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Abstract

Having access to multi-modal cues (e.g. vision and au-

dio) empowers some cognitive tasks to be done faster com-

pared to learning from a single modality. In this work, we

propose to transfer knowledge across heterogeneous modal-

ities, even though these data modalities may not be seman-

tically correlated. Rather than directly aligning the rep-

resentations of different modalities, we compose audio, im-

age, and video representations across modalities to uncover

richer multi-modal knowledge. Our main idea is to learn a

compositional embedding that closes the cross-modal se-

mantic gap and captures the task-relevant semantics, which

facilitates pulling together representations across modali-

ties by compositional contrastive learning. We establish

a new, comprehensive multi-modal distillation benchmark

on three video datasets: UCF101, ActivityNet, and VG-

GSound. Moreover, we demonstrate that our model signifi-

cantly outperforms a variety of existing knowledge distilla-

tion methods in transferring audio-visual knowledge to im-

prove video representation learning. Code is released here:

https://github.com/yanbeic/CCL.

1. Introduction

Videos often contain informative multi-modal cues, such

as visual objects, motion, auditory events, and textual infor-

mation encoded in captions or speech – all of which pro-

vide rich, transferrable semantics for representation learn-

ing. The majority of existing works in video understand-

ing utilises visual-only content for representation learning

[63, 52, 57, 64, 10, 19]. Our objective, on the other hand,

is to distill the rich multi-modal knowledge available in net-

works pre-trained on spatial imagery data and temporal au-

ditory data to learn expressive video representations.

In contrast to the standard knowledge distillation tech-

niques [29, 9] which transfer unimodal knowledge learned

from the same modality and dataset, our multi-modal distil-

lation framework uniquely utilises knowledge learned from

multiple data modalities. Although prior works have con-

sidered cross-modal distillation [24, 6, 3, 34, 2], they gener-

ally assume pairwise semantic correspondence between two
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Figure 1. Our generic multi-modal distillation framework aligns

audio, image, and video representations in the latent space by com-

positional contrastive learning, where a compositional embedding

is learned to bridge the cross-modal semantic gap and capture the

task-relevant semantics for more informative knowledge transfer.

modalities. However, in unconstrained scenarios, the cross-

modal content may not always be semantically correlated

or temporally aligned, e.g. a video of applying lipstick, may

be accompanied by audio not directly related to the action,

such as music or speech. On the other hand, similar audio

cues, e.g. music, may accompany videos showing distinct

visual content, e.g. applying lipstick and playing cello.

In this work, we tackle a realistic multi-modal distil-

lation paradigm that can distill heterogeneous audio and

visual knowledge for video representation learning. This

requires to bridge the cross-modal semantic gap, domain

gap, as well as dealing with inconsistent network architec-

tures across modalities. To address these challenges in a

unified formulation, we propose compositional contrastive

learning – a novel, generic framework to distill the multi-

modal knowledge by flexibly plugging in the teacher net-

works pre-trained on different data modalities. Specifically,

a compositional embedding is learned to close the cross-

modal gap between the teacher and student networks and

capture the task-relevant semantics. By jointly pulling to-

gether the teacher, student, and their compositional embed-

dings through compositional contrastive learning, the multi-

modal knowledge is transferred to the video student net-

work to learn more powerful video representations.
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Our contributions are as follows. (1) We propose a novel

Compositional Contrastive Learning (CCL) model, featured

by learnable compositional embeddings that close the cross-

modal semantic gap, and a distillation objective which con-

trasts different modalities jointly in the shared latent space,

where class labels are introduced to distill the multi-modal

knowledge in an informative way. (2) We establish a new

benchmark on multi-modal distillation, comparing CCL ex-

tensively to seven state-of-the-art distillation methods on

three video datasets: UCF101, ActivityNet, VGGSound, in

two tasks: video recognition and video retrieval. (3) We

demonstrate the advantages of our model in comparison to

the prior state-of-the-art methods, and provide an insightful

quantitative and qualitative ablative analysis.

