
AQD: Towards Accurate Quantized Object Detection

Peng Chen2* Jing Liu1* Bohan Zhuang1† Mingkui Tan3 Chunhua Shen1,2

1Monash University 2The University of Adelaide 3South China University of Technology

Abstract

Network quantization allows inference to be conducted

using low-precision arithmetic for improved inference effi-

ciency of deep neural networks on edge devices. However,

designing aggressively low-bit (e.g., 2-bit) quantization

schemes on complex tasks, such as object detection, still

remains challenging in terms of severe performance degra-

dation and unverifiable efficiency on common hardware. In

this paper, we propose an Accurate Quantized object Detec-

tion solution, termed AQD, to fully get rid of floating-point

computation. To this end, we target using fixed-point op-

erations in all kinds of layers, including the convolutional

layers, normalization layers, and skip connections, allow-

ing the inference to be executed using integer-only arith-

metic. To demonstrate the improved latency-vs-accuracy

trade-off, we apply the proposed methods on RetinaNet and

FCOS. In particular, experimental results on MS-COCO

dataset show that our AQD achieves comparable or even

better performance compared with the full-precision coun-

terpart under extremely low-bit schemes, which is of great

practical value. Source code and models are available at:

https://github.com/aim-uofa/model-quantization

1. Introduction

Deep neural networks (DNNs) have achieved great suc-

cess in many computer vision tasks, such as image classifi-

cation [11, 21, 12], semantic segmentation [31, 10, 5], ob-

ject detection [37, 27, 26], etc. However, DNNs are always

equipped with a large number of parameters and consume

heavy computational resources, which hinders their appli-

cations, especially on resource-constrained devices such

as smartphones and drones. To reduce the memory foot-

print and computational burden, several network compres-

sion methods have been proposed, such as channel prun-

ing [13, 32, 53], efficient architecture design [15, 39, 35]

and network quantization [49, 52, 52].

In particular, network quantization aims to project

*First two authors contributed equally.
†Corresponding author. E-mail: bohan.zhuang@monash.edu

Table 1 – Energy and Area cost for different precision opera-

tions (on 45nm CMOS technology) [9, 14, 25].

Operation Energy (pJ) Area (µm2)

16-bit Floating-point Add 0.4 1360

16-bit Floating-point Mult 1.1 1640

32-bit Floating-point Add 0.9 4184

32-bit Floating-point Mult 3.7 7700

8-bit Fixed-point Add 0.03 36

8-bit Fixed-point Mult 0.2 282

32-bit Fixed-point Add 0.1 137

32-bit Fixed-point Mult 3.1 3495

floating-point values onto a spaced grid, where the origi-

nal floating-point values can be approximated by a set of

discrete values. In this way, the compute-intensive floating-

point operations can be replaced by power-efficient fixed-

point or bitwise operations, which greatly reduces the com-

putational cost of the networks.

Recently, many quantization methods [52, 20, 8] have

been proposed and achieved promising results on some

tasks such as image classification. However, using aggres-

sively low-bit quantized networks for more complex tasks

such as object detection still remains a challenge. Devel-

oping quantized object detectors is a challenging task since

a detector not only performs object classification, but also

needs to predict other rich information, such as the loca-

tions of bounding boxes for regression. Some existing quan-

tized object detection methods [18, 50] reduce the preci-

sion of detectors to 4 or 8 bits and achieve promising per-

formance. However, when it comes to aggressively low

bitwidth (e.g., 2-bit) quantization, directly quantizing the

detector incurs a significant performance drop compared

to their full-precision counterpart. Moreover, some layers

(e.g., batch normalization, and skip connections) in the net-

work still require floating-point arithmetic units for infer-

ence. This means both integer and floating-point arithmetic

units are needed for inference. As shown in Table 1, com-

pared with fixed-point operations, floating-point operations

consume much higher energy and area cost. Besides, data

exchange between different types of arithmetic units may

further hamper the energy efficiency of the network.

104

In this paper, we propose an Accurate Quantized object

Detection (AQD) method to fully get rid of floating-point

computation while maintaining performance. To this end,

we propose to replace floating-point operations with fixed-

point operations in all kinds of layers, including the convo-

lutional layers, normalization layers and skip connections.

In this way, only integer arithmetic is required during infer-

ence, which significantly reduces the computational over-

heads. To reduce the performance drop from quantiza-

tion while ensuring pure fixed-point operations, we further

propose a new variant of batch normalization (BN) called

multi-level BN. Our proposed method is based on the obser-

vation there is a large divergence of batch statistics across

different feature pyramid levels, where batch statistics are

computed using aggressively quantized activations. There-

fore, using shared BN statistics in conventional detection

frameworks [41, 27] will result in highly poor estimates

of statistical quantities. To capture accurate batch statis-

tics, multi-level BN privatizes batch normalization layers

for each pyramid level of the head.

Our main contributions are summarized as follows:

• We propose an Accurate Quantized object Detection

(AQD) method to fully get rid of floating-point com-

putation in each layer of the network, including con-

volutional layers, normalization layers and skip con-

nections. As a result, only integer arithmetic is re-

quired during inference, which greatly improves the

on-device efficiency to carry out inference.

• We highlight that the degraded performance of the

quantized detectors is largely due to the inaccurate

batch statistics in the network. We therefore pro-

pose multi-level batch normalization to capture accu-

rate batch statistics of different levels of feature pyra-

mid.

• We evaluate the proposed methods on the COCO de-

tection benchmark with multiple precisions. Experi-

mental results show that our low bit AQD can achieve

comparable or even better performance with its full-

precision counterpart.

