
How Privacy-Preserving are Line Clouds?

Recovering Scene Details from 3D Lines

Kunal Chelani1 Fredrik Kahl1 Torsten Sattler1,2

1Chalmers University of Technology 2Czech Technical University in Prague

Abstract

Visual localization is the problem of estimating the cam-

era pose of a given image with respect to a known scene.

Visual localization algorithms are a fundamental building

block in advanced computer vision applications, including

Mixed and Virtual Reality systems. Many algorithms used

in practice represent the scene through a Structure-from-

Motion (SfM) point cloud and use 2D-3D matches between

a query image and the 3D points for camera pose estima-

tion. As recently shown, image details can be accurately

recovered from SfM point clouds by translating renderings

of the sparse point clouds to images. To address the re-

sulting potential privacy risks for user-generated content, it

was recently proposed to lift point clouds to line clouds by

replacing 3D points by randomly oriented 3D lines passing

through these points. The resulting representation is un-

intelligible to humans and effectively prevents point cloud-

to-image translation. This paper shows that a significant

amount of information about the 3D scene geometry is pre-

served in these line clouds, allowing us to (approximately)

recover the 3D point positions and thus to (approximately)

recover image content. Our approach is based on the obser-

vation that the closest points between lines can yield a good

approximation to the original 3D points. Code is available

at https://github.com/kunalchelani/Line2Point.

1. Introduction

Visual localization is the problem of estimating the po-

sition and orientation from which an image was taken in

a known scene. Visual localization is a fundamental part

of computer vision systems such as self-driving cars [29,

66], Augmented and Mixed Reality applications [2, 12],

Structure-from-Motion (SfM) [28, 31, 65, 69], and Simul-

taneous Localization and Mapping (SLAM) [18, 51, 57].

Classical approaches to visual localization [16, 30, 40–

42, 56, 59, 62, 86, 87] are based on local features such as

SIFT [43]. They use SfM to construct a sparse 3D point

cloud of the scene, where each point is associated with the

local image features it was triangulated from. Descriptor

matching between local features extracted in a test / query

image and the 3D points then yields a set of 2D-3D matches

that can be used for RANSAC-based camera pose estima-

tion [9, 17, 23, 36–39].

Traditionally, work on visual localization has focused

on accurate and scalable algorithms able to cover large ar-

eas [15, 30, 40, 58, 74, 76, 86] or to run in real-time on mo-

bile devices with limited memory and compute capabili-

ties [2,42,46,47,50]. Thus, the underlying scene representa-

tions have been designed to enable efficient 2D-3D match-

ing [30, 47, 58, 61, 63] and / or to limit memory consump-

tion [10,11,41,46,47,61]. Privacy aspects such as avoiding

user generated content from being recovered either through

3D models stored in the cloud or through query images sent

to a server have traditionally not been taken into account.

Recently, [55, 70] showed that it is possible to recover

images from SfM point clouds. Given a rendering of the

point cloud (and the feature descriptors associated with the

3D points), [55] uses a CNN to translate the rendering to a

complete image. Their work clearly demonstrates that stor-

ing SfM point clouds creates potential privacy risks as an

attacker could recover details from user-uploaded content

stored in the cloud. To prevent such attacks, [71] proposed

to replace each SfM point through a random line passing

through this point (cf . Fig. 1(left)). They showed that the re-

sulting representation is unintelligible to humans, prevents

a direct application of [55], and still enables accurate cam-

era pose estimation. This idea of lifting points to lines was

later adapted for privacy-perserving SLAM [67]. However,

this paper shows that it is possible to (approximately) re-

cover the original 3D point positions from a line cloud (cf .

Fig. 1(middle)), again enabling us to use [55, 70] to obtain

images (cf . Fig. 1(right)).