2. Related Work

Knowledge Distillation. A typical knowledge distillation

paradigm follows a teacher-student learning strategy, where

the knowledge learned by a large teacher network or an en-

semble of networks is transferred to a lightweight student

network [29, 7, 9, 23]. In general, supervision signals from

the teacher regularise the student network during training,

as represented by a cross-entropy loss on the soft targets

[29], or a regression loss on the pre-softmax activation [7].

A line of works reformulate the supervision signals for more

effective knowledge transfer, such as attention transfer [69],

probabilistic transfer [45], relation transfer [44], and cor-

relation transfer [48]. Another line of works distill knowl-

edge in a cross-modal context [24, 6, 3, 34], such as learning

sound representations [6], or optimising a depth estimation

model [24] leveraging knowledge from a visual recognition

model. In contrast to these recent works which assume dif-

ferent modalities share similar semantics or physical struc-

tures, we study a more challenging scenario using uncon-

strained videos with a possible cross-modal semantic gap.

Audio-Visual Learning. Audio has been used to assist vi-

sual learning or vice versa, e.g. to separate or localise sound

in videos [40, 56, 5, 21], for audio recovery [70], lip reading

[2], speech recognition [1], or audio-driven image synthe-

sis [67, 31]. Several self-supervised methods have recently

been explored for audio-visual learning [41, 42, 4, 47]. By

training the audio and video networks jointly, these works

leverage the semantic correspondence between audio and

video for unsupervised learning on a large video dataset. To

further scale audio-visual learning to unconstrained audio-

video data with possible semantic mismatch, we propose to

distill the audio-visual knowledge from pre-trained teacher

networks to regularise the student network.

Contrastive Learning. The contrastive loss was initially

proposed to learn invariant representations by mapping sim-

ilar inputs to nearby points in a latent space [26]. Recently, a

family of models popularised the idea of contrastive learn-

ing for self-supervised learning [30, 39, 18, 12, 11]. The

aim is to maximise the mutual information between differ-

ent views of the same instance [11, 18] or between the local

and global features extracted from the same image [30]. To

ensure its success, a memory bank is generally used to store

a large amount of negative samples, while various data aug-

mentation techniques are often used to produce many views

of the same sample. Besides self-supervised learning, con-

trastive learning has recently been studied in other contexts,

such as knowledge distillation [54] and image generation

[43]. To our knowledge, we are the first to introduce con-

trastive learning to distill knowledge across heterogeneous

modalities. Rather than using a vanilla contrastive loss (e.g.

InfoNCE [39]), we formulate a multi-class noise contrastive

estimation loss that utilises the class labels to efficiently as-

sociate positives and dissociate negatives across modalities.

Video Representations. To represent video information,

early works often extract hand-crafted visual features by

computing dense trajectories [63], SIFT-3D [51] and HOG-

3D [33]. Recent advances in video representation learn-

ing have been achieved by learning spatiotemporal fea-

tures with convolutional neural networks (CNNs) on large-

scale video datasets, as represented by two-stream net-

works [52, 19], 3D-CNNs [57, 10, 27] and factorised 3D-

CNNs [49, 58]. While these approaches are trained us-

ing annotated videos, some self-supervised methods learn

video representations from a large collection of unlabelled

videos by sorting video frames [68, 32], using temporal

cycle consistency [16, 66] or video colorisation [62]. Re-

cently, there has been a growing interest in learning multi-

modal video representations with audio signals [65, 37] or

video captions [20], which both aim to integrate the multi-

modal cues into a single feature encoding to represent each

video. Although our model also exploits the multi-modal

semantics in videos, it uniquely leverages the privileged

knowledge from multiple modalities without training multi-

ple networks jointly, and processes only the video modality

at test time for a higher efficiency.

3. Compositional Contrastive Learning (CCL)

Our goal is to distill audio-visual knowledge learnt from

heterogeneous audio and image modalities for video repre-

sentation learning, while the cross-modal content may be

semantically unrelated. The image and audio embeddings

are first extracted from pre-trained teacher networks (Fig-

ure 2, top and bottom), and then composed with the video

embeddings (Figure 2, middle) to bridge the cross-modal

semantic gap (Section 3.2). The unimodal audio and image

embeddings, along with the compositional embeddings, are

then jointly aligned with the video embeddings by composi-

tional contrastive learning to distill audio-visual knowledge

(Section 3.3). At test time, only the video student network is

deployed for the video recognition or video retrieval tasks.
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Figure 2. Given the image, video, audio embeddings encoded by individual networks (Section 3.1), compositional embeddings are learned

to close the cross-modal semantic gap and capture the task-relevant semantics (Section 3.2), which, along with knowledge from the image

and audio networks, are transferred to the video network by compositional contrastive learning in the shared latent space (Section 3.3).