2. Related work

Network quantization. Network quantization aims to re-

duce the model size and computational cost by represent-

ing the network weights and/or activations with low preci-

sion. Existing methods can be divided into two categories,

namely, binary quantization [16, 36, 3, 30, 29] and fixed-

point quantization [49, 52, 46, 20, 8]. Binary quantiza-

tion converts the full-precision weights and activations to

{+1,−1}, where the convolution operations are replaced

with efficient bitwise operations and can achieve up to 32×
memory saving and 58× speedup on CPUs [36, 51]. To

reduce the performance gap between the quantized model

and the full-precision counterpart, fixed-point quantization

methods [49, 4, 52, 6, 46] represent weights and activations

with higher bitwidths, showing impressive performance on

the image classification task. Besides, some logarithmic

quantizers [48, 33, 24] leverage bit-shift operations to ac-

celerate the computation. However, they impose constraints

on the quantization algorithm. For example, the quantized

activations need to be fixed-point values and the quantized

weights are required to be powers-of-2 values, which might

result in lower quantization performance.

Apart from the algorithm design, the development of

underlying implementation and acceleration libraries [7,

47, 19] are critical to enable highly-efficient execution on

resource-constrained platforms. In particular, low-precision

training methods [1, 40, 42] quantize weights, activations

and gradients to carefully designed data format for im-

proved efficiency while preserving accuracy. To improve

the inference efficiency, several methods [47, 19] propose

to design efficient bitwise operations on dedicated hardware

devices, such as ARM, FPGA and ASIC.

Quantization on Object Detection. Many researchers

have studied quantization on object detection to speed up

on-device inference and save storage. Wei et al. [43] utilize

knowledge distillation and quantization to train very tiny

CNNs for object detection. Zhuang et al. [50] point out the

difficulty of propagating gradient and propose to train low-

precision network with a full-precision auxiliary module.

These works achieve promising quantization performance

on object detection. However, they do not quantize all the

layers (e.g., input and output layers, BN or skip connec-

tions), which limits the efficient deployment on resource-

constrained platforms. Jacob et al. [18] propose a quan-

tization scheme using integer-only arithmetic and perform

object detection on COCO dataset with 8-bit precision. Fur-

thermore, when carrying out more aggressive quantization,

Li et al. [23] observe training instability during the quan-

tized fine-tuning and propose three solutions. However,

these works impose extra constraints on both the network

structure and quantization algorithm design, which limits

them to obtain better performance (refer to Sec. 3.3). In

contrast, our quantization scheme is milder and more flex-

ible in aspects of network structure and quantization al-

gorithms which contributes to significant performance im-

provement of proposed AQD over several state-of-the-art

quantized object detectors.

3. Proposed method

3.1. Preliminary

3.1.1 Integer-aware Quantized Representation

Full-precision (32-bit) floating-point is a general data type

that is used to represent data in deep learning models. With

network quantization, the continuous full-precision weights

105

and activations are discretized to a limited number of quan-

tized values. Specifically, given a specific bitwidth b, the

total number of quantized values is 2b. To enable efficient

integer arithmetic operations on the quantized values, it re-

quires the quantization scheme to be a mapping of real val-

ues to integers. Formally, for b-bit quantization of any full-

precision value x in a tensor X, its quantized version x can

be formulated as:

x = η · α, (1)

where α is a full-precision floating-point scale factor shared

for the whole tensor X, and η ∈ N implies the correspond-

ing mapping value in the integer domain.

3.1.2 Quantization function

In this work, we propose to quantize both weights and ac-

tivations with learnable quantization intervals motivated by

LSQ [8]. Without loss of generality, given a convolutional

layer or fully-connected layer in a network, the weight W is

convolved with the input activation X, where W and X are

real-valued tensors. We use x,w ∈ R to denote the element

of X and W respectively. Let νx and νw be the trainable

quantization interval parameters that indicate the range of

activations and weights to be quantized, which are shared

for all elements in X and W, respectively.

For a given x, we first constrain it to the range [0, νx],
with values out of the range clipped into boundaries. We

then linearly map values in the interval [0, νx] to the integer

domain of {0, 1, . . . , 2b − 1}, where b is the quantization

bitwidth. At last, we restore the magnitude of the original

x by multiplying the corresponding scale factor. Formally,

the quantization process can be formulated as follows:

ηx = ⌊clip(x
νx

, 0, 1) · (2b − 1)⌉,

x = ηx · νx
2b − 1

,
(2)

where ⌊·⌉ returns the nearest integer of a given value,

clip (x, xlow, xup) = min(max(x, xlow), xup), ηx is the

corresponding integer-domain mapping value of x, and
νx

2b−1
is the magnitude-restore scale factor.

For the given w from weights, the quantization interval

is defined as [−νw, νw]. We compute the quantized weight

w similar to x except that an additional transformation is

applied , which can be formulated as:

ηw = ⌊(clip(w
νw

,−1, 1) + 1)/2 · (2b − 1)⌉,

w = (ηw · 1

2b − 1
· 2− 1) · νw,

(3)

where ηw is the corresponding integer-domain mapping

value of w.

x x

w w
x w.

Conv BN Skip Connection

z y

Figure 1 – Illustration of a typical block in the detection net-

work. Double slash lines indicate the positions where quantiza-

tion applies. Note that in a fully-quantized network, x can be

represented in the format of Eq. (1), which is the output y of the

preceding block.

