the ground-truth for up
to 64 x upscaling.

Robustness to poses and contents. Another appealing
property of GLEAN is its robustness to the changes in poses
and contents. As shown in Fig. 6, guided by the convolu-
tional features, GLEAN is still able to construct realistic
images when the images are non-aligned and contain non-

14249



GLEAN (ours

£
Figure 6: Outputs with diverse poses and contents. Despite
GLEAN is trained with aligned human faces, it is able to re-
construct faithful images for non-aligned and non-human faces.
PULSE approximates the GT in low resolution (bottom left), but

its outputs are significantly different from the GT when viewed in
high resolution.

Table 1: Cosine similarity of ArcFace features [5] for 16 x SR.
GLEAN achieves a higher similarity than baselines. Bolded texts
represent the best performance.

PULSE [26] | mGANprior [11] | DGP [27]
Similarity 0.4047 0.5526 0.7341

SinGAN [29] | ESRGAN™ [33] | GLEAN
Similarity 0.7718 0.9599 0.9678

Table 2: Quantitative (PSNR/LPIPS) comparison on 16X
SR. GLEAN outperforms other methods in most categories.
ESRGAN™ denotes a larger version of ESRGAN [33] having sim-
ilar FLOPs to GLEAN. Bolded texts represent the best perfor-
mance.

|mGANprior [11]]| PULSE [26] |[ESRGAN* [33]] GLEAN

Face [16] 23.66/0.4661 |21.83/0.4600| 26.76/0.2787 |26.84/0.2681
Cat [41] 17.01/0.5556  {19.78/0.5241| 19.99/0.3482 |20.92/0.3215
Car [20] 14.53/0.7228 | 16.30/0.6491 | 19.42/0.3006 |19.74/0.2830
Bedroom [39]| 16.38/0.5439 |12.97/0.7131| 19.47/0.3291 |19.44/0.3310
Tower [39] 15.96/0.4870 | 13.62/0.7066| 17.86/0.3132 |18.41/0.2850

human faces despite it is trained on aligned human faces. In
contrast, the outputs of PULSE are biased to aligned human
faces. Its outputs can only approximate the ground-truths
in low resolution. Such robustness enables GLEAN to be
applied to diverse categories and scenes such as cats, cars,
bedrooms, and towers. Examples are shown in Fig. 4 and
more results are provided in the supplementary material.

Quantitative comparison. To demonstrate the ability of
GLEAN in producing outputs with high fidelity, we extract
100 images from CelebA-HQ [16] and compute the cosine

Only
latent vectors

Resolution
{4, 8,16}

Resolution
{4, 8, 16,32, 64}

GT

Figure 7: Effects of the multi-resolution encoder features.
Without the convolutional features, the outputs can only resem-
ble the global attributes (e.g. hair color, pose). When adding the
encoder features progressively, the network can capture more local
structures, better approximating the GT.

similarity to the ground-truth on the ArcFace embedding
space [5]. As shown in Table 1, GLEAN achieves higher
similarity than the baseline methods, validating the superi-
ority of GLEAN.

We additionally provide the quantitative comparison on
different categories in Table 2. For each category, we
select 100 images and compute their average PSNR and
LPIPS [40]. It is observed that mGANprior and PULSE
perform significantly worse as they fail to restore the orig-
inal objects. GLEAN outperforms these methods in most
categories, suggesting its effectiveness in generating images
with high quality and fidelity.

5. Ablation Studies

Importance of multi-resolution encoder features. We
demonstrate how the convolutional features generated from
the encoder assist in the restoration of fine details and local
structures. We start with only the latent vectors and observe
the transition when features are gradually introduced to the
latent bank as conditions. To discard the effects brought by
the decoder, we test with a variant of GLEAN where the
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bank features

Resolution
{32, 64}

Resolution
{32, 64, 128, 256}

Figure 8: Effects of the latent bank features. The rich texture
priors captured in the generator lift the burden of the encoder in
texture generation. Improvements on both texture and structures
are observed when finer features are inserted into the decoder.
(Zoom-in for best view)

w/ depoder

w/0 de_coder

Figure 9: Contributions of the decoder. The decoder reinforces
the spatial information captured in the encoder features and aggre-
gate them in a coarse-to-fine manner, leading to enhanced quality.

generator directly produces the output images. The com-
parison is depicted in Fig. 7.

When all convolutional features are discarded, GLEAN
resembles the typical GAN inversion methods that learn
only the latent vectors. Similar to those methods, the net-
work is able to synthesize realistic images given the latent
vectors. However, guided only by low-dimensional vectors,

which spatial information is not well-preserved, the net-
work restores only the global attributes such as hair color
and poses, but fails to preserve finer details. When pro-
viding coarse (from 4x4 to 16x16) convolutional features
to the latent bank, more details are recovered and the out-
puts are better approximating the ground-truths. Further im-
provements in both quality and fidelity are observed when
finer features are passed to the latent bank. The above ob-
servations corroborate our hypothesis that the convolutional
features are pivotal in guiding the restoration of fine details
and local structures, which cannot be reconstructed with
only the latent vectors.