In detail, this paper makes the following contributions:

(i) in the case that the line directions are chosen uniformly

at random, as is the case in [71], we show that knowledge

about local neighborhoods allows us to (approximately) re-

cover the original 3D points based on the closest points be-

tween pairs of lines. (ii) based on this insight, we propose a

two-stage approach that first recovers these neighborhoods

and then estimates the 3D points corresponding to the input

lines. (iii) detailed experiments on both indoor and outdoor
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Figure 1. In order to preserve privacy, [71] proposed to store line clouds instead of point clouds for visual localization (left). While

unintelligible to the human eye, we show that it is possible to recover the underlying 3D point clouds (middle). Applying a point cloud-

to-image translation approach [55] then allows us to recover image details (right), showing that lifting point clouds to line clouds can still

preserve privacy critical information that can later be extracted from the line clouds.

datasets show that our approach allows us to faithfully re-

produce the original point clouds. In addition, applying [55]

on the resulting point clouds enables us to recover image

details (cf . Fig. 1(right)). (iv) while using line clouds alone

is not effective in obfuscating the underlying 3D scene ge-

ometry, we show that using (very) sparse line clouds effec-

tively prevents our approach from recovering image details.

Our results clearly show that further research on privacy-

preserving scene representations is needed.

2. Related Work

Privacy-preserving methods in computer vision are not

new. For instance, it is standard to blur faces and license

plates to prevent the identification of persons and cars, re-

spectively. Yet, it has been shown that this process is not

privacy preserving [53] as one can still train a recogni-

tion system on obfuscated images with reasonable accuracy

rates. Privacy preserving image degradation with adversar-

ial training has been proposed for visual recognition [83].

In this paper, we focus on privacy preserving localization.

Visual localization. Traditionally, visual localization ap-

proaches have relied on local features such as SIFT [43]

or its learned alternatives [3, 22, 54]. Structure-based ap-

proaches [16, 30, 40, 41, 56, 60, 61, 74, 86] represent a scene

through a SfM point cloud, with each point being associ-

ated with at least one local image feature. 2D-3D matches

between features extracted from a new image and the 3D

points in the SfM model can then be used for pose esti-

mation [9, 23, 26, 27, 36, 37]. State-of-the-art approaches

for long-term localization, i.e., robust camera pose estima-

tion under changing conditions, follow this approach, but

use learned features [22, 25, 58, 75]. An alternative to us-

ing a 3D point cloud is to either compute the position and

orientation of a test image from relative poses to database

images [87, 88], or to compute a 3D model on-the-fly [62].

Still, these approaches rely on local image features and are

thus susceptible to the image inversion approach from [55].

Learned localization approaches either replace the com-

plete localization pipeline [8, 33, 34, 81] or the 2D-3D

matching stage [4–7, 13, 14, 19, 49, 68] through machine

learning. The former, which directly regress a camera

pose via a convolutional neural network (CNN), have been

shown to perform similar to image retrieval techniques [64],

i.e., nearest neighbor classifiers that only approximate the

pose of the test image [1, 77, 78]. The second family of

learned localization methods, which regress a 3D scene co-

ordinate for each pixel in a test image, has been shown to

achieve high pose accuracy on small scenes [5–7,13,14,68].

However, they currently do not scale well to larger or more

complex scenes [6, 13]. As such, such learned localization

systems are currently not used in practice.

Recovering image content from features. The descrip-

tors of local features represent an abstract representation of

a patch centered around a keypoint. A long-standing re-

sult is that it is possible to recover the image content from

gradient-based features such as SIFT [82] and HOG [80],

even if the descriptors are quantized into visual words [32].

Naturally, training CNNs to recover images improves the

reconstruction quality [20,21]. Further work shows that the

deep representations learned by neural networks can be in-

verted to recover images, which can be used as a tool to

visualize what such networks learn [48, 84, 85].

Privacy-preserving visual localization. Pittaluga et al.

extended these results on recovering images from 2D lo-

cal features to 3D Structure-from-Motion point clouds [55].