During network training, the discretization operation by

rounding function ⌊·⌉ is non-differentiable. To avoid gra-

dient vanishing issue, we employ the Straight-Through Es-

timator (STE) for back-propagation [2].

3.2. Floating­point Free Quantization

In this paper, we present an Accurate Quantized object

Detection (AQD) method that fully gets rid of floating-

point computation while still achieving promising perfor-

mance. In a conventional residual block as shown in Fig-

ure 1, we propose to substitute floating-point operations for

fixed-point operations in all kinds of layers, including the

convolutional layer, batch normalization layer and the skip

connection. In this way, only integer arithmetic is required

during network inference, which greatly reduces the com-

putational overhead and memory footprint of the network.

In the following subsections, we will introduce the details

of the proposed method regarding fixed-point operations for

each of these layers.

3.2.1 Convolutional and Fully-connected Layers

As elaborated in Sec. 3.1.1, we define a unified quantiza-

tion representation that allows for integer-only arithmetic,

and all tensors in the quantized network are required to fol-

low the rule in Eq. (1). We can observe that the quantized

activation x and weight w are compatible with this repre-

sentation format. Furthermore, the output activation of a

quantized convolutional or fully-connected layer can fit the

format as well:

x · w = (ηx · νx
2b − 1

) · ((ηw · 1

2b − 1
· 2− 1) · νw),

= (ηx · (2 · ηw − 2b + 1)) · νx · νw
(2b − 1)2

,

= ηconv · αconv.

(4)

Benefit from the data representation in Eq. (1), the scale

factors νx and νw can be handled independently from ηx

106

200 100 0 100 200
magnitudes

0

1

2

3

4

nu
m

1e5
level-3
level-4
level-5
level-6
level-7

(a) 3-th layer of classification head

100 0 100 200
magnitudes

0

1

2

3

nu
m

1e5
level-3
level-4
level-5
level-6
level-7

(b) 3-th layer of regression head

200 0 200
magnitudes

0

1

2

3

nu
m

1e5
level-3
level-4
level-5
level-6
level-7

(c) 4-th layer of classification head

300 200 100 0 100 200
magnitudes

0

2

4

nu
m

1e5
level-3
level-4
level-5
level-6
level-7

(d) 4-th layer of regression head

Figure 2 – Distribution of input activations at the batch normalization layer in the detection heads of a 2-bit ResNet-18 FCOS detector.

Level-x denotes that the predictions are made on the x-th pyramid level. Different levels of features show different batch of statistics.

and ηw. Being shared for the whole activations and fixed

in inference, the floating-point scale factor αconv can be

passed to the proceeding layer directly. In this case, only

fixed-point operations exist in the quantized convolutional

or fully-connected layer, which can greatly reduce the com-

putational cost.

3.2.2 Normalization Layers

Level-3 Level-4 Level-5 Level-6 Level-7

Shared Convolutional layer
Shared BN/ GN

ReLU

Shared Convolutional layer

ReLU

BN

(a)

(b)

BN BN BN BN

Level-3 Level-4 Level-5 Level-6 Level-7

Figure 3 – Illustration of the proposed quantized detection

heads design. (a) Conventional detection frameworks with

shared group normalization or batch normalization [41, 27]; (b)

The proposed multi-level BN that privatizes batch normalization

layers for different heads.

Both batch normalization (BN) [17] and group normal-

ization (GN) [44] are widely used in classical object detec-

tion networks [27, 41, 22]. We investigate the differences of

these two normalization operations and analyze their impact

on network quantization and inference.

In particular, BN is employed mainly in the backbone

module for feature extraction while GN is preferred in the

detection head, which is generally shared to handle ex-

tracted feature of different levels in the feature pyramid net-

work (FPN) [26]. Both BN and GN normalize the input

activations using mean and variance with an optional affine

transformation. However, these two normalization strate-

gies differ in two aspects. On the one hand, a BN layer

calculates the statistics of the whole mini-batch while those

of GN only reply on the individual input tensor in the mini-

batch. Thus, BN is more sensitive to the training batch size,

and might suffer from inaccurate statistics when the batch

size is small. In contrast, GN behaves more stable to the

training batch size. On the other hand, BN keeps track of

exponential moving average mean µ and variance σ, and

updates them using the minibatch statistics at each forward

step during training, while µ and σ are fixed during infer-

ence. In contrast, GN re-computes the statistics informa-

tion in each forward step during both training and inference

procedures. As a result, GN unavoidably incurs floating-

point computation during inference. Moreover, compared

with BN, which can be potentially fused into the corre-

sponding convolutional layer with no extra computational

cost, GN imposes more execution burden during inference.

Therefore, to allow for integer-only arithmetic, we sug-

gest to use batch normalization to replace group normaliza-

tion in quantized detection networks. However, this replace-

ment might cause training instability since batch statistics

are computed using aggressively quantized activations, es-

pecially a small training batch size is commonly used. For-

tunately, when equipped with the synchronized version of

batch normalization (Sync-BN), the inaccurate statistics is-

sue of batch normalization can be partially addressed [34].

However, another issue may occur when FPN [26] is em-

ployed in the detectors. We can observe a large divergence

of batch statistics between different feature pyramid levels,

as shown in Figure 2. Therefore, using shared BN statistics

across prediction heads may lead to highly degraded esti-

mates of statistical quantities, which will cause a significant

performance drop. To solve this issue, we propose multi-

level batch normalization (multi-level BN) to attain better

quantization performance. Specifically, multi-level BN pri-

107

vatizes batch normalization layers for the shared convolu-

tional layers in different detection heads, as illustrated in

Figure 3. The proposed multi-level BN can capture individ-

ual batch statistics of the corresponding feature level. Fur-

thermore, only negligible parameters (less than 1.1% of the

model size) are introduced. Besides, it should be noted that

only one batch normalization is activated at a time though

multiple batch normalizations are allocated (since extracted

features from different levels are computed sequentially).