Effects of latent bank features. To understand the contri-
butions of the latent bank, we investigate the effects brought
by the latent bank features. We start by discarding all the la-
tent bank features, and progressively pass the features to the
decoder. The comparison is shown in Fig. 8. Lacking ap-
propriate prior information, the network is responsible for
both generating realistic details and maintaining fidelity to
the ground-truths. Such a demanding objective eventually
leads to outputs that contain flaws in both structure restora-
tion and texture generation. With the latent bank, the burden
of texture and details generation is reduced as the genera-
tor already captures rich image priors. Therefore, improve-
ments in both structures and textures are observed when
passing finer features to the decoder.

Importance of decoder. As shown in Fig. 9, without the
decoder, despite being perceptually convincing overall, the
output image contains unpleasant artifacts when zoomed in.
The decoder allows the network to aggregate the informa-
tion in a coarse-to-fine manner, leading to more natural de-
tails. In addition, the multi-scale skip-connections between
the encoder and decoder reinforce the spatial information
captured in the encoder features so that the latent bank could
focus more on detail generation, further enhancing the out-
put quality.

Comparisons with reference-based methods. We assess
the efficacy of the new notion of GAN-based dictionary by
comparing GLEAN with two representative methods adopt-
ing an imagery dictionary for SR — SRNTT [45] and DFD-
Net [23]. Examples are shown in Fig. 10.

For DFDNet, we evaluate the performance on LR images
with unknown degradations*. Through pre-constructing a
dictionary of facial components (e.g. eyes, lips), DFDNet
shows remarkable performance on face restoration. How-
ever, it cannot produce faithful results on parts absent in the
dictionary, such as skin and hair. Therefore, significant in-
coherence is observed in the outputs. Despite GLEAN is
trained on the bicubic kernel, it is still capable of produc-
ing appealing outputs. More importantly, GLEAN is not

4We further downsample the LR images to 64 x 64 to match the input size
of GLEAN.
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DFDNet

GLEAN (ours)

(a) Comparison with DFDNet [23]

SRNTT GLEAN (ours)

(b) Comparison with SRNTT [45]

Figure 10: Comparison to imagery dictionary. (a) DFDNet fails
to restore components absent in the dictionary (e.g. skin, hair),
leading to incoherent outputs. (b) SRNTT is unable to produce
faithful fur textures.

confined to improving the visual quality of specific compo-
nents. Instead, the entire image is super-resolved, leading to
coherent and pleasing results. The performance of GLEAN
could be further improved by employing multiple degrada-
tions during training.

For SRNTT, we follow the same settings and downsam-
ple the ground-truth images using the bicubic kernel. With
such low-resolution images (32x32), global matching be-
comes prohibitive, and hence SRNTT fails to transfer the
textures from HR reference images. As a result, SRNTT
tends to provide blurry textures. By capturing the distribu-
tion instead of specific imagery clues, GLEAN does not rely
on any explicit textural transferal procedure. This enables
the applicability to large-factor SR, where image match-
ing is extremely difficult. More importantly, with no exter-
nal images employed, GLEAN does not require any global

Retouched

Original Refined

Figure 11: Image retouching. GLEAN can be used to eliminate
unnatural artifacts introduced by amateur retouching. (Zoom-in
for best view)

matching to search for suitable textures/details. This allows
GLEAN to be applied to images with larger resolutions,
where global matching is computationally prohibitive.

6. Application — Image Retouching

In this section, we present one interesting application of
GLEAN. In interactive image retouching, users can manu-
ally edit the images based on their preference. However, a
perfect output requires tedious and precise retouching. As a
result, artifacts are common in the outputs, especially those
from amateur retouching. As a powerful super-resolver,
GLEAN can be used as an image retouching tool to elimi-
nate unpleasant artifacts.

As shown in Fig. 11, the blending operation in the in-
teractive editing software produces a blurry and incoherent
output. Thanks to the capability of GLEAN in producing
high quality and fidelity images, GLEAN is able to elimi-
nate the blurry region and generate a coherent output with
natural textures. Furthermore, with only a single forward
pass for generation, it can be easily incorporated into ex-
isting interactive editing software. More examples will be
shown in the supplementary material.

7. Conclusion

We have presented a new way to exploit pre-trained
GAN:Ss for the task of large-scale super-resolution, up to 64 x
upscaling factor. We have shown that a pre-trained GAN
can be used as a generative latent bank in an encoder-bank-
decoder architecture. Reconstructing photorealistic HR im-
ages requires just a single forward pass, thanks to effec-
tive ways in conditioning and retrieving rich priors from the
bank. The generality of the notion of GAN-based dictio-
nary allows GLEAN to be potentially extended to not only
diverse architectures but also various imaging tasks, such as
image denoising, inpainting and colorization.
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