3.1. Unimodal Representations of Audio and Vision

Given a dataset of N videos D = {Vi, yi}
N
i=1 – each

video belongs to one of K video categories and contains a

set of images {Iij}
Mi

j=1 with an audio recording Ai, we ex-

tract the unimodal embeddings via CNNs. As audio, image,

and video data exhibit heterogeneous characteristics, differ-

ent network architectures are adopted to model the tempo-

ral, spatial, or spatiotemporal information, as detailed next.

Audio Teacher Network. Although the audio and visual

content in a video may not be semantically related, the au-

dio knowledge encodes temporal context that offers rich

privileged information [59]. Given the audio recording Ai

of the video Vi, the log-mel spectrogram is extracted and

passed through a pre-trained 1D-CNN to obtain an audio

embedding, formally referred to as xa = θ1D-CNN(Ai),
where xa is a Ka-dimensional audio teacher embedding,

θ1D-CNN is the audio teacher network parameterised by 1D

convolutions to capture the temporal acoustic context.

Image Teacher Network. The image teacher network is

a standard 2D-CNN to encode the spatial visual informa-

tion. Given an image frame Iij randomly sampled from the

video Vi, an image embedding is extracted using the 2D-

CNN, referred to as xi = θ2D-CNN(Iij), where xi is a Ki-

dimensional image teacher embedding, and θ2D-CNN is the

image teacher network. As each video clip contains a set of

image frames, only one image frame is randomly selected

at a time to represent the spatial visual content.

Video Student Network. To distill audio-visual knowledge

from two teacher networks, a 3D-CNN network customised

for video recognition is employed to learn the video rep-

resentations from scratch, while mimicking the teacher net-

works (detailed in Section 3.3). The video network contains

a stack of residual blocks with (2+1)D convolutions, which

alternates between 2D spatial convolutions and 1D tempo-

ral convolutions to encode the spatiotemporal visual con-

tent. Given a T×H×W×3 volume of an RGB video clip

from video Vi, a video embedding is parameterised by the

3D-CNN, formally referred to as xv = θ3D-CNN(Vi), where

xv is a Kv-dimensional video embedding, and θ3D-CNN is

the video student network trained by a cross-entropy loss to

predict a probability distribution Pv over K video classes:

Lv
ce = Lce(xv, k) = − log

(

Pv(k|xv; θcls)
)

,

where k is the class label of Vi, θcls is the video classifier.

3.2. Compositional Multi­Modal Representations

As aforementioned, the student and teacher embeddings

may be semantically unaligned – an image frame may cap-

ture only partial visual cues not directly related to the video

event, while the accompanied audio of an action video may

be irrelevant music or speech. To bridge the possible se-

mantic gap and domain gap across modalities, we propose

to rectify the audio and image teacher embeddings by com-

posing the teacher and student embeddings and constrain-

ing the compositional embeddings with our task objective

to close the possible semantic gap. As the network architec-

tures are nonuniform across different modalities, the cross-

modal composition is derived at the penultimate layer.

Formally, the teacher embeddings xa, xi are composed

with the student embedding xv by learning a residual on

top of the teacher embeddings. We rectify the teacher em-

beddings using the following composition function F(·, ·),
which learns a residual fθ(·, ·) that fuses two modalities by

normalisation, concatenation and a linear projection:

Fav(xa, xv) = xav = xa + fθav
(xa, xv)

Fiv(xi, xv) = xiv = xi + fθiv (xi, xv),
(1)

where xav, xiv are the compositional embeddings. This op-

eration is related to prior works that compose multi-modal

features [61, 14, 13], but ours aims at shifting the teacher

embedding with a learnable residual. More importantly, to

constrain the class assignment of the compositional embed-

dings, F(·, ·) is optimised by the video classification loss
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(i.e. Lce), which ensures xav, xiv are assigned to the same

video class label as xv . The overall classification loss is:

Lcls = Lv
ce(xv, k) + Lav

ce (xav, k) + Liv
ce(xiv, k), (2)

where Lav
ce ,L

iv
ce are imposed on the composition functions

Fav(·, ·),Fiv(·, ·). In the presence of a cross-modal seman-

tic gap (e.g., the audio and video embeddings xa, xv belong

to different classes), the compositional embeddings are en-

forced to share the same class label k as xv . In other words,

the compositional embeddings are learned to close the pos-

sible semantic gap and capture the task-relevant semantics

to facilitate more informative knowledge transfer.

3.3. Distilling Audio­Visual Knowledge

Many prior unimodal methods distill knowledge merely

in the prediction space by enforcing the student network to

output similar predictions as the teacher network [29, 7, 9].

However, this strategy cannot be directly applied to multi-

modal distillation, given the teacher networks are often pre-

trained on heterogeneous task objectives to predict different

classes. Thus, we propose to perform contrastive learning

in the latent feature space, followed by contrasting the class

distributions in the prediction space.

Given the unimodal embeddings and the compositional

embeddings, we propose to distill the knowledge by pulling

together the positive pairs while pushing away the negative

pairs across modalities. The positive pairs could include the

images, audios, and videos from the same video class k.

Specifically, for a triplet of audio, video, and their compo-

sitional embeddings extracted from the video Vi, the con-

trastive loss can be formed in every pair among them to rein-

force their correspondence in the shared embedding space.

Formally, a contrastive loss Lct (based on InfoNCE [39])

between a pair of audio and video embeddings xv(i), xa(i)

can be derived as below.

Lct=−log
exp(Φ(xv(i), xa(i))/τ)

∑B

j=1 exp(Φ(xv(j), xa(j)))/τ)
=−log pav(i),

(3)

where Φ is a cosine similarity scoring function, τ is the tem-

perature, pav(i) is the probability of assigning the video em-

bedding xv(i) to its paired audio embedding xa(i) against

the whole mini-batch of audio embeddings {xa(j)}
B
j=1.

Although the contrastive loss Lct (Eq. (3)) has shown its

success as an instance-level self-supervised signal [11, 12],

it is not directly applicable in our context, given there may

exist multiple positive video-audio pairs sampled from an

identical video class k per batch. Therefore, we formulate

a multi-class noise contrastive estimation (NCE) loss that

brings the class label k into the loss formulation:

Lnce(xv, xa)=−
1

Bp

∑

j=k

log pav(j)−
1

Bn

∑

j 6=k

log(1−pav(j)),

(4)

where Bp, Bn are the number of positive pairs (from class

k) and negative pairs (not from class k) for the video embed-

ding xv (labelled as k). When Bp=Bn=1, Eq. (4) is equiv-

alent to the vanilla NCE [25]. Note that Eq. (3) considers

each instance as a class; thus, using Eq. (3) would ignore

the class-level discrimination and blindly treat some posi-

tives as false negatives. In contrast, our multi-class NCE

(Eq. (4)) encourages the network to assign higher probabil-

ities to the positives and lower probabilities to the negatives.

The same multi-class NCE loss can be imposed between

the video embedding xv and the compositional embedding

xav to collectively distill unimodal audio knowledge and

multi-modal knowledge in a compositional manner:

La(xv, xa, xav)=λLnce(xv, xa) + (1− λ)Lnce(xv, xav),
(5)

where λ is a hyperparameter to balance the two terms, La is

the objective from the audio modality. Similarly, the above

objective can be rewritten by utilising the image modality:

Li(xv, xi, xiv)=λLnce(xv, xi) + (1− λ)Lnce(xv, xiv),
(6)

where xi, xiv are the image embedding and the composi-

tional embedding respectively. In essence, the loss function

(Eq.(5) or Eq.(6)) serves as a similarity constraint to align

embeddings in the multi-modal latent feature space. Since

the compositional embeddings are constrained by the clas-

sifiers for video classification, a similarity constraint can

also be imposed to further align the class distributions in

the prediction space. Formally, given the predictive dis-

tributions from the video network Pv and the composition

functions Pav , Piv , we introduce the Jensen–Shannon di-

vergence (JSD) [36] to align Pv with respect to Pav, Piv:

LJSD=JSD(Pv||Pav) + JSD(Pv||Piv), (7)

where JSD(P ||Q) is a symmetric similarity measure be-

tween two distributions, i.e. JSD(P ||Q) = (KL(P ||Q) +
KL(Q||P ))/2. Minimising LJSD contrasts the class se-

mantics between Pv and Pav, Piv in the prediction space,

which is orthogonal to feature-level contrastive learning.

Learning Objective. The final compositional contrastive

learning objective (CCL) for distilling audio-visual knowl-

edge in the video recognition task can be written as below.

LCCL = Ldistill + λclsLcls,with Ldistill=Li+La+LJSD

(8)

where the distillation objective Ldistill optimises the model

along with the classification objective Lcls (Eq. (2)). Ac-

cording to the availability of pre-trained networks from the

image and audio modalities, Ldistill can be flexibly rewrit-

ten as Li+JSD(Pv||Piv) to distill visual-only knowledge,

or La+JSD(Pv||Pav) to distill audio-only knowledge. In

our experiments (Section 4), we consider audio, visual, and

audio-visual distillation to study the individual impact of

each modality, as well as their combinative impact.
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4. Experiments

Datasets. To establish a comprehensive multi-modal dis-

tillation benchmark, we use the following video datasets.

(1) UCF51 [53] is a subset of UCF101 that contain audios

in videos, including 6,845 videos from 51 action classes,

such as baby crawling and apply lipstick. We use the public

split 1 for evaluation. (2) ActivityNet [17] contains 14,950

videos, covering a wide range of 200 complex human daily

activities, such as arm wrestling and having an ice cream.

We use the default split (10,024 training vs 4,926 valida-

tion videos). (3) VGGSound [60] is a large-scale dataset of

309 audio-visual correspondent event classes from 199,196

videos, such as playing violin and thunder. We use 183,730

videos for training and the rest for testing. Note that except

VGGSound, audio and video in the other two datasets are

not always semantically correlated.

Implementation Details. We use R(2+1)D-18 [58] as the

video student network. The audio and image teacher net-

works are the 1D-CNN14 [35] and 2D-ResNet34 [28], pre-

trained on the AudioSet [22] and ImageNet [15]. The model

weights of the teacher networks are kept frozen during train-

ing. The video network is trained by SGD with a learning

rate of 0.001, a weight decay of 0.0005. The batch size is

16 on UCF51, 64 on ActivityNet, 256 on VGGSound. The

temperature τ is 0.1, 0.5 on the image and audio modal-

ity. The hyperparameters λ, λcls are set to 0.5, 1. The di-

mension of the latent feature space is 512. As the feature

dimensions of all networks are 512, we do not add projec-

tions upon the networks, but linear projections can be added

to map all embeddings to the same dimensionality. The

video clips are cropped to 112×112. Each clip contains 16

frames. We train the model without accessing the AudioSet

or ImageNet. At test time, only the video network is used.

More algorithmic details are given in the supplementary.

Tasks and Metrics. We evaluate the quality of video rep-

resentations on video recognition and video retrieval tasks.

The video network is trained for recognition, and tested for

both recognition and retrieval. For recognition, top-1 accu-

racy (%) is reported to show the classification accuracy on

the test set. For retrieval, R@K (recall@K, %) is reported,

i.e. the top k nearest neighbours (kNN) contain videos from

the same class as the query videos. In kNN retrieval [8],

videos in the test set are used as queries and videos in the

training set are the retrieval targets. For each video, mul-

tiple clip-level features are extracted by applying a sliding

window. The feature per video is computed by averaging

all the clip-level features. A cosine distance metric is finally

adopted to measure the pairwise similarity in kNN retrieval.