Thus, the proposed multi-level BN will not increase the

computational cost compared with the traditional shared

batch normalization (or group normalization).

To enable integer-only computation, we now design the

quantization strategy for the batch normalization layer to

remove the floating-point operations. We assume the pre-

vious layer is a quantized convolutional or fully-connected

layer, whose output is x · w as explained in Eq. (4). Batch

normalization layer then takes it as input and obtains the

normalized output z. Before quantizing the batch normal-

ization layer, the normalized value z can be computed by

z =
ηconv · αconv − µ√

σ2 + ǫ
· γ + β,

= (ηconv +
β ·

√
σ2+ǫ
γ

− µ

αconv

) · αconv · γ√
σ2 + ǫ

,

= (ηconv + s) · αz,

(5)

where γ, β are the affine transformation parameters, ǫ is a

constant to stabilize the computation. Then we are able to

obtain the quantized batch normalization layer by quantiz-

ing s:

z = (ηconv + ⌊s⌉) · αz = ηz · αz. (6)

Obviously, for quantized batch normalization, the main

computation is the add operation between ηconv and ⌊s⌉
and the floating-point factor αz can be passed to next layer.

It is worth noting that, compared with the output of the

quantized convolutional or fully-connected layer, the quan-

tized output z of the batch normalization layer also meets

the integer-aware representation in Eq. (1), but with the

channel-wise scale factor αz .

3.2.3 Skip Connections

Skip connections are commonly applied in the detectors

with the ResNet [11] backbone and the FPN module. In this

subsection, we elaborate how to enable integer-only compu-

tation of skip connections (i.e., add operation between two

tensors). Diving into the structure of the object detection

network, we can learn that skip connections are employed

mainly in three occasions: 1) Fusion of the identity mapping

x and batch normalization output z in a residual block as il-

lustrated in Figure 1. 2) Fusion of the batch normalization

output of the downsampling branch and the main branch in

a residual block. 3) Fusion of the up-scaled feature map and

the current level feature map in FPN. For either of these oc-

casions, given two input quantized values x1 and x2, the

output y of skip connection and its quantized value y are

computed as follows:

y = x1 + x2 = η1 · α1 + η2 · α2,

y =

{

(η1 + η2 · F (α2, α1)) · α1 if α2 ≥ α1

(η1 · F (α1, α2) + η2) · α2 otherwise
,

(7)

where function F (·) is defined as

F (m,n) =
c

2d
,where c, d = argmin

c∈N,d∈N+

|m
n

− c

2d
|. (8)

Function F (·) actually is used for searching an approxi-

mation of a given fraction m
n

(where m ≥ n). In particular,

the numerator c is constrained to be an integer and the de-

nominator 2d is constrained to be powers-of-two to allow

for bit-shift (d is a positive integer). Function F (·) finds the

best combination of c and d to approximate m
n

. There is

limited choice for d, for example d ∈ {0, 1, 2, . . . , 31} if η1
and η2 are represented in 32-bit integer. Therefore, function

F (·) can be quickly solved, and Eq. (7) can be implemented

with fixed-point operations only (the scale factors α1 and α2

do not participate in the computation and are passed to the

next layer directly). It is worth mentioning that Eq. (7) is

conducted in a channel-wise manner since the scale factor

is applied on each channel in the batch normalization layer.

3.2.4 Other Layers

Layers such as max-pooling and nearest interpolation do not

introduce floating-point computation. Besides, they do not

change the scale factors of the layer input. Thus, there is no

special modifications for these layers.

3.3. Discussions

Related to our work, FQN [23] also targets on floating-

point-free arithmetic operations during inference. Com-

pared with FQN, our method imposes milder constraints

for both the network structure and quantization algorithm

design, to get rid of floating-point computation.

On the one hand, instead of quantizing the batch normal-

ization in standalone during training, FQN employs batch

normalization folding (BN folding), which fuses the batch

normalization layer into the preceding convolutional layer

to simulate the quantization effect. However, as indicated

in FQN, training instability is observed for the batch nor-

malization parameters and batch statistics after BN folding

is leveraged since considerable quantization noise is intro-

duced especially for the extremely low bitwidth. To address

this issue, FQN proposes freezed batch normalization in

108

which batch statistics are fixed during quantized finetuning.

Instead, we propose to employ the standard batch normal-

ization with statistics and parameters updated, but with the

multi-level design.

On the other hand, FQN imposes constraints on the

quantization algorithm. In particular, they require the scale

factors of the two quantized input activations in the skip

connection to satisfy

α1

α2

= 2d, (9)

where d is an integer (different with the scope in Eq. (8),

d here can be either positive or negative). This constraint

is equivalent to Eq. (8) by fixing c to be constant 1. To

meet such a condition, dedicated design of the quantization

algorithm for the preceding convolutional layers is required

due to the scale factors. In contrast, our method does not

make such an assumption. Actually, the proposed method

allows to quantize different layers independently. With the

proposed simple yet mild design, our method shows supe-

rior performance over FQN as demonstrated in Sec. 4.

