
Contrastive Neural Architecture Search with Neural Architecture Comparators

Yaofo Chen1,2*, Yong Guo1∗, Qi Chen1, Minli Li1, Wei Zeng3, Yaowei Wang2†, Mingkui Tan1,4†

1South China University of Technology, 2Peng Cheng Laboratory, 3Peking University,
4Key Laboratory of Big Data and Intelligent Robot, Ministry of Education

{sechenyaofo, guo.yong, sechenqi, seminli li}@mail.scut.edu.cn,

weizeng@pku.edu.cn, wangyw@pcl.ac.cn, mingkuitan@scut.edu.cn

Abstract

One of the key steps in Neural Architecture Search (NAS)

is to estimate the performance of candidate architectures.

Existing methods either directly use the validation perfor-

mance or learn a predictor to estimate the performance.

However, these methods can be either computationally ex-

pensive or very inaccurate, which may severely affect the

search efficiency and performance. Moreover, as it is very

difficult to annotate architectures with accurate performance

on specific tasks, learning a promising performance predic-

tor is often non-trivial due to the lack of labeled data. In

this paper, we argue that it may not be necessary to esti-

mate the absolute performance for NAS. On the contrary,

we may need only to understand whether an architecture

is better than a baseline one. However, how to exploit this

comparison information as the reward and how to well use

the limited labeled data remains two great challenges. In this

paper, we propose a novel Contrastive Neural Architecture

Search (CTNAS) method which performs architecture search

by taking the comparison results between architectures as

the reward. Specifically, we design and learn a Neural Ar-

chitecture Comparator (NAC) to compute the probability

of candidate architectures being better than a baseline one.

Moreover, we present a baseline updating scheme to improve

the baseline iteratively in a curriculum learning manner.

More critically, we theoretically show that learning NAC

is equivalent to optimizing the ranking over architectures.

Extensive experiments in three search spaces demonstrate

the superiority of our CTNAS over existing methods.

1. Introduction

Deep neural networks (DNNs) have made significant

progress in various challenging tasks, including image clas-

sification [11, 34, 37], face recognition [25, 40], and many

*Authors contributed equally.
†Corresponding author.

Architecture
Performance

Standard Performance
Estimator

Sampled Architecture

Baseline Architecture

Neural Architecture
Comparator

Comparison
Probability

Sampled Architecture

Figure 1. Comparison between the standard performance estimator

(top) and our NAC (bottom). Unlike the standard estimator that

predicts the absolute performance, our NAC takes two architectures

as inputs and outputs the comparison probability of the sampled

architectures being better than the baseline architecture.

other areas [5, 6, 48, 49]. One of the key factors behind the

progress lies in the innovation of effective neural architec-

tures, such as ResNet [17] and MobileNet [19]. However,

designing effective architectures is often labor-intensive and

relies heavily on human expertise. Besides designing archi-

tectures manually, Neural Architecture Search (NAS) seeks

to design architectures automatically and outperforms the

hand-crafted architectures in various tasks [1, 31].

Existing NAS methods seek to find the optimal architec-

ture by maximizing the expectation of the performance of

the sampled architectures. Thus, how to estimate the per-

formance of architectures is a key step in NAS. In practice,

the searched architectures can be evaluated by the absolute

performance provided by a supernet [3, 8, 31] or a predic-

tor [22, 27]. However, using the absolute performance as the

training signal may suffer from two limitations.

First, it is non-trivial to obtain stable and accurate ab-

solute performance for all the candidate architectures. In

practice, the performance of architectures may fluctuate a

lot under the training with different random seeds [21, 24].

Thus, there would be a large performance deviation if we

evaluate the architecture only with a single value w.r.t. ab-

9502

solute performance. As a result, using the absolute perfor-

mance as the training signals may greatly hamper the search

performance. Based on such signals, a randomly searched

architecture may even outperform the architectures obtained

by existing NAS methods [21, 47] in practice. Thus, how

to obtain stable and accurate training signals to guide the

search is an important problem.

Second, it is time-consuming to obtain the absolute per-

formance from the supernet. Specifically, one can evaluate

an architecture by feeding in the validation data on a spe-

cific task to obtain the accuracy. However, given a large

number of validation data, obtaining the validation accu-

racy for candidate architectures via forward propagation can

be computationally expensive. To address this issue, one

can learn a regression model to predict the performance of

architectures [22, 27]. However, the training of predictor

models still requires plenty of architectures with the ground-

truth performance as the training architecture data, which

are very expensive to obtain in practice. Thus, how to effi-

ciently evaluate architectures with limited architectures with

ground-truth performance becomes an important problem.

In this paper, we propose a Contrastive Neural Architec-

ture Search (CTNAS) method that searches by architecture

comparisons. To address the first limitation, we devise a

Neural Architecture Comparator (NAC) to perform pairwise

architecture comparisons. Unlike existing methods that rely

on the absolute performance, we use the comparison results

between the searched architectures and a baseline one as the

reward (See Figure 1). In practice, the pairwise comparison

results are easier to obtain and more stable than the absolute

performance (See analysis in Section 3.1). To constantly

find better architectures, we propose to improve the baseline

gradually via a curriculum learning manner. To address the

second limitation, the proposed NAC evaluates architectures

via pairwise comparisons and avoid performing forward

propagation on task data. Thus, the evaluation can be much

more efficient and greatly accelerate the search process (See

Table 5.2). Moreover, we also propose a data exploration

method that exploits the architectures without ground-truth

performance to improve the generalization ability of NAC to

unseen architectures. In this way, we are able to effectively

reduce the requirement of the training data for NAC.