They showed that a CNN can be trained to recover an im-

age from the projection of 3D points (together with their

descriptors) into a synthetic view. They concluded that

scene representations based on SfM point clouds can al-

low an attacker to recover private details. Recently, [70]

showed that high-quality images can also be recovered

from sparse colored point clouds without image descrip-

tors. In order to enable privacy preserving localization,

Speciale et al. proposed to replace each SfM point by a

random line passing through that point [71], where the di-

rection of the line is sampled uniformly at random from

a unit sphere. They showed that the resulting line clouds
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still enable precise camera pose estimation. They argued

that line clouds preserve privacy as they prevent the ap-

proaches from [55,70] from being applicable, which would

ensure that user-recorded scenes can be safely stored in

the cloud. Follow-up work to this seminal paper showed

how to adapt SLAM systems to integrate this idea into a

SLAM system [67] and how to enable privacy-preserving

image queries for localization [72] and privacy-preserving

SfM [24]. [24,72] operate on 2D rather than 3D representa-

tions and replace each 2D image feature by a 2D line.

This paper investigates the claim of preserving user pri-

vacy by lifting 3D point to line clouds made by [71]. We

show that it is possible to (approximately) recover the un-

derlying point positions using only the provided line geom-

etry. As a result, we show that image-level details can be

obtained from line clouds through recovering the underly-

ing 3D point cloud. Our approach is based on the observa-

tion that two random 3D lines often enough have their clos-

est points nearby to the original 3D points. However, this

does not hold in 2D, i.e., our approach is only applicable to

recover 3D point clouds but not 2D feature clouds.

3. From Point Clouds to Line Clouds

Structure-based visual localization approaches [30, 40,

41, 60, 86] use 2D-3D correspondences between pixels and

3D points in a scene model to estimate the camera pose of

a given query image. To this end, classical feature-based

approaches represent the scene through a 3D point cloud

P = {(pi,di)}, where each 3D point pi ∈ R
3 is asso-

ciated with one or more image feature descriptors di, e.g.,

a 128-dimensional SIFT [43] descriptor.1 Pittaluga et al.

showed that it is possible to “invert” the point clouds, often

constructed using SfM, used by feature-based localization

systems [55]. More precisely, they showed that it is possi-

ble to use a CNN to recover image details from a projection

of a sparse set of 3D point and their descriptors into an im-

age. They concluded that the commonly used point cloud

scene representations do not preserve privacy.

To avoid revealing details of a user-uploaded scene

model through the inversion process, Speciale et al. [71]

propose to lift the underlying point cloud P = {(pi,di)}
to a line cloud L = {(li,di)}. Each point pi is replaced

by a random line li passing through it.2 This introduces an

additional degree of freedom, namely the true position of

the point pi along the line li is unknown. Since these 3D

lines project to lines in 2D, the inversion approach from [55]

is not directly applicable anymore. Furthermore, the re-

sulting scene representation is unintelligible to humans (cf .

1P = {(pi,di)} is the minimally required scene representation.

Some methods such as [40,60] store additional details such as co-visibility

information. We only use the minimal representation in this paper.
2The chosen line representation, e.g., a Plücker vector as in [71], is not

important in the context of this paper.

Fig. 1). Consequently, Speciale et al. claim that the “3D line

cloud representation hides the underlying scene geometry

and prevents the extraction of sensitive information” [71].

Yet, Sec. 4 shows that lifting a point cloud to a line cloud

does not completely hide the underlying geometric proper-

ties if the line directions are uniformly sampled from a unit

sphere. Based on this insight, we develop an algorithm to

recover point clouds from line clouds.

4. Recovering Point Clouds from Line Clouds

Considered in isolation, a single line l is perfectly

privacy-preserving as all points on l are equally good can-

didates for the true 3D point p that gave rise to the line.

However, not all points along the line will be equally likely

when taking other lines into account. This is due to the fact

that the points in the original point cloud are not randomly

distributed but lie on surfaces. Information about the dis-

tribution might be preserved in a line cloud. In this paper,

we show that it can be possible to recover information about

the local neighborhood of points from a line cloud. In turn,

this information can be used to recover points from lines.