4. Experiments

We evaluate our proposed method on the COCO de-

tection benchmarks dataset [28]. COCO detection bench-

mark is a large-scale benchmark dataset for object detec-

tion, which is widely used to evaluate the performance of

detectors. Following [26, 51], we use the COCO train-

val35k split (115K images) for training and minival split

(5K images) for validation.

Comparison methods. To investigate the effectiveness of

the proposed method, we compare with several state-of-

the-art quantized object detection methods, including Auxi

[50], Group-Net [51] and FQN [23]. We also define the

following methods for study: AQD*: Following [51, 50]

we quantize all the convolutional layers, except the input

layer in the backbone and the output layers in the detection

heads, which acts as a strong baseline in our work. AQD:

We quantize all network layers, including the input and out-

put layers, batch normalization and skip connection layers,

which is our complete method. Input and output layers are

quantized to 8-bit in all settings.

Implementation details. We implement the proposed

method based on Facebook Detectron2 [45]. We apply

the proposed AQD on two classical one-stage object de-

tectors, namely, RetinaNet [27] and FCOS [41]. We use

ResNet [11] for the backbone module. To stabilize the op-

timization, we add batch normalization layers and ReLU

non-linearities after the convolutional layers by default. For

data pre-processing, we follow the strategy in [23, 50]

to resize images with a shorter edge to 800 pixels in the

training and validation set. Besides, images are augmented

by random horizontal flipping during training. We do not

perform any augmentations during evaluation. Total 90K

iterations are trained with a mini-batch size of 16. We

use SGD optimizer with a momentum of 0.9 for optimiza-

tion. The learning rate is initialized to 0.01, and divided

by 10 at iterations 60K and 80K, respectively. We set the

weight decay to 0.0001. More detailed settings on the other

hyper-parameters can be found in [27, 41]. Training hyper-

parameters are the same for the quantized network and the

full-precision counterpart, except for the initialization strat-

egy. Specifically, to train the full-precision models, back-

bones are pre-trained on the ImageNet [38] classification

task. Parameters from other parts are randomly initialized.

Whereas, for training the quantized detector, the whole net-

work is initialized by the full-precision counterpart.

4.1. Comparison with State­of­the­art Methods

We compare the proposed method with several state-of-

the-arts and report the results in Tables 2 and 4. Quantiza-

tion performance of 4/3/2-bit networks are listed in the ta-

bles. Full-precision performance is also provided for com-

parison. In particular, Group-Net [51] employs 4 binary

bases, which corresponds to 2-bit fixed-point quantization.

Based on the results from Tables 2 and 4, we have

the following observations. Firstly, our AQD consistently

outperforms the compared baselines on different detec-

tion frameworks and backbones. For example, our 4-bit

RetinaNet detector with ResNet-18 backbone outperforms

FQN [23] and Auxi [50] by 5.5% and 2.2% on AP, respec-

tively. Besides, our 2-bit FCOS detector obtains 2.9% and

2.7% AP improvement over the Group-Net with ResNet-

18 and ResNet-50 backbones, separately. Moreover, our

4-bit quantized detectors can even outperform the corre-

sponding full-precision models in some cases. Specifically,

on a 4-bit RetinaNet detector, our AQD surpasses the full-

precision model by 1.8% and 0.8% on AP with ResNet-18

and ResNet-34 backbones, respectively. Furthermore, when

performing 3-bit quantization, our AQD achieves near loss-

less performance compared with the full-precision coun-

terpart. For example, on a 3-bit RetinaNet detector with

ResNet-50 backbone, our AQD only leads to 0.9% perfor-

mance degradation on AP. Lastly, when conducting aggres-

sive 2-bit quantization, our AQD still achieves promising

performance. For example, our fully-quantized 2-bit Reti-

naNet detector with ResNet-50 backbone only incurs 3.0%

AP loss compared with its full-precision baseline, but with

considerable computation saving. These results justify the

superior performance of our proposed AQD.

4.2. Ablation Study

Effect of Multi-level Batch Normalization. To study the

effect of multi-level BN, we quantize the FCOS detector

with multi-level BN, shared GN (or BN) and report the re-

sults in Table 3. Here, the detector with shared GN (or

109

Table 2 – Performance comparisons on the COCO validation set based on RetinaNet.