4.1. Comparing with the State of the Art

Baseline and State-of-the-art Models. For a fair and com-

prehensive evaluation, we propose a multi-modal distilla-

Method
UCF51 ActivityNet

A I AI A I AI

baseline 57.5 57.5 57.5 32.6 32.6 32.6

FitNet 48.4 67.4 62.4 21.3 45.8 34.6

PKT 53.2 58.2 62.0 33.4 35.4 35.1

COR 57.7 65.5 66.3 31.4 43.1 41.7

RKD 53.0 55.4 58.2 - 34.3 -

CRD 60.3 61.4 63.2 36.4 37.3 36.6

IFD 56.3 54.2 64.2 34.6 33.8 35.4

CMC 59.2 60.4 63.1 34.4 23.7 33.9

CCL 64.9 69.1 70.0 36.5 46.3 47.3

Table 1. Video recognition on UCF51 and ActivityNet. Metric:

Top1 accuracy (%). Knowledge is transferred from A: audio; I:

image; or AI: audio and visual modalities to improve the video

recognition model (‘-’: the model is not converged).

tion benchmark, comparing our CCL to a simple baseline

model without distillation and seven state-of-the-art distil-

lation methods. We train each model similar to CCL, but

replace the distillation objective based on their open-source

implementation. In the following, we describe their distil-

lation objectives in brief. FitNet [50] aligns the represen-

tations of the teacher and student by regression. PKT [45]

models the feature distribution by a probabilistic model, and

matches the distributions between the student and teacher

by a divergence metric. CCKD [48] transfers the correla-

tion among instances in the feature space from the teacher to

the student by regression. RKD [44] transfers the distance-

wise and angle-wise relations of features from the teacher to

the student by penalising differences in relations. CRD [54]

transfers knowledge by instance-level contrastive learning

and uses a large memory bank to store negative samples.

IFD [46] trains the student network to mimic the teacher’s

information flow derived by a probabilistic model. CMC

[55] is a cross-view learning method to align different views

of the same instances by contrastive learning.

Remark. The above methods are proposed based on an as-

sumption that the teacher and student are trained on the uni-

modal data or on the same task objective; while we uniquely

consider to distill knowledge learned from heterogeneous

multiple data modalities. Our model also differs in sev-

eral aspects compared to other contrastive learning methods

(CRD, CMC). First, we introduce learnable compositional

embeddings to close the cross-modal semantic gap and cap-

ture task-relevant semantics. Second, rather than treating

each instance as one class, our objective exploits the class

labels to enhance discrimination of different classes. Third,

we do not use a large memory bank, thus greatly lowering

the computation cost to derive the contrastive loss.

Video Recognition. In Table 1, we evaluate on three

setups: audio distillation (A), visual distillation (I), and

audio-visual distillation (AI) on the UCF51 and ActivityNet
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Setup
UCF51 ActivityNet

A I AI A I AI

Metrics R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10

baseline 57.3 65.3 68.9 57.3 65.3 68.9 57.3 65.3 68.9 29.0 46.5 54.9 29.0 46.5 54.9 29.0 46.5 54.9

FitNet 31.9 42.5 47.6 51.4 66.9 73.7 61.2 68.7 72.4 16.5 32.8 42.1 30.7 52.6 62.5 30.5 48.3 57.0

PKT 48.4 57.2 61.8 53.0 63.4 68.9 61.2 69.1 72.2 26.4 44.4 53.3 28.1 48.1 57.4 30.3 47.6 56.2

COR 51.7 58.6 61.4 56.1 66.9 73.7 52.8 65.1 72.6 27.3 45.7 54.9 33.2 55.2 64.6 30.2 51.7 61.7

RKD 46.6 56.8 61.8 51.2 59.7 65.3 55.8 63.7 66.9 - - - 27.1 47.1 56.1 - - -

CRD 59.5 65.8 68.0 59.1 66.5 69.1 61.0 66.9 70.1 31.6 50.4 58.9 32.3 50.7 58.6 33.1 49.8 58.2

IFD 53.8 60.8 65.6 48.0 58.6 65.3 64.3 71.1 74.2 28.9 47.1 56.1 25.3 44.4 54.4 30.0 47.6 56.1

CMC 57.9 64.5 67.7 60.1 63.5 65.0 62.9 69.0 71.7 30.0 49.1 57.6 25.2 44.2 53.6 30.9 48.2 55.9

CCL 62.9 68.0 70.4 66.8 73.5 76.5 67.6 72.3 74.7 30.6 49.1 57.3 38.1 58.8 67.4 39.5 59.3 67.4

Table 2. Video retrieval on UCF51 and ActivityNet. Metrics: R@K (K = 1, 5, 10, %). Knowledge is transferred from A: audio; I: image;

or AI: audio and visual modalities to improve the video recognition model ( ‘-’: the model is not converged).
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Figure 3. The per-class top-1 video recognition accuracy for audio

distillation on UCF51 comparing FitNet and CCL wrt the baseline.