Our contributions are summarized as follows.

• We propose a Contrastive Neural Architecture Search

(CTNAS) method that searches for promising architec-

tures by taking the comparison results between archi-

tectures as the reward.

• To guarantee that CTNAS can constantly find better ar-

chitectures, we propose a curriculum updating scheme

to gradually improve the baseline architecture. In this

way, CTNAS has a more stable search process and thus

greatly improves the search performance.

• Extensive experiments on three search spaces demon-

strate that the searched architectures of our CTNAS

outperform the architectures searched/designed by state-

of-the-art methods.

2. Related Work

Neural Architecture Search. NAS seeks to automat-

ically design neural architectures in some search space.

The pioneering work [50] exploits the paradigms of re-

inforcement learning (RL) to solve it. RL-based meth-

ods [1, 9, 31, 38, 50, 51, 13] seek to learn a controller with

a policy π(α; θ) to generate architectures, where α denotes

a sampled architecture, θ denotes the parameters of the pol-

icy. Specifically, they learn the controller by maximizing the

expectation of some performance metric R(α,wα),

max
θ

Eα∼π(α;θ)R (α,wα) , (1)

where wα=argminw L (α,w) and L (α,w) is the train-

ing loss. Moreover, some studies [23, 32, 33] search

for promising architectures using evolutionary algorithms.

Different from the above methods, gradient based meth-

ods [7, 24, 42, 43] represent architectures by continuous

relaxation and optimize by gradient descent. Unlike existing

methods that obtain/predict the absolute performance, we

seek to conduct comparisons between architectures to guide

the search process. Based on the RL algorithm, our method

maximizes the expectation of the comparison probability of

the sampled architectures being better than a baseline one

instead of the absolute performance.

Contrastive Learning. Contrastive learning aims to

learn the similarity/dissimilarity over the samples by per-

forming comparisons among them. Specifically, Hadsell et

al. [16] propose a contrastive loss to solve the dimensional-

ity reduction problem by performing pairwise comparison

among different samples. Based on the contrastive loss,

Sohn [36] proposes a Multi-class N-pair loss to allow joint

comparison among multiple negative data pairs. As for NAS,

finding the optimal architecture can be considered as a rank-

ing problem over a set of candidate architectures [44]. In

this sense, it is possible to solve the ranking problem of NAS

by conducting comparisons among architectures.

Comparisons with ReNAS [46]. ReNAS exploits a rank-

ing loss to learn a predictor model that predicts the relative

score of architectures. However, ReNAS is essentially dif-

ferent from our method and has several limitations. First,

ReNAS searches with the predicted scores of architectures;

while our CTNAS proposes a contrastive architecture search

scheme that searches by comparing architectures. Second,

ReNAS heavily relies on the training data and thus may be

hard to generalize to unseen architectures. In contrast, the

proposed CTNAS introduces a data exploration method to

improve the generalization (See results in Table 1).

9503

Compute
Reward

Sample an architecture with the learned policy 𝝅 𝜶;𝜽

NAC

Update the Baseline

Sampled
Architecture 𝜶

Baseline
Architecture 𝛽

Baseline Set

Selector

Candidate Data Set

Selector

Baseline Set Updating

Data Exploration

RNN

Ll

RNN

Ll

RNN

Ll

Ll

Controller

(a) Overall scheme of Contrastive Neural Architecture Search

Neural Architecture Comparator

GCN
Feature

Concatenation
FC Layer

Architecture 𝛼

Architecture 𝛼′

Training Data
for NAC𝑎𝑖 , 𝛼′𝑖 , 𝒚𝒊 𝑖=1𝑀

BCE
Loss

(b) Neural Architecture Comparator

Figure 2. The overview of CTNAS and NAC. (a) The proposed NAC first takes the sampled architecture and the baseline one as inputs,

and outputs the comparison probability of them. Then, our CTNAS adopts the probability as the reward to train the controller. During the

training, we update the baseline sampled from the controller. Besides, we perform data exploration on the sampled architectures to construct

a candidate data set. (b) We optimize NAC with the binary cross-entropy (BCE) loss computed by the comparison probability and the label

indicated which one is better between two input architectures.

3. Proposed Method

Notation. Throughout the paper, we use the following no-

tations. We use calligraphic letters (e.g., A) to denote a set.

We use the lower case of Greek characters (e.g., α) to denote

architectures. Let Ω be the search space. For any architec-

ture α ∈ Ω, let wα be its optimal model parameters trained

on some data set. Let ✶{·} be an indicator function, where

✶{A} = 1 if A is true and ✶{A} = 0 if A is false. Let Pr[·]
be the probability for some event.

In this paper, we propose a Contrastive Neural Architec-

ture Search (CTNAS) that conducts architecture search by

taking the comparisons between architectures as the reward.

To ensure that CTNAS is able to constantly find better archi-

tectures, we seek to gradually improve/update the baseline

via a curriculum learning manner. We show the training

method of CTNAS in Algorithm 1.

3.1. Motivation

In neural architecture search (NAS), one of the key steps

is to evaluate the candidate architectures. Most existing meth-

ods evaluate architectures through the absolute performance

R(α,wα) with wα from a learned supernet [3, 8, 15, 31].

However, finding promising architectures with the absolute

performance comes with two challenges. First, there would

be deviation on the absolute performance with different train-

ing random seeds. Searching with this fluctuated perfor-

mance may incur training difficulties for the NAS model.

Second, obtaining absolute performance with a learned su-

pernet is computationally expensive since it needs to com-

pute the accuracy on plenty of validation data. Given a large

number of candidate architectures in the search process, it

would be very time-consuming (e.g., several GPU days).