Backbone Method AP AP50 AP75 APS APM APL

ResNet-18

Full-precision 32.3 50.9 34.2 18.9 35.6 42.5

FQN [23] (4-bit) 28.6 46.9 29.9 14.9 31.2 38.7

Auxi [50] (4-bit) 31.9 50.4 33.7 16.5 34.6 42.3

AQD* (4-bit) 34.1 53.4 36.4 19.8 36.4 44.7

AQD (4-bit) 34.1 53.1 36.3 19.4 36.4 45.0

AQD* (3-bit) 33.5 52.5 35.6 17.8 35.9 44.9

AQD (3-bit) 33.4 52.8 35.7 17.9 36.4 43.9

AQD* (2-bit) 31.0 49.5 32.7 17.0 33.1 41.4

AQD (2-bit) 30.8 50.0 32.3 16.5 33.1 41.5

ResNet-34

Full-precision 36.3 56.2 39.1 22.4 39.8 46.9

FQN [23] (4-bit) 31.3 50.4 33.3 16.1 34.4 41.6

Auxi [50] (4-bit) 34.7 53.7 36.9 19.3 38.0 45.9

AQD* (4-bit) 37.1 56.8 40.0 21.8 40.3 48.1

AQD (4-bit) 37.1 56.8 39.8 21.9 40.0 48.0

AQD* (3-bit) 36.5 56.3 38.9 21.2 39.4 48.2

AQD (3-bit) 36.5 56.3 38.8 21.4 39.5 47.7

AQD* (2-bit) 34.3 53.8 36.4 19.6 37.0 45.3

AQD (2-bit) 33.8 54.0 36.1 19.4 36.8 44.8

ResNet-50

Full-precision 37.8 58.0 40.8 23.8 41.6 48.9

FQN [23] (4-bit) 32.5 51.5 34.7 17.3 35.6 42.6

Auxi [50] (4-bit) 36.1 55.8 38.9 21.2 39.9 46.3

AQD* (4-bit) 38.1 58.5 41.3 23.9 41.8 48.7

AQD (4-bit) 38.1 58.1 40.7 22.5 41.6 49.8

AQD* (3-bit) 37.2 57.4 39.5 23.0 40.8 47.8

AQD (3-bit) 36.9 57.1 39.5 22.0 40.6 47.9

AQD* (2-bit) 35.0 55.0 37.2 20.6 38.4 45.5

AQD (2-bit) 34.8 55.4 36.9 20.3 37.9 45.6

Table 3 – Effect of the multi-level batch normalization. We evaluate performance of both full-precision (FP) and 2-bit quantized models

based on FCOS on the COCO validation set.

Backbone Normalization Precision Shared Fixed-point-only AP AP50 AP75 APS APM APL

ResNet-18

BatchNorm

FP

X 29.5 46.6 31.7 19.0 32.8 35.8

GroupNorm X 34.0 51.7 36.3 19.7 36.6 44.0

Multi-level BatchNorm 33.9 51.2 36.4 19.3 36.2 44.0

BatchNorm

2-bit

X X 26.4 43.6 28.2 14.3 28.7 34.6

GroupNorm X 29.4 47.2 31.7 15.4 31.6 38.6

Multi-level BatchNorm X 31.8 49.3 34.2 17.3 33.5 42.3

ResNet-50

BatchNorm

FP

X 35.9 53.9 39.0 21.9 39.2 45.8

GroupNorm X 38.7 57.6 41.4 22.8 42.3 50.2

Multi-level BatchNorm 38.9 57.4 42.1 23.6 42.0 50.3

BatchNorm

2-bit

X X 30.3 49.6 32.6 17.3 32.9 39.0

GroupNorm X 33.4 52.2 35.8 18.4 37.2 42.5

Multi-level BatchNorm X 35.4 54.1 38.2 19.5 38.0 46.2

BN) indicates that normalization layers in the detection

heads are shared across different pyramid levels, which is

the default setting in current prevalent detectors. In prac-

tical, synchronized version of batch normalization (Sync-

BN) is leveraged for all batch normalization layers. From

the results, we have several observations. Firstly, the de-

tector with the multi-level Sync-BN outperforms the one

using the shared Sync-BN consistently by a large margin

for both full-precision and quantized models with different

backbones. Secondly, the detector with multi-level BN ob-

tains comparable performance with the one with GN on full-

precision models, and 2% or more AP improvement on the

2-bit quantization, which justifies the multi-level design can

effectively solve the training instability during quantized

fine-tuning. Thirdly, compared with the group normaliza-

tion, our multi-level BN performs much better on quantized

models while enabling computation to be carried out using

integer-only arithmetic, which is more hardware friendly.

Effect of Quantization on Different Components. We

further study the effect of quantizing different components

in object detection models. The results are shown in Ta-

ble 5. We observe that quantizing the backbone or the

feature pyramid only leads to a small performance drop.

Nevertheless, quantizing the detection heads and the fea-

110

Table 4 – Performance comparisons on the COCO validation set based on FCOS.

Backbone Model AP AP50 AP75 APS APM APL

ResNet-18

Full-precision 33.9 51.2 36.4 19.3 36.2 44.0

Group-Net [51] (4 bases) 28.9 45.3 31.2 15.4 30.5 38.1

AQD* (4-bit) 34.9 52.1 37.3 19.9 36.5 45.6

AQD (4-bit) 34.1 51.5 36.5 18.3 36.2 45.1

AQD* (3-bit) 34.3 51.4 36.7 19.4 36.0 45.1

AQD (3-bit) 33.6 51.1 36.1 18.5 35.0 44.8

AQD* (2-bit) 32.2 49.0 34.1 17.6 33.7 42.7

AQD (2-bit) 31.8 49.3 34.2 17.3 33.5 42.3

ResNet-34

Full-precision 38.0 55.9 41.0 23.0 40.3 49.4

Group-Net [51] (4 bases) 31.5 47.6 33.8 16.9 32.3 40.1

AQD* (4-bit) 38.3 56.2 41.3 21.8 40.5 49.8

AQD (4-bit) 37.6 55.5 40.6 20.8 40.0 49.3

AQD* (3-bit) 37.8 55.8 40.7 22.2 40.4 49.8

AQD (3-bit) 37.2 55.2 40.2 20.6 39.5 48.8

AQD* (2-bit) 35.7 53.3 38.3 20.4 37.8 47.2

AQD (2-bit) 35.0 53.4 37.5 18.9 37.3 47.1

ResNet-50

Full-precision 38.9 57.4 42.1 23.6 42.0 50.3

Group-Net [51] (4 bases) 32.7 49.0 35.5 17.8 33.6 41.4

AQD* (4-bit) 38.8 57.1 41.5 23.2 41.5 50.1

AQD (4-bit) 38.0 56.5 40.7 21.9 41.0 49.2

AQD* (3-bit) 38.5 57.1 41.9 23.3 41.6 49.7

AQD (3-bit) 37.5 56.2 40.2 21.6 40.6 48.6

AQD* (2-bit) 36.0 53.8 38.8 20.0 38.6 47.0

AQD (2-bit) 35.4 54.1 38.2 19.5 38.0 46.2

Table 5 – Effect of quantization on different components. We quantize the FCOS detector to 2-bit and evaluate the performance on the

COCO validation set based on AQD*.