A line cloud is characterized by the distribution of the di-

rections of lines drawn through the underlying points. This

design choice can be used to choose a distribution that con-

ceals the most information. Speciale et al. propose to sam-

ple line directions independently and uniformly at random

for each point, as this distribution helps to ensure good lo-

calization accuracy [71]. Consequently, we assume that the

line directions are drawn independently from a uniform dis-

tribution over a unit sphere and denote the resulting line

clouds as uniform line clouds. Sec. 4.1 shows that this dis-

tribution implies that the two closest points between two

lines li, lj are likely to be relatively close to the original 3D

points pi, pj . Sec. 4.2 shows how to leverage this infor-

mation to recover 3D points from 3D lines. Sec. 4.3 then

discusses limitations of our approach, including listing con-

ditions under which point recovery might not be possible.

4.1. Information in Uniform Line Clouds

If we consider the point and line clouds, P and L, to be

random variables, then the posterior distribution P (P|L)
can be obtained via Bayes rule:

P (P|L) = P (L|P)P (P)/P (L) ∝ P (L|P)P (P) . (1)

Since all line directions are drawn independently from an-

other, we have P (L|P) =
∏N

i=1 P (li|pi). The probabil-

ity P (li|pi) of a line li given its corresponding point pi

is zero if pi does not lie on li. Otherwise, the proba-

bility is constant as all line directions are equally likely.

Thus, the likelihood function P (L|P) is piece-wise con-

stant, i.e., two point clouds P , P ′ will have the same likeli-

hood P (L|P) = P (L|P ′) as long as every point pi lies on
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Figure 2. Empirical cumulative distribution of the relation between

the Euclidean distance d(p,p1) of two points p, p1 and the dis-

tance d(p, p̂) between p and an estimate p̂ for p obtained via the

closest points of the two lines corresponding to p and p1. As can

be seen, there is a high chance that p is closer to p̂ than to p1,

where the red line denotes equal distance.

its line li. Consequently, a maximum a posteriori estimate

is obtained by maximizing the prior P (P), under the con-

straint that all points should lie on their lines. Unfortunately,

defining or learning a general prior distribution P (P) seems

like a hard problem. We thus reason about local neighbor-

hoods instead of the global point cloud. The neighboring

points / lines are then used to recover a point position esti-

mate p̂i from the line li.

Consider two 3D points, p and a nearby point p1, as well

as their corresponding lines l, l1. A simple approach to ob-

tain an estimate for p is to find the point p̂ on the line l

with minimum Euclidean distance to l1. In the following,

we show that for uniform line clouds, p̂ is likely to be a

relatively good estimate for p. To this end, we study the

distribution of the random variable X = d(p, p̂)/d(p,p1),
where d(·, ·) is the Euclidean distance between two 3D

points. We empirically measure this distribution by fixing

the distance d(p,p1) = 1 and randomly sampling the direc-

tions of the two lines l, l1 for one million iterations. Fig. 2

shows the resulting cumulative distribution of X. A key ob-

servation that can be drawn from this is that in nearly 80%
of the cases, d(p, p̂) is smaller than d(p,p1). This implies

that if d(p,p1) is small, there is a good chance that p̂ will

be close to the true point position p.

The above analysis can be further extended to a neigh-

borhood of size k. Let N k(p) = {1, 2, . . . , k} be the in-

dices of the neighboring points of p. Let {l1, l2, . . . , lk} be

the lines through these neighboring points and let

dmax = maxj∈Nk(p) d(p,pj) (2)

be the maximum distance between p and any of its neigh-

bors. Since all directions are drawn independently, uni-

formly at random from a unit sphere, the result from the

2-point analysis from above holds pairwise for each pair

(p,pj), j ∈ N k(p). Thus, from the k estimates obtained

on l using lines {l1, l2, . . . , lk}, 0.8k can be expected to lie

within a distance dmax from p. If dmax is small, this leads

to a clustering of estimates close to the true point p.

The results from above suggest that given information

about the k nearest neighbors of each point, it should

be possible to obtain accurate point estimates from a line

cloud. We verify this intuition though a simple experi-

ment on an indoor scene (cf . Fig. 3(a)) for k = 50. For

each point, we obtain 50 estimates on its line using the

lines through its nearest neighboring points. Simply tak-

ing the median of these estimates produces the result shown

in Fig. 3(b). To measure the impact of imperfect neighbor-

hoods, we randomly replace 50% / 90% of the neighbors

with random lines from the line cloud. As can be seen in

Fig. 3(c), even with 50% outliers, it is still possible to re-

cover the underlying point cloud. However, 90% outliers

lead to a very noisy point cloud and the images obtained

via [55] from this point cloud become unintelligible (cf .