Algorithm 1 The overall algorithm for CTNAS.

Require: Learning rate η for policy gradient, parameters M , N

and K (K ≪ N).

1: Randomly sample a set of architectures from Ω and obtain their

accuracy {αi,R(αi, wαi
)}Mi=1 by training a supernet.

2: Construct training data A={(αi, α
′
i, yi)}

M(M−1)/2
i=1 for NAC

by traversing all pairwaise combinations.

3: Initialize parameters θ for π(·; θ) and ̟ for NAC.

4: Initialize the baseline architecture β ∼ π(·; θ).
5: Let C=A, D=∅, B=∅.
6: for t = 1, . . . , T do

7: Train NAC with data C={(αi, α
′
i, yi)}

|C|
i=1.

8: // Train the controller with NAC

9: Sample N architectures {αj}
N
j=1 by α ∼ π(·; θ).

10: Update θ using policy gradient:

θ←θ+η 1
N

∑N
j=1 [∇θ log π(αj ; θ)NAC(αj , β;̟)].

11: // Explore more data for training NAC

12: Sample N architectures S={αi}
N
i=1 ∼ π(·; θ).

13: Construct D with S by data exploration using Alg. 3.

14: Let C = C ∪ D and B = B ∪ {β}.
15: Update the baseline β with B and S using Alg. 2.

16: end for

In this paper, we seek to improve the search performance

by designing a more effective evaluation method. To begin

with, let us revisit the definition of optimal architecture. Sup-

pose that α∗ is the optimal architecture in the search space Ω,

we would have R(α∗, wα∗)≥R(α,wα), ∀ α ∈ Ω. However,

since R(α,wα) may not be very accurate, it is more rea-

sonable and rigorous to require that R(α∗, wα∗)≥R(α,wα)
holds in high probability. For example, it is often much eas-

ier to recognize which one is better among two architectures

compared to estimating the absolute performance of them.

In this way, the comparison results become more stable and

9504

may reduce the influence of training fluctuations. Thus, to

ensure the optimality, we only need to compute

Pr[R(α∗, wα∗) ≥ R(α,wα)]. (2)

The above probability implies that we may not need to obtain

the absolute performance to solve the NAS problem.

3.2. Contrastive Neural Architecture Search

In this paper, we propose a Contrastive Neural Architec-

ture Search (CTNAS) method that finds promising architec-

tures via architecture comparisons. Unlike existing methods

that rely on the absolute performance, we seek to obtain

the ranking of candidate architectures using a series of pair-

wise comparisons. Specifically, we can learn a comparison

mapping, called Neural Architecture Comparator (NAC), to

compare any two architectures α, α′ ∈ Ω and output the

probability of α being better than α′:

p = Pr[R(α,wα) ≥ R(α′, wα′)] = NAC(α, α′;̟), (3)

where ̟ is the parameter of NAC. The comparison proba-

bility p is more stable than the absolute performance since it

may reduce the negative impact of accuracy deviation. For

simplicity, we leave the details of NAC in the following.

From Eqn. (3), it is possible to use the comparison prob-

ability predicted by NAC as the reward signal to train the

NAS model. Formally, given a baseline architecture β ∈ Ω,

we hope to learn a policy π(α; θ) by solving the following

optimization problem:

max
θ

Eα∼π(α;θ) Pr[R(α,wα) ≥ R(β,wβ)], (4)

where θ denotes the parameters of the policy. To address the

above optimization problem, following [31, 50], we train a

controller with policy gradient [41]. Unlike existing rein-

forcement learning based NAS methods, we adopt the com-

parison probability p=NAC(α, β;̟) as the reward. Given a

specific β, the controller seeks to conduct a comparison with

it to search for better architectures.

However, solving Problem (4) can only enable the model

to find architectures that are better than the baseline β. In

other words, it may not find the optimal architecture. More-

over, in Problem (4), if β is too weak or strong, the above

optimization problem becomes meaningless (i.e., the opti-

mal objective value will be trivially 1 or 0, respectively). To

address this issue, we propose a baseline updating scheme

to improve/update the baseline gradually. In this way, our

CTNAS is able to find better architectures iteratively. We

will detail the baseline updating scheme in the following.

3.3. Baseline Updating via Curriculum Learning

Since CTNAS takes the comparison result with the base-

line architecture as the reward, the search performance heav-

ily relies on the baseline architecture. Given a fixed base-

line architecture, the controller is only able to find better

Algorithm 2 Baseline updating via curriculum learning.

Require: Existing baseline architectures B, sampled architectures

S, and learned architecture comparator NAC(·, ·;̟).
1: Initialize comparison score ŝ = 0.

2: Construct a candidate baseline setH = B ∪ S = {αi}
|H|
i=1.

3: for i = 1, . . . , |H| do

4: Compute score for architecture αi ∈ H by

si =
1

|H| − 1

∑

1≤j≤|H|,i 6=j

NAC(αi, αj ;̟).

5: if si ≥ ŝ then ŝ = si and β = αi. end if

6: end for

7: Return β.

architectures than the baseline. If the baseline is not good

enough, the searched architecture cannot be guaranteed to

be a promising one. Thus, it becomes necessary to gradually

improve/update the baseline architecture during the search.

To this end, we propose a curriculum updating scheme to

improve the baseline during the search process (See Algo-

rithm 2). The key idea follows the basic concept of curricu-

lum learning that humans and animals can learn much better

when they gradually learn new knowledge [2, 10]. Specifi-

cally, the difficulty of finding architectures than a gradually

improved baseline architecture would increase. As we grad-

ually improve the baseline, our CTNAS is able to constantly

find better architectures during the search.