Backbone Model AP AP50 AP75 APS APM APL

ResNet-18

Full-precision [41] 33.9 51.2 36.4 19.3 36.2 44.0

Backbone 33.8 50.6 36.1 18.6 35.4 45.4

Backbone + Feature Pyramid 33.2 49.9 35.4 18.9 34.6 44.0

Backbone + Feature Pyramid + Heads 32.2 49.0 34.1 17.6 33.7 42.7

ture pyramid will cause significant performance degrada-

tion (i.e., 1.7% in AP). These results show that the detec-

tion head modules other than the backbone are sensitive to

quantization, which provides a direction to improve the per-

formance of the quantized network.

AQD vs. AQD*. We further study the influence of fully-

quantizing a model compared to the one with only convo-

lutional layers quantized. From the results in Tables 2 and

4, we observe that AQD has a limited performance drop

compared with AQD*. For example, the degradation is

less than 0.3% on RetinaNet with ResNet-18 and ResNet-50

backbones of different quantization bitwidths. Besides, the

performance gap on FCOS is relatively larger than that on

RetinaNet. It can be attributed that FCOS is a fully convo-

lutional pixel prediction framework relying heavily on the

pixel-level feature quality, which might be more sensitive

to the extreme low precision quantization.

5. Conclusion

In this paper, we have proposed an accurate quantized

object detection framework with fully integer-arithmetic

operations. Specifically, we have proposed efficient integer-

only operations for BN layers and skip connections. More-

over, we have proposed multi-level BN to accurately cal-

culate batch statistics for each pyramid level. To evaluate

the performance of the proposed methods, we have applied

our AQD on two classical one-stage detectors. Experimen-

tal results have justified that our quantized 3-bit detector

achieves comparable performance compared with the full-

precision counterpart. More importantly, our 4-bit detector

can even outperform the full-precision counterpart in some

cases, which is of great practical value.

Acknowledgements

MT was in part supported by Key-Area Research and De-

velopment Program of Guangdong Province 2018B010107001,

and Program for Guangdong Introducing Innovative and Enter-

preneurial Teams 2017ZT07X183, and Fundamental Research

Funds for the Central Universities D2191240. CS and his em-

ployer received no financial support for the research, authorship,

and/or publication of this article.

111

References

[1] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry.

Scalable methods for 8-bit training of neural networks. In

Proc. Adv. Neural Inf. Process. Syst., pages 5145–5153,

2018. 2

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013. 3

[3] Adrian Bulat and Yorgos Tzimiropoulos. Hierarchical binary

cnns for landmark localization with limited resources. IEEE

Trans. Pattern Anal. Mach. Intell., 2018. 2

[4] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep learning with low precision by half-wave gaussian

quantization. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

pages 5918–5926, 2017. 2

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE Trans. Pattern Anal.

Mach. Intell., 40(4):834–848, 2017. 1

[6] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. Pact: Parameterized clipping activa-

tion for quantized neural networks. arXiv preprint

arXiv:1805.06085, 2018. 2

[7] Meghan Cowan, Thierry Moreau, Tianqi Chen, and Luis

Ceze. Automating generation of low precision deep learn-

ing operators. arXiv preprint arXiv:1810.11066, 2018. 2

[8] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,

Rathinakumar Appuswamy, and Dharmendra S. Modha.

Learned step size quantization. In Proc. Int. Conf. Learn.

Repren., 2020. 1, 2, 3

[9] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,

and W. J. Dally. EIE: Efficient inference engine on com-

pressed deep neural network. In ACM/IEEE Annual Int.

Symp. Computer Architecture, pages 243–254, 2016. 1

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proc. IEEE Int. Conf. Comp. Vis.,

pages 2961–2969, 2017. 1

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc. IEEE

Conf. Comp. Vis. Patt. Recogn., pages 770–778, 2016. 1, 5,

6

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In Proc. Eur.

Conf. Comp. Vis., pages 630–645, 2016. 1

[13] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proc. IEEE

Int. Conf. Comp. Vis., pages 1389–1397, 2017. 1

[14] M. Horowitz. 1.1 computing’s energy problem (and what we

can do about it). In Proc. IEEE Int. Solid-State Circuits Conf.

Digest of Tech. Papers (ISSCC), pages 10–14, 2014. 1

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 1

[16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. Binarized neural networks.