Fig. 3(d)). For comparison, Fig. 3(e) shows results obtained

with our approach, introduced in Sec. 4.2, that aims to re-

cover the neighborhood from all lines in the line cloud.

4.2. Recovering Points from Uniform Line Clouds

As motivated above, estimating a 3D point position pi

from a given line li can be modelled as a two-stage pro-

cess: the first stage, neighborhood estimation, identifies

the neighboring 3D points of pi through their correspond-

ing lines. For each such line lj , the point on li closest to lj
provides an estimate for the true point position pi. Given

these candidate positions along li, the second stage then se-

lects a single candidate. This is achieved by finding high-

density regions of the candidates along li via peak finding.

Multiple iterations of these two steps are performed to

improve the estimates. In the first iteration, only line-to-

line distances can be computed and used to select a neigh-

borhood of lines for li. Starting from the second iteration,

point estimates are available for each line. These point esti-

mates can be used to obtain better neighborhood estimates,

which in turn lead to better 3D point predictions (cf . Fig. 3).

Neighborhood Estimation. In the first iteration, we

can only measure the minimum distance dll(li, lj) between

lines li and lj , defined as the Euclidean distance between

the closest points on the lines. The minimum distance

between two lines cannot be larger than the distance be-

tween the corresponding points. Thus, the set NK
ll (li) =

{i1, . . . , iK} containing the indices of the K nearest lines

to li should contain part of the true neighborhood N k(pi)
if K > k is large enough.

Once point position estimates {p̂i|i ∈ 1, . . . , N} for the

input lines {li|i ∈ 1, . . . , N} are obtained, we compute two

additional neighborhoods: NK
lp (p̂i) = {i1, . . . , iK} is the

set of indices belonging to the K lines that have the small-

est Euclidean distances to the point estimate p̂i. Similarly,

NK
pl (li) is the set of indices belonging to the K point es-

timates that have the smallest Euclidean distances to the

line li. Intuitively, we expect NK
pl (li) to contain those true

neighbors that have been estimated close to their true 3D
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(a) Ground Truth (b) No outliers (c) 50% outliers (d) 90% outliers (e) Ours

Figure 3. Top row: (a) ground truth point cloud, (b) - (d) point clouds recovered using true neighborhoods with different outlier contami-

nation levels. (e) the result from our method. Bottom row: Images reconstructed from the point clouds using [55].

position in the previous iteration. In practice, we observe

that NK
pl often has a comparatively high overlap with the

true neighborhood of points in N k(pi). However, it still

contains outliers corresponding to 3D points estimated in

regions through which li passes. Similarly, we can expect

NK
lp (p̂i) to contain lines corresponding to the true neigh-

boring points from N k(pi), but also outliers from lines

from unrelated points that pass through the region contain-

ing p̂i. We thus estimate the neighborhood of li as the in-

tersection NK
pl (li) ∩NK

lp (p̂i).
In our experience, an initial neighborhood size of K

between 300 and 500 for NK
ll (li), followed by a smaller

neighborhood size of 100 to 200 for NK
pl (li) and NK

lp (p̂i)
works well for a line cloud of about 100k lines.

Peak Finding. Let NK(li) be the neighborhood for line

li from the neighborhood estimation stage. Each line lj ,

j ∈ NK(li), provides a 3D point candidate estimate p̂ij for

pi, defined as the point on li with the minimum distance to

lj . Let oi be an arbitrary 3D point on li and vi be the 3D di-

rection of the line. We can then parameterize the candidates

as a distribution of scalar values

Ei = {βij |p̂ij = oi + βijvi, ∀j ∈ NK(i)} (3)

along the line. We select the candidate 3D position p̂i for

pi by finding high-density regions in this distribution. Fol-

lowing [44, 45], we use the Kuiper’s statistic [35], a non-

parametric test statistic that can be used to measure where a

given cumulative distribution function (CDF) FX(x) differs

the most from a reference CDF FT (x), to identify high den-

sity regions. We measure the unweighted empirical CDF

Fi(x) =
1

K

∑K

j=1
Iβij<x (4)

describing the distribution of the points from Ei on li.