Light green and orange: FitNet and CCL outperform the baseline.

datasets. As shown in Table 1, distilling knowledge from all

modalities, our CCL obtains the state-of-the-art consistently

and improves over the prior methods. Specifically, when it

comes to visual distillation with the image modality (I), we

observe that FitNet is a strong competitor on both datasets.

Similarly, when it comes to audio distillation (A), CRD ob-

tains the prior state-of-the-art on both datasets. However,

this observation does not hold on the other modality for both

FitNet and CRD. On the other hand, our CCL makes better

use of the knowledge learned from either the image or audio

modality and thus outperforms all methods on both datasets,

e.g. significantly boosting the baseline by 7.4% (64.9-57.5),

11.5% (69.1-57.6) on UCF51 (A) and (I).

On audio-visual distillation (AI), our CCL significantly

outperforms the prior state-of-the-art on both datasets, ob-

taining an impressive result of 70.0% (vs 66.3% by COR)

on UCF51 and 47.3% (vs 41.7% by COR) on ActivityNet.

Although the prior state-of-the-art may perform well on au-

dio or visual distillation (e.g. CRD, FitNet), this behaviour

does not remain when it comes to multi-modal distillation,

i.e. when using audio and visual modalities jointly. The new

state-of-the-art obtained by our CCL in the setup of (AI)

indicates its capability to distill the complementary knowl-

edge from heterogeneous modalities in a robust manner.

Closer Look at Audio Distillation in Video Recognition.

Although FitNet is a strong competitor in visual distilla-

tion, it does not perform as well in audio distillation. To

better understand this discrepancy, we closely inspect the

per-class top-1 video recognition accuracy on UCF51 us-

ing FitNet and our CCL in audio distillation. Our results in

Figure 3 indicate that our model outperforms the baseline

in most classes, while the performance of FitNet degrades

in most classes (44 out of 51). As audio and video content

are generally not semantically related on UCF51, when we

look at individual classes, we find that FitNet mostly pre-

dicts incorrectly when the audio is not highly in line with the

video content, e.g. in the class writing on board where Fit-

Net fails, most videos show a person speaking while writing

on board, and the audio is weakly related to the action. In

the class table-tennis shot for which FitNet succeeds, many

videos contain the related sound of the ball. More analyses

are given in Section 4.2 and the supplementary.

As FitNet imposes a hard alignment by regression be-

tween the teacher and student, noisy side information from

the audio teacher could bring a negative impact. Notably,

our CCL is designed to close the cross-modal semantic gap

and bring class labels into its loss formulation, thus showing

robustness when distilling audio and (or) visual knowledge.

Video Retrieval. In Table 2, we evaluate all the methods

in the video retrieval task on the three setups of audio (A),

visual (I) and audio-visual (AI) distillation on the UCF51

and ActivityNet datasets. This is to test the discriminability

of the video representations in a challenging scenario that

requires more fine-grained discrimination between videos.

Our results in Table 2 indicate that while the other alter-

native distillation methods do not always exhibit better per-

formance compared to the baseline, our model outperforms

the baseline consistently with large margins. For instance,

the best competitor (CRD) performs well overall, but its
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Figure 4. Results of CCL, CRD, CMC wrt the baseline on VG-

GSound. Left: recognition accuracy. Right: retrieval recall rate.

performance of audio or visual distillation on UCF51 is not

always stronger than the baseline. Specifically, R@1 in au-

dio distillation (A), our CCL obtains an impressive 62.9 (vs

59.5 by CRD) on UCF51 although it stays behind CRD on

ActivityNet (30.6 by ours vs 31.6 by CRD). On the other

hand, in the case of R@1 in visual distillation (I), our CCL

outperforms CRD with large margins on both datasets (66.8

vs 59.1 on UCF51 and 38.1 vs 32.3 on ActivityNet).