To improve the baseline architecture β, we seek to select

the best architecture from the previously searched architec-

tures (See Algorithm 2). Specifically, we build a candidate

baseline set H and dynamically incorporate sampled archi-

tectures into it. To avoid the negative impact from the possi-

ble error of NAC in a single comparison, for any architecture

αi ∈ H, we compute the average comparison probability si
by comparing αi with other architectures in H:

si =
1

|H| − 1

∑

1≤j≤|H|,i 6=j

NAC(αi, αj ;̟). (5)

Based on the best architecture in the past as the baseline, our

CTNAS is able to further improve the search performance

by finding better architectures than the baseline.

Compared with existing NAS methods, our CTNAS is

more stable and reliable since the contrastive search scheme

searches for better architectures than the best one of the

previously searched architectures. Thus, our CTNAS con-

sistently finds better architectures than existing methods on

different search spaces (See results in Tables 1 and 2).

4. Neural Architecture Comparator

To provide a valid reward for CTNAS, we propose a neu-

ral architecture comparator (NAC) that compares any two

9505

Adjacent Matrix (A)

Nodes Attributes (X)

node 0
Transformation

Input Architecture

0

node 1
node 2

node 6

…

0 1 0 0 0 1 1
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

1 2 3 4

5

6

Figure 3. Architecture representation method of the proposed

CTNAS. The nodes of the architecture DAG indicate the operations.

The edges represent the flow of information.

architectures. To guarantee that NAC can handle any archi-

tecture, we represent an architecture as a directed acyclic

graph (DAG) [31] and build NAC using a graph convolu-

tional network (GCN) to calculate the comparison probabil-

ity. Moreover, we develop a data exploration method that

trains NAC in a semi-supervised way to reduce the require-

ment of the training data.

4.1. Architecture Comparison by GCN

Given an architecture space Ω, we can represent an archi-

tecture α ∈ Ω as a directed acyclic graph (DAG) [31]. As

shown in Figure 3, each node represents a computational

operation (e.g., convolution or max pooling) and each edge

represents the flow of information. Following [20], we rep-

resent the graph α using a data pair (Aα,Xα), where Aα

denotes the adjacency matrix of the graph and Xα denotes

the learnable embeddings of nodes/operations in α.

The proposed NAC compares any two architectures and

predicts the comparison probability as the reward. To exploit

the connectivity information inside the architecture graph,

we build the NAC model with a graph convolutional network.

Specifically, given two architectures α and α′ as inputs, the

proposed NAC predicts the probability of α being better

than α′ (See Figure 2 (b)). To calculate the comparison

probability, we concatenate the features of α and α′ and

send them to a fully-connected (FC) layer. Then, the sigmoid

function σ(·) takes the output of the FC layer as input and

outputs the comparison probability:

p = NAC(α, α′;̟) = σ
(

[Zα;Zα′]WFC
)

, (6)

where Zα denotes the features extract from the architecture

α, WFC denotes the weight of the FC layer, [Zα;Zα′] refers

to the concatenation of the features of α and α′. Based on

the graph data pair (Aα,Xα), we use a two-layer GCN to

extract the architecture features Zα following [14]:

Zα = f(Xα,Aα) = Aαφ
(

AαXαW
(0)

)

W
(1), (7)

Algorithm 3 Data exploration for NAC.

Require: Sampled architecture set S={αi}
N
i=1, learned architec-

ture comparator NAC(·, ·;̟), and parameter K.

1: Initialize the set of predicted label data E=∅ and the confidence

score set F=∅.
2: Build G={(αk, α

′
k)}, αk, α

′
k ∈ S , αk 6= α′

k.

3: for k = 1, . . . , |G| do

4: pk=NAC(αk, α
′
k;̟). // Compute comparison probability

5: y′
k=✶{pk≥0.5}.// Compute label according to probability

6: Let E = E ∪ {(αk, α
′
k, y

′
k)}.

7: fk= |pk−0.5|. // Compute confidence score

8: Let F = F ∪ {fk}.
9: end for

10: Select top-K architecture pairs according to confidence score

D = top-K(E ,F ,K).

11: Return D.

where W
(0) and W

(1) denote the weights of two graph

convolutional layers, φ is the a non-linear activation function

(e.g., the Rectified Linear Unit (ReLU) [30]), and Zα refers

to the extracted features.

To train the proposed NAC, we need a data set that con-

sists of architectures and their performance evaluated on

some data set (e.g., CIFAR-10). The data pairs of architec-

ture and its performance can be obtained by training a super-

net or training a set of architectures from scratch. Based on

the data set, we define the label for any pair (αi, α
′
i), αi 6=α′

i,

sampled from Ω, by yi=✶{R(αi, wαi
)−R(α′

i, wα′

i
)≥0},

and construct the training data (αi, α
′
i, yi). Thus, the training

of NAC can be considered a binary classification problem

(i.e., the label y ∈ {0, 1}). We solve the problem by optimiz-

ing the binary cross-entropy loss between the probability p
predicted by NAC and the ground truth label y.

In the following, we will discuss the relationship be-

tween architecture comparison and ranking problems. For

convenience, we rewrite R(α,wα) as Rα. Given a

data set {αi,Rαi
}Mi=1, we seek to find a ranking func-

tion f : Ω × Ω → R by optimizing the ranking loss

ℓ0(α, α
′,Rα,Rα′) = ✶{(Rα−Rα′)f(α, α′)≤0}. How-

ever, directly optimizing ℓ0 is non-trivial since the indicator

function is non-differential. To address this, we use a binary

cross-entropy loss L(f ;α, α′, y) = E [ℓ(σ ◦ f(α, α′), y)] as

a surrogate for ℓ0, where NAC uses the sigmoid activation

function σ(·) for the output layer, and thus can be denoted

as σ ◦ f . We have the following proposition for NAC.