Here, Iβij<x is an indicator variable taking value 1 if

βij < x and 0 otherwise. We compare Fi(x) with the

CDF FU (x) of a uniform distribution between the min-

imum and maximum value from Ei. We compute the

two points x̄− = argmaxx (FU (x)− Fi(x)) and x̄+ =
argmaxx (Fi(x)− FU (x)) corresponding to the positions

along the line where the two distributions differ most.

The differences between the distributions at these points

are given as D− = (FU (x̄
−)− Fi(x̄

−)) and D+ =
(Fi(x̄

+)− FU (x̄
+)) and the Kuiper’s statistic is then de-

fined as KS = D− +D+.

Intuitively, x̄− and x̄+ define the start and end points of

a high-density region of the points along the line and KS

provides a measure for how much this density differs from

a uniform distribution. Recursion within the range x̄− and

x̄+ can be used to refine the range. The value of KS can

be used to decide when we are sufficiently close to the peak

and we stop once KS drops below 0.4. The median value

within the range is then used as the estimate p̂i for pi. Sim-

ilarly, recursion outside the range x̄− and x̄+ can be used to

identify multiple candidates and we select the one with the

largest KS value. Please see the supp. material for a more

detailed description of the peak finding procedure.

4.3. Limitations

Our approach fails if it either is not able to recover

enough true neighbors in the first stage (cf . Fig. 3) or if good

position estimates cannot be found in the second stage.

Naturally, changing the distribution of line directions

such that the closest points between pairs of lines are far

away from the original points will cause both stages to

fail. However, the localization approach presented in [71]

is based on modelling pose estimation as a relative pose

problem for generalized cameras. This allows [71] to es-

timate the absolute scale of the translation and thus the ab-

solute pose of the test image. In the case that all lines used

for pose estimation intersect in the same point, the relative

pose problem degenerates to the classical perspective rela-

tive problem [52]. In this case, the translation can only be

recovered up to a unknown scaling factor and localization

fails. As such, there is a trade-off between pose accuracy

and preventing the use of closest points on lines. While out

of scope for this work, we believe that this is an interesting

direction for future research (cf . Sec. 6).

An alternative strategy to prevent our method from re-

covering accurate 3D point positions is to represent the

scene as a sparse line cloud. Using only a subset of the orig-
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Figure 4. Qualitative results showing point clouds recovered for two scenes each from the outdoor Cambridge Landmark [34] and the

indoor 12 Scenes [79] datasets. From left to right, we have the ’Great Court’, ’Kings College’, ’Apt2-Kitchen’ and ’Apt2-Bedroom’

scenes. For the Cambridge scenes, 30% of all available lines were used for the shown recovered point cloud, while for the indoor scenes

from 12 Scenes, all the lines were used. A statistical outlier removal step is performed on the recovered point clouds before visualization.

inal 3D points Consequently, it becomes harder to identify

true neighbors based on line-line and point-line distances in

the first stage of our algorithm. Even if we can recover the

true neighborhood, increasing distances between the true

neighbors decreases the chance that the closest points on

two lines are close to the true point positions (cf . Sec. 4.1).

Thus, peak finding might fail if the line clouds are too

sparse. Since [71] showed that accurate localization is still

possible when using 5-10% of the original lines, we con-

sider this case in our experiments.

Linked to the challenges induced by using sparse line

clouds is that our approach struggles to recover points in

areas with low point density. Consider the line of a point

from a sparse region in the original point cloud that passes

through a region containing more points. In this case, there

is a good chance that most of the neighbors identified by

our method will come from this denser region rather than

the original neighborhood. This results in predicting the

point position in the wrong part of the scene.