Another observation is that, while many methods bene-

fit from distilling audio-visual knowledge (AI), our model

performs the best under this multi-modal setup. Our CCL

significantly outperforms the state-of-the-art, giving a R@1

of 67.6 vs 64.3 by IFD on UCF51 and a R@1 of 39.5 vs 33.1

by CRD on ActivityNet. Using other metrics such as R@5

and R@10 on the smaller UCF51 dataset, the difference be-

tween the methods is smaller, e.g. on R@10 with audio-

visual distillation, our CCL obtains 74.7 vs 74.2 by IFD.

On the other hand, on the large-scale ActivityNet dataset,

even on R@5 and R@10, our CCL significantly outper-

forms the state-of-the-art, e.g. on R@10 with audio-visual

distillation, our CCL obtains 67.4 vs 61.7 by COR. These

observations again suggest the robustness of our model for

distilling knowledge from multiple modalities on different

datasets, which are in line with the observations and trends

on the video recognition task.

Experiments on the Large-scale VGGSound Dataset. So

far, CCL has shown its success in audio-visual distillation in

human action and activity video datasets. To further test our

model’s generalisation on a challenging large-scale dataset

of audio-visual events, we conduct experiments on the VG-

GSound dataset in the setup of audio-visual distillation (AI),

where knowledge is jointly distilled from the audio and im-

age modalities to improve the video modality. In addition

to the baseline, we compare CCL to two strong competitors

CRD, CMC that adopts contrastive learning. All methods

are trained to predict the sound events in videos and tested

for both video recognition and video retrieval tasks.

As Figure 4 shows, CCL (red curve) consistently outper-

forms the baseline (black curve) in both tasks, boosting the

top-1 accuracy by 4.5% and the R@1 by 6.0% (exact num-

bers are given in the supplementary). While CRD (green

UCF51

Method A I AI

baseline 57.5 57.5 57.5

(a) CCL w/o composition 63.2 65.8 66.9

(b)

CCL w Lct 60.4 68.4 67.8

CCL w/o Lnce 63.1 67.4 66.3

CCL w/o LJSD 64.0 67.8 68.2

CCL 64.9 69.1 70.0

Table 3. Ablation on (a) model component: CCL w/o composi-

tion; (b) loss formulation: CCL w Lct; CCL w/o Lnce; CCL w/o

LJSD , compared to the baseline and the CCL. Metric: Top1 (%).

curve) performs on par with the baseline, CMC performs

lower than the baseline. Our results on VGGSound suggest

the ability of CCL to generalise on a very large dataset, and

demonstrate its capability to distill audio-visual knowledge

for learning the video representations of sounds. Unlike the

videos in UCF51 or ActivityNet, paired audio and video all

share the same class semantics on VGGSound. This indi-

cates the robustness of CCL in the different scenarios when

the audio and video are either semantically correlated (VG-

GSound) or not always correlated (UCF51, ActivityNet).

4.2. Ablation Study and Qualitative Results

To analyse our model formulation rationale, we conduct

more studies on the UCF51 dataset in the following.

Ablation on Model Component. In the model formulation,

our main idea is to learn a compositional embedding that

closes the cross-modal gap and captures task-relevant se-

mantics. Rather than transferring knowledge across modal-

ities directly, our CCL distills the unimodal knowledge from

the teacher networks and the multi-modal knowledge from

the composition functions collectively. To verify the idea

of composition, we compare CCL to an ablative baseline

(CCL w/o composition). Table 3 (a) shows that removing

the composition degrades the recognition performance by

1.7% (64.9-63.2), 3.3% (69.1-65.8), 3.1% (70.0-66.9) on

the setup of (A), (I), (AI). This supports our motivation to

compose representations across modalities. As the compo-

sitional embedding is learned to rectify the teacher embed-

ding as constrained by the task objective, it brings the task-

relevant semantics to improve cross-modal distillation.

Ablation on Loss