Proposition 1 Let f : Ω × Ω → R be some measur-

able function, architectures α, α′ ∈ Ω. The surrogate loss

L(f ;α, α′, y) = E [ℓ(σ ◦ f(α, α′), y)] is consistent with

L0(f ;α, α
′,Rα,R

′
α) = E [✶{(Rα −R′

α)f(α, α
′) ≤ 0}].

Proposition 1 shows that learning NAC is equivalent to opti-

mizing the ranking over architectures. We put the proof in

the supplementary.

9506

Table 1. Comparisons with existing methods in NAS-Bench-101 search space. “–” represents unavailable results. “Best Rank” denotes the

percentile rank of the best searched architecture among all the architectures in the search space. “#Queries” denotes the number of pairs of

architecture and its validation accuracy queried from the NAS-Bench-101 dataset. All methods are run 10 times.

Method KTau Average Accuracy (%) Best Accuracy (%) Best Rank (%) #Queries

Random – 89.31 ± 3.92 93.46 1.29 423

DARTS [24] – 92.21 ± 0.61 93.02 13.47 –

ENAS [31] – 91.83 ± 0.42 92.54 22.88 –

FBNet [42] – 92.29 ± 1.25 93.98 0.05 –

SPOS [15] 0.195 89.85 ± 3.80 93.84 0.07 –

FairNAS [8] -0.232 91.10 ± 1.84 93.55 0.77 –

ReNAS [46] 0.634 93.90 ± 0.21 94.11 0.04 423

RegressionNAS 0.430 89.51 ± 4.94 93.65 0.40 423

CTNAS (Ours) 0.751 93.92 ± 0.18 94.22 0.01 423

Advantages of NAC over existing evaluation methods.

1) More stable evaluation results: our NAC is able to pro-

vide more stable and accurate reward signals by directly

comparing architectures instead of estimating the absolute

performance, leading to high rank correlation (See results in

Sec. 5.1). 2) Lower evaluation time cost: unlike existing

methods evaluate architectures by computing accuracy on

the validation data, our NAC achieves this only by comparing

two architecture graphs. Thus, our method is able to greatly

reduce the search cost and accelerate the search process

(See more discussions in Sec. 6.1). 3) Lower requirement

for training samples: given m architectures with the corre-

sponding performance, we can construct
(

m
2

)

= m(m−1)/2
training pairs to train NAC while the regression-based meth-

ods only have m training samples.

4.2. Data Exploration for Training NAC

Note that learning a good NAC requires a set of labeled

data, i.e., {(αi, α
′
i, yi)}

M
i=1. However, we can only obtain

a limited number of labeled data due to the limitation of

computational cost in practice. Given a limited training data

set, the performance of NAC model may deteriorate, leading

to training difficulties for architecture search. Thus, how

to efficiently evaluate architectures using NAC with limited

data preparations is an important problem.

To address this issue, we propose a data exploration

method that adopts the sampled architectures during the

search as the unlabeled data. For these unlabeled data, we

propose to take the class with maximum probability pre-

dicted by NAC as its label. As shown in Algorithm 3, given

the latest NAC model NAC(·, ·;̟), the predicted label of

the previously unseen architecture pair can be computed by

y′ = ✶{NAC(α, α′;̟) ≥ 0.5}, (8)

where ✶{·} refers to an indicator function. Here, y′ = 1
if NAC(α, α′;̟) ≥ 0.5 and y′ = 0 otherwise. However,

the predicted label can be noisy since the NAC model may

produce wrong predictions. To address this, for the k-th

architecture pair, we evaluate the prediction quality by com-

puting the confidence score:

fk = |NAC(αk, α
′
k;̟)−0.5| . (9)

In practice, the higher the confidence score is, the more

reliable the predicted label will be. We select the data with

predicted labels with top-K confidence scores and combine

them with the labeled data to train NAC. To balance these

two kinds of data, we set the proportion of the predicted label

data to 0.5 (See discussions in Sec. 6.3). With the increase of

unlabelled data during training, our NAC is able to improve

the generalization ability to unseen architectures.

5. Experiments

We apply our CTNAS to three different search spaces,

namely NAS-Bench-101 [45], MobileNetV3 [18] and

DARTS [24]1 search spaces. We put more details about

the search space and the implementation in supplementary.

All implementations are based on PyTorch2.

5.1. Experiments on NASBench101

Implementation Details. For a fair comparison, we set

the number of architecture-accuracy pairs queried from the

NAS-Bench-101 dataset to 423 for all the methods. To mea-

sure the rank correlation, we use another 100 architectures

in the dataset to compute Kendall’s Tau (KTau) [35]. Note

that a larger KTau means evaluating architectures more ac-

curately. Following the settings in [45], we obtain the test

accuracy by averaging the accuracy of 3 different runs. Fol-

lowing [31], we train the CTNAS model for 10k iterations

with a batch size of 1 in the training.

Comparisons with State-of-the-art Methods. We com-

pare our proposed CTNAS with state-of-the-art methods in

NAS-Bench-101 search space. From Table 1, the proposed

CTNAS achieves higher KTau value (0.751) than other NAS

methods. The results show CTNAS evaluates architectures

1Due to page limit, we put the experimental results in DARTS search

space into the supplementary.
2The source code is available at https://github.com/chenyaofo/CTNAS.