In Proc. Adv. Neural Inf. Process. Syst., pages 4107–4115,

2016. 2

[17] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In Proc. Int. Conf. Mach. Learn., pages 448–

456, 2015. 4

[18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In Proc. IEEE

Conf. Comp. Vis. Patt. Recogn., pages 2704–2713, 2018. 1,

2

[19] Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu, Lichuan

Wang, Bin Zou, Yafeng Yang, Zongyang Cui, Yu Cai, Tian-

hang Yu, Chengfei Lv, and Zhihua Wu. Mnn: A universal

and efficient inference engine. In Proc. The Conf. Machine

Learning & Systems, 2020. 2

[20] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,

Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and

Changkyu Choi. Learning to quantize deep networks by op-

timizing quantization intervals with task loss. In Proc. IEEE

Conf. Comp. Vis. Patt. Recogn., June 2019. 1, 2

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Proc. Adv. Neural Inf. Process. Syst., pages 1097–

1105, 2012. 1

[22] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In Proc. Eur. Conf. Comp. Vis., pages 734–

750, 2018. 4

[23] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie

Yan, and Rui Fan. Fully quantized network for object de-

tection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., June

2019. 2, 5, 6, 7

[24] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-

two quantization: An efficient non-uniform discretization for

neural networks. In Proc. Int. Conf. Learn. Repren., 2020. 2

[25] Xiaocong Lian, Zhenyu Liu, Zhourui Song, Jiwu Dai, Wei

Zhou, and Xiangyang Ji. High-performance fpga-based cnn

accelerator with block-floating-point arithmetic. IEEE T.

Very Large Scale Integration (VLSI) Systems, pages 1–12,

05 2019. 1

[26] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proc. IEEE Conf. Comp.

Vis. Patt. Recogn., pages 2117–2125, 2017. 1, 4, 6

[27] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Proc.

IEEE Int. Conf. Comp. Vis., pages 2980–2988, 2017. 1, 2, 4,

6

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Proc. Eur. Conf. Comp. Vis., pages 740–755. Springer, 2014.

6

112

[29] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-

Ting Cheng. Reactnet: Towards precise binary neural net-

work with generalized activation functions. In Proc. Eur.

Conf. Comp. Vis., 2020. 2

[30] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the per-

formance of 1-bit cnns with improved representational capa-

bility and advanced training algorithm. In Proc. Eur. Conf.

Comp. Vis., pages 722–737, 2018. 2

[31] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., pages 3431–3440,

2015. 1

[32] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In Proc. IEEE Int. Conf. Comp. Vis., pages 5058–5066, 2017.

1

[33] Daisuke Miyashita, Edward H Lee, and Boris Murmann.

Convolutional neural networks using logarithmic data rep-

resentation. arXiv preprint arXiv:1603.01025, 2016. 2

[34] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large

mini-batch object detector. In Proc. IEEE Conf. Comp. Vis.

Patt. Recogn., pages 6181–6189, 2018. 4

[35] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff

Dean. Efficient neural architecture search via parameter shar-

ing. In Proc. Int. Conf. Mach. Learn., pages 4092–4101,

2018. 1

[36] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using

binary convolutional neural networks. In Proc. Eur. Conf.

Comp. Vis., pages 525–542, 2016. 2

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Proc. Adv. Neural Inf. Process. Syst.,

pages 91–99, 2015. 1

[38] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-

thy, Aditya Khosla, Michael Bernstein, et al. Imagenet

large scale visual recognition challenge. Int. J. Comp. Vis.,

115(3):211–252, 2015. 6

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proc. IEEE Conf. Comp.

Vis. Patt. Recogn., pages 4510–4520, 2018. 1

[40] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang,

Swagath Venkataramani, Vijayalakshmi Viji Srinivasan, Xi-

aodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hy-

brid 8-bit floating point (hfp8) training and inference for

deep neural networks. In Proc. Adv. Neural Inf. Process.

Syst., pages 4900–4909, 2019. 2

[41] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:

Fully convolutional one-stage object detection. In Proc.

IEEE Int. Conf. Comp. Vis., 2019. 2, 4, 6, 8

[42] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu

Chen, and Kailash Gopalakrishnan. Training deep neural

networks with 8-bit floating point numbers. In Proc. Adv.

Neural Inf. Process. Syst., pages 7675–7684, 2018. 2

[43] Yi Wei, Xinyu Pan, Hongwei Qin, Wanli Ouyang, and Junjie

Yan. Quantization mimic: Towards very tiny cnn for object

detection. In Proc. Eur. Conf. Comp. Vis., September 2018.

2

[44] Yuxin Wu and Kaiming He. Group normalization. In Proc.

Eur. Conf. Comp. Vis., pages 3–19, 2018. 4

[45] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.

com/facebookresearch/detectron2, 2019. 6

[46] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang

Hua. Lq-nets: Learned quantization for highly accurate and

compact deep neural networks. In Proc. Eur. Conf. Comp.

Vis., 2018. 2

[47] Jianhao Zhang, Yingwei Pan, Ting Yao, He Zhao, and Tao

Mei. dabnn: A super fast inference framework for binary

neural networks on arm devices, 2019. 2

[48] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong

Chen. Incremental network quantization: Towards lossless

cnns with low-precision weights. In Proc. Int. Conf. Learn.

Repren., 2017. 2

[49] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,

and Yuheng Zou. Dorefa-net: Training low bitwidth convo-

lutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160, 2016. 1, 2

[50] Bohan Zhuang, Lingqiao Liu, Mingkui Tan, Chunhua Shen,

and Ian Reid. Training quantized neural networks with a full-

precision auxiliary module. In Proc. IEEE Conf. Comp. Vis.

Patt. Recogn., June 2020. 1, 2, 6, 7

[51] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Peng Chen,

Lingqiao Liu, and Ian Reid. Structured binary neu-

ral networks for image recognition. arXiv preprint

arXiv:1909.09934, 2019. 2, 6, 8

[52] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu,

and Ian Reid. Towards effective low-bitwidth convolutional

neural networks. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., pages 7920–7928, 2018. 1, 2

[53] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Proc. Adv. Neural Inf. Process. Syst., pages 881–

892. 2018. 1

113