5. Experimental Evaluation

In this section, we evaluate our approach for recovering

point clouds from line clouds on a set of indoor and out-

door scenes. We first show qualitative and quantitative re-

sults for the recovered 3D point clouds. Next, we analyze to

what degree image content can be recovered by applying the

SfM inversion procedure from [55] on our recovered point

clouds. Finally, we show that very sparse line clouds can

be used to prevent [55] from obtaining human-interpretable

images from our recovered point clouds. Overall, our exper-

iments show that lifting point clouds to line clouds by itself

is not sufficient to obfuscate the underlying scene geometry.

Datasets. For evaluation, we use the Cambridge Land-

marks [34] and 12 Scenes [79] datasets. The Cambridge

Landmarks dataset depicts individual outdoor landmarks.

The 12 Scenes dataset depicts 12 smaller rooms in indoor

scenes. In addition, we use the Strecha Fountain [73] scene

and a dataset depicting castle Dagstuhl in Germany.

Recovering point clouds. Fig. 4 shows the point clouds

recovered by our method for two outdoor and two indoor

scenes. As can be seen, our approach is able to faithfully re-

produce the overall structure of the scene. At the same time,

our method is also able to reveal details such as the pres-

ence of the kitchen sink and the circular burner plates in the

kitchen scene, or the chequered design of the bed linen in

the bedroom scene. We observe that regions of higher point

density are recovered in more detail. This is consistent with

the fact that shorter distances between neighboring points

increase the chance of accurately recovering the point posi-

tions. As predicted in Sec. 4.3, sparser regions are often not

well-recovered. Rather, the corresponding point estimates

fall into regions with a higher point density. More qualita-

tive results are shown in Fig. 6 and in the supp. material.

To quantify the accuracy with which our method recov-

ers point clouds, we measure the Euclidean distance be-

tween the original and recovered point positions. Fig. 5(left)

and (middle) show the cumulative distributions of these er-

rors for each of the indoor and outdoor scenes. As can be

seen, our approach is able to recover a large fraction of

the points within 5cm of their original position for the in-

door scenes, with median errors in the range of 1-3cm. In

contrast, the errors are considerably larger for the outdoor

scenes. This can be explained by the fact that the accuracy

with which a point can be recovered depends on the under-

lying distances to its estimated neighbors. Outdoors, where

the structure is farther away from the camera than in indoor

scenes, these distances are larger. Furthermore, we only
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Figure 5. Quantitative results showing the cumulative distribution of errors in the recovering point positions. (Left) Results for each scene

from the 12 scenes datasets. (Middle) Results for the outdoor datasets. (Right) Results averaged over four indoor scenes for different

sparsity levels. “Known NN” denotes a variant of our method where the true neighborhood is given by an oracle.

use 30% of all lines, selected uniformly at random, for the

Cambridge scenes for computational efficiency. Still, Fig. 4

shows that the accuracy of the recovered points is sufficient

to produce human-interpretable point clouds.

Recovering image details. The main motivation behind

using line instead of point clouds was to prevent recov-

ering image content from SfM point clouds [71]. In the

next experiment, we thus apply the SfM inversion approach

from [55] on our recovered point clouds to see to which de-

gree image content can be recovered from them. We apply

the pre-trained model from [55], trained on SfM datasets,

without fine-tuning it on our more noisy point clouds.

Fig. 6 shows qualitative results for two outdoor and two

indoor scenes, comparing the inversion results of the orig-

inal and our recovered point clouds. As can be expected,

our more noisy point clouds lead to artifacts such as blurry

regions and wavy lines instead of straight ones. Still, the

obtained images clearly reveal scene information like the

overall structure of the buildings, shapes of doors and win-

dows, as well as the presence of small objects such as cush-

ions, shoes, a Bayern Munich flag, etc. Based on these re-

sults, we conclude that lifting point clouds to line clouds

does not guarantee that image details cannot be recovered.

Additional qualitative results can be found in the supp. mat.

(Very) sparse line clouds prevent image recovery. As

discussed in Sec. 4.3, using sparser line clouds still allows

accurate localization while potentially preventing our ap-

proach from recovering accurate point clouds. In this exper-

iment, following [71], we thus consider sparse line clouds

obtained by randomly selecting a subset of the lines.