9507

Table 2. Comparisons of the architectures searched/designed by different methods on ImageNet. “–” means unavailable results. † denotes we

test the accuracy from the pretrained model in the official repository. “Total Time” includes the time cost of training the supernet/child

networks and the search process. “#Queries” denotes the number of architectures queried from the supernet for the validation accuracy.

Search Space Architecture
Test Accuracy (%)

#MAdds (M) #Queries (K)
Search Time Total Time

Top-1 Top-5 (GPU days) (GPU days)

MobileNetV2 (1.4×) [34] 74.7 – 585 – – –

ShuffleNetV2 (2×) [28] 73.7 – 524 – – –

NASNet
NASNet-A [51] 74.0 91.6 564 20 – 1800

AmoebaNet-A [33] 74.5 92.0 555 20 – 3150

DARTS

DARTS [24] 73.1 91.0 595 19.5 4 4

P-DARTS [7] 75.6 92.6 577 11.7 0.3 0.3

PC-DARTS [43] 75.8 92.7 597 3.4 3.8 3.8

CNAS [12] 75.4 92.6 576 100 0.3 0.3

MobileNetV3-like

MobileNetV3-Large [18] 75.2 – 219 – – –

FBNet-C [42] 74.9 – 375 11.5 1.8 9

MnasNet-A3 [38] 76.7 93.3 403 8 – –

ProxylessNAS [4] 75.1 92.3 465 – – 8.3

OFA [3] 76.0 – 230 16 1.7 51.7

FBNetV2 [39]† 76.3 92.9 321 11.5 5 25

AtomNAS [29] 75.9 92.0 367 78 – –

Random Search 76.0 92.6 314 1 – 50

Best Sampled Architectures 76.7 93.1 382 1 – 50

CTNAS (Ours) 77.3 93.4 482 1 0.1 50.1

103 104 105

#Queries

73

74

75

76

77

A
cc

ur
ac

y
(%

)

NASNet-A

AmoebaNet-A

DARTS

P-DARTS
PC-DARTS

CNASFBNet-C

MnasNet-A3

SPOS

OFA
FBNetV2 AtomNAS

CTNAS (Ours)

Figure 4. The accuracy vs. the number of queries among different

methods on ImageNet.

accurately, which is beneficial to the search process. Be-

sides, CTNAS achieves the highest average testing accuracy

(93.92%), and the best architecture searched by CTNAS is

the top 0.01% in the search space with the testing accuracy of

94.22%. We also compare CTNAS with its variant (i.e., Re-

gressionNAS) that trains a regression-based predictor with

L2 loss to predict the absolute performance. CTNAS has a

much higher average testing accuracy and a lower variance

of the accuracy than RegressionNAS, which demonstrates

the stability of our method.

5.2. Experiments on ImageNet

Implementation Details. We apply our CTNAS to a

MobileNetV3-like search space [18]. We first train a super-

net with the progressive shrinking strategy [3] (cost 50 GPU

days). Then, we sample 1000 architectures in the search

space as the training data for NAC. Following [3], we com-

pute the validation accuracy on 10k images sampled from

the training set of ImageNet. For a fair comparison, we

following the mobile setting [24] and restrict the number of

multiply-adds (MAdds) to be less than 600M.

Comparisons with State-of-the-art Methods. We com-

pare the performance of CTNAS with other NAS methods

on ImageNet in Table 2. CTNAS achieves 77.3% top-1

accuracy and 93.4% top-5 accuracy, which consistently out-

performs existing human-designed architectures and state-

of-the-art NAS models searched in different search spaces.

Besides, we compare the searched architecture with the best

one of 1000 sampled architectures. The searched architec-

ture achieves higher accuracy (77.3% vs. 76.7%), which

demonstrates the effectiveness of CTNAS. We report the

number of queries from supernet for validation accuracy of

different methods in Figure 4. Note that querying from super-

net takes up most of the search time cost. Thus, the number

of queries becomes an important metric to measure search

cost [45, 26]. CTNAS has fewer queries (1k) than other

methods but achieves the highest searched performance. The

results demonstrate that NAC is more efficient and greatly

accelerates the search process (i.e., only 0.1 GPU days).

6. Further Experiments

6.1. Comparisons of Architecture Evaluation Cost

In this experiment, we compare our NAC with other NAS

methods in terms of the time cost to rank 100 neural architec-

tures. From Table 3, our NAC has much lower time cost (4.1

9508

ms) than existing NAS methods, such as ReNAS [46] (85.6

ms) and ENAS [31] (2.7 s). The reasons have two aspects: 1)

The inputs of NAC have lower dimensions. NAC only takes

architecture graphs as inputs while weight sharing methods

(e.g., ENAS) need to compute the accuracy on the validation

data. Besides, ReNAS uses manually-deigned features of

architectures as inputs which have higher dimensions than

ours. 2) Our NAC only consists of 3 layers while the models

in considered methods often have tens of layers.

Table 3. Time cost of evaluating 100 architectures.

Method CTNAS ReNAS ENAS Training from Scratch

Time Cost 4.1 ms 85.6 ms 2.7 s 5,430 h

6.2. Effect of Baseline Updating Scheme

To verify the effectiveness of the proposed baseline updat-

ing scheme via curriculum learning, we compare our CTNAS

with two variants, namely Fixed Baseline and Randomly Up-

dating. Fixed Baseline variant finds promising architectures

with a fixed baseline architecture in the whole searching

process. Random Updating variant updates the baseline with

a randomly sampled architecture. From Table 4, our CTNAS

outperforms these two variants by a large margin. The rea-

son is that the fixed or randomly sampled baseline may be

too weak. In this case, it is hard for the controller to find

promising architectures. Randomly sampled variant samples

sufficient good baselines in some cases, thus achieves higher

performance than the fixed one.

Table 4. Comparisons of different baseline updating schemes.

Method CTNAS Fixed Baseline Random Updating

Acc. (%) 93.92±0.18 93.39±0.17 93.53±0.39

6.3. Effect of Data Exploration Method

To investigate the effect of the proposed data exploration

method, we conduct more experiments in NAS-Bench-101

search space. Let M and U be the set of labeled data and data

with labels predicted by NAC in a batch, respectively. The

proportion of data with predicted labels is r = |U|/(|U| +
|M|). As shown in Table 5, compared with that without data

exploration (r = 0), CTNAS achieves better performance

when the proportion r is set to 0.5. Besides, either a low

or high proportion would hamper the training of CTNAS,

leading to a poor searched performance. Thus, we set the

proportion r to 0.5 in the experiments.

Table 5. Comparisons of different proportions (r) of data with

predicted labels.

r 0.0 0.3 0.5 0.8

Acc. (%) 93.60±0.22 93.62±0.30 93.92±0.18 93.60±0.40

6.4. Effect of the Number of Training Samples

To investigate the effect of the number of training archi-

tectures/samples, we perform more experiments with dif-

ferent numbers of training samples (i.e., {20, 50, 100, 423,

2115, 4230}). From Figure 5, when the number of samples

increases from 20 to 423, our CTNAS achieve better perfor-

mance. However, our CTNAS yield similar accuracy when

the number of samples is larger than 423. The results show

that a small number of training samples are sufficient for

our NAC. The reasons are two folds: 1) The proposed data

exploration method provides more training samples. 2) Our

NAC has a low requirement for training samples since we

can construct m(m− 1)/2 pairs from m labeled samples.

101 102 103 104

#Samples

 92.0

 92.5

 93.0

 93.5

 94.0

A
cc

ur
ac

y
(%

)

Figure 5. Comparisons of different number of training samples.

7. Conclusion

In this paper, we have proposed a novel Contrastive Neu-

ral Architecture Search (CTNAS) method that performs

search based on the comparison results of the sampled ar-

chitecture and a baseline one. To constantly find better

architectures, we propose a baseline updating scheme via

curriculum learning to improve the baseline gradually. To

provide the comparison results, we devise a Neural Architec-

ture Comparator (NAC) that takes two architectures as inputs

and outputs the probability that one is better than the other.

Moreover, we propose a data exploration method for NAC to

reduce the requirement of training data and improve the gen-

eralization ability of NAC to evaluate unseen architectures.

The experimental results in three search spaces demonstrate

that our CTNAS outperforms the state-of-the-art methods.

Acknowledgements. This work was partially supported by

Key-Area Research and Development Program of Guang-

dong Province (2019B010155002), CCF-Baidu Open Fund

(CCF-BAIDU OF2020022), National Natural Science Foun-

dation of China (NSFC) 61836003 (key project), Program

for Guangdong Introducing Innovative and Enterpreneurial

Teams 2017ZT07X183, Fundamental Research Funds for

the Central Universities D2191240. Yong Guo is supported

by National Natural Science Foundation of China (Grant No.

62072186), Guangdong Basic and Applied Basic Research

Foundation (Grant No. 2019B1515130001).

9509

References

[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-

forcement learning. In International Conference on Learning

Representations, 2017.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and

Jason Weston. Curriculum learning. In International Confer-

ence on Machine Learning, pages 41–48, 2009.

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once for all: Train one network and specialize

it for efficient deployment. In International Conference on

Learning Representations, 2020.

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In

International Conference on Learning Representations, 2019.

[5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

The European Conference on Computer Vision, pages 833–

851, 2018.

[6] Peihao Chen, Deng Huang, Dongliang He, Xiang Long, Run-

hao Zeng, Shilei Wen, Mingkui Tan, and Chuang Gan. Rspnet:

Relative speed perception for unsupervised video representa-

tion learning. In AAAI Conference on Artificial Intelligence,

2021.

[7] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive

differentiable architecture search: Bridging the depth gap

between search and evaluation. In The IEEE International

Conference on Computer Vision, pages 1294–1303, 2019.

[8] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-

NAS: Rethinking evaluation fairness of weight sharing neural

architecture search. arXiv preprint arXiv:1907.01845, 2019.

[9] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. NAS-FPN:

Learning scalable feature pyramid architecture for object de-

tection. In The IEEE Conference on Computer Vision and

Pattern Recognition, pages 7036–7045, 2019.

[10] Çaǧlar Gülçehre and Yoshua Bengio. Knowledge matters:

Importance of prior information for optimization. The Journal

of Machine Learning Research, 17(1):226–257, 2016.

[11] Yong Guo, Jian Chen, Qing Du, Anton Van Den Hengel,

Qinfeng Shi, and Mingkui Tan. Multi-way backpropagation

for training compact deep neural networks. Neural Networks,

2020.

[12] Yong Guo, Yaofo Chen, Yin Zheng, Peilin Zhao, Jian Chen,

Junzhou Huang, and Mingkui Tan. Breaking the curse of

space explosion: Towards efficient nas with curriculum search.

In International Conference on Machine Learning, 2020.

[13] Yong Guo, Yongsheng Luo, Zhenhao He, Jin Huang, and Jian

Chen. Hierarchical neural architecture search for single image

super-resolution. IEEE Signal Processing Letters, 27:1255–

1259, 2020.