Fig. 5(right) shows quantitative results averaged over

four indoor scenes for different levels of sparsity. We show

results for our method and a variant that receives the true

neighbors from an oracle. As can be seen, our approach

can recover the point positions rather accurately when using

down to 5% of the original line cloud. However, there is a

significant drop in accuracy when using only 1% of all lines.

The comparison with the oracle shows that there is consid-

erable room for improvement in terms of better recovering

the true neighborhood of each point / line. However, even

using the oracle still results in a considerable drop in per-

formance when using 1% of all lines.

Fig. 7 shows qualitative results for the images ob-

tained via [55] from the recovered point clouds. While

Fig. 5(right) shows that our method provides rather accu-

rate position estimates even at densities as low as 10% and

5%, the resulting images show very little details as com-

pared to images from the original sparse point cloud. Part

of the reason is that points from sparser regions are wrongly

recovered in denser regions, causing problems for the inver-

sion process. At the same time, sparser point clouds have

been shown to be harder to recover in the first place [55]. As

can be seen, meaningful image details cannot be recovered

when using 5% or less of the lines, even when given the

true neighborhood by some oracle. Based on the results, we

conclude that sparse line clouds can effectively prevent the

recovery of image content using existing methods. Addi-

tional qualitative results can be found in the supp. mat.

6. Conclusion

In this paper, we have shown that lifting point clouds

to line clouds does not necessarily obfuscate the underly-

ing 3D scene structure. We have shown that it is possible

to (approximately) recover the underlying 3D point cloud

by identifying local neighborhoods. In turn, these neigh-

borhoods are used to obtain point position estimates using

closest points between lines, which we have shown to of-

ten provide a good approximation to the original 3D points.

Quantitative and qualitative results show that our approach

enables us to recover image details from line clouds. How-

ever, our results also show that sparsification can effectively

prevent recovering image details. In the context of privacy-

preserving visual localization, we thus conclude that using

lines alone does not guarantee privacy-preservation, but that

using sparse representations is similarly important. This

conclusion is based on the ability of existing SfM inver-

sion methods to recover images from sparse and noisy point

clouds. Yet, better recovery algorithms might require us to

revisit this problem in the future.

As shown in Fig. 7, using very sparse point clouds is

also effective in preventing [55] from recovering image de-
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Figure 6. Qualitative results for the recovered point clouds and the images obtained by applying the inversion technique from [55] on the

original (above) and recovered (below) point clouds. Left to right: ’Old Hospital’, ’Dagstuhl’, ’Office1-Lounge’, ’Apt2-Bed’.
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Figure 7. Qualitative results (on scene ’Apt2-Luke’ from 12 scenes) for studying the impact of using sparser line clouds to represent the

scene. We compare the images obtained by inversion of the original point cloud (top), from a point cloud recovered by our approach using

the true neighborhood given by an oracle (middle), and from the point cloud recovered by our method without the oracle (bottom).

tails. Since point-based localization methods are more ac-

curate than line-based ones [71], finding sparsity levels at

which point clouds are privacy-preserving while enabling

more accurate pose estimates is an interesting direction for

future work. Further, our results show room for improve-

ment for our method. Including descriptor information into

the recovery process might help unlock this potential.

As detailed in Sec. 4.3, exploring different distributions

for line directions is another interesting research direction.

Potential approaches to define the distribution include: 1)

ensuring that there are no closest points between lines that

are within a given threshold of the original points. 2) cre-

ating line neighborhoods that do not contain closest points,

e.g., by ensuring that lines from many far away points come

very close to each other far away from the original point po-

sition. 3) ensuring that most lines go through dense neigh-

borhoods, thus allowing to recover these parts while pre-

venting recovery in all the sparser parts. Computing such

distribution likely cannot be done individually per point

anymore but rather requires complex iterative schemes. At

the same time, iteratively applying our approach with a hu-

man in-the-loop might allow us to still handle such distri-

butions: after visual inspection, the human removes lines

from the neighborhoods of falsely classified points, e.g., by

excluding lines passing through certain regions in 3D space.

Similarly, co-occurrence statistics over feature descriptors

could be used to filter out irrelevant neighbors.
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