[14] Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen,

Peilin Zhao, and Junzhou Huang. NAT: Neural architec-

ture transformer for accurate and compact architectures. In

Advances in Neural Information Processing Systems, pages

735–747, 2019.

[15] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. In The

European Conference on Computer Vision, 2020.

[16] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-

ity reduction by learning an invariant mapping. In The IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1735–1742, 2006.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition,

pages 770–778, 2016.

[18] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for Mo-

bileNetV3. In The IEEE International Conference on Com-

puter Vision, pages 1314–1324, 2019.

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. MobileNets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[20] Thomas N Kipf and Max Welling. Semi-supervised classifi-

cation with graph convolutional networks. In International

Conference on Learning Representations, 2016.

[21] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. In Proceedings of

Uncertainty in Artificial Intelligence, page 129, 2019.

[22] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens,

Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L. Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In The European Conference on Computer Vision,

pages 19–35, 2018.

[23] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fer-

nando, and Koray Kavukcuoglu. Hierarchical representations

for efficient architecture search. In International Conference

on Learning Representations, 2018.

[24] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In International Confer-

ence on Learning Representations, 2019.

[25] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. SphereFace: Deep hypersphere embedding

for face recognition. In The IEEE Conference on Computer

Vision and Pattern Recognition, pages 6738–6746, 2017.

[26] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen,

and Tie-Yan Liu. Semi-supervised neural architecture search.

arXiv preprint arXiv:2002.10389, 2020.

[27] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan

Liu. Neural architecture optimization. In Advances in Neural

Information Processing Systems, pages 7827–7838, 2018.

[28] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

ShuffleNet V2: Practical guidelines for efficient CNN archi-

tecture design. In The European Conference on Computer

Vision, pages 116–131, 2018.

[29] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie

Yang, Alan Yuille, and Jianchao Yang. Atomnas: Fine-grained

end-to-end neural architecture search. In International Con-

ference on Learning Representations, 2020.

9510

[30] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In International

Conference on Machine Learning, pages 807–814, 2010.

[31] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. In International Conference on Machine Learning,

pages 4092–4101, 2018.

[32] A. J. Piergiovanni, Anelia Angelova, and Michael S. Ryoo.

Tiny video networks. arXiv preprint arXiv:1910.06961, 2019.

[33] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In AAAI Conference on Artificial Intelligence, vol-

ume 33, pages 4780–4789, 2019.

[34] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. MobileNetV2: Inverted

residuals and linear bottlenecks. In The IEEE Conference on

Computer Vision and Pattern Recognition, pages 4510–4520,

2018.

[35] Pranab Kumar Sen. Estimates of the regression coefficient

based on Kendall’s Tau. Journal of the American Statistical

Association, 63(324):1379–1389, 1968.

[36] Kihyuk Sohn. Improved deep metric learning with multi-class

n-pair loss objective. In Daniel D. Lee, Masashi Sugiyama,

Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,

editors, Advances in Neural Information Processing Systems,

pages 1849–1857, 2016.

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In The IEEE Conference on Computer Vision

and Pattern Recognition, pages 1–9, 2015.

[38] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. MnasNet:

Platform-aware neural architecture search for mobile. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2820–2828, 2019.

[39] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-

dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,

Kan Chen, Peter Vajda, and Joseph E. Gonzalez. Fbnetv2:

Differentiable neural architecture search for spatial and chan-

nel dimensions. In The IEEE Conference on Computer Vision

and Pattern Recognition, pages 12962–12971, 2020.

[40] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,

Jingchao Zhou, Zhifeng Li, and Wei Liu. CosFace: Large

margin cosine loss for deep face recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition,

pages 5265–5274, 2018.

[41] Ronald J Williams. Simple statistical gradient-following al-

gorithms for connectionist reinforcement learning. Machine

Learning, 8(3-4):229–256, 1992.

[42] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. FBNet: Hardware-aware efficient

convnet design via differentiable neural architecture search.

In The IEEE Conference on Computer Vision and Pattern

Recognition, pages 10734–10742, 2019.

[43] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-

Jun Qi, Qi Tian, and Hongkai Xiong. PC-DARTS: Partial

channel connections for memory-efficient architecture search.

In International Conference on Learning Representations,

2020.

[44] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci.

Nas evaluation is frustratingly hard. In International Confer-

ence on Learning Representations, 2019.

[45] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,

Kevin Murphy, and Frank Hutter. NAS-Bench-101: Towards

reproducible neural architecture search. In International Con-

ference on Machine Learning, pages 7105–7114, 2019.

[46] Yixing, Yunhe Wang, Kai Han, Shangling Jui, Chunjing Xu,

Qi Tian, and Chang Xu. ReNAS: Relativistic evaluation of

neural architecture search. arXiv preprint arXiv:1910.01523,

2019.

[47] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,

and Mathieu Salzmann. Evaluating the search phase of neural

architecture search. In International Conference on Learning

Representations, 2020.

[48] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, Peilin

Zhao, Junzhou Huang, and Chuang Gan. Graph convolutional

networks for temporal action localization. In The IEEE Inter-

national Conference on Computer Vision (ICCV), Oct 2019.

[49] Runhao Zeng, Haoming Xu, Wenbing Huang, Peihao Chen,

Mingkui Tan, and Chuang Gan. Dense regression network

for video grounding. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020.

[50] Barret Zoph and Quoc V Le. Neural architecture search

with reinforcement learning. In International Conference on

Learning Representations, 2017.

[51] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In The IEEE Conference on Computer Vision

and Pattern Recognition, pages 8697–8710, 2018.

9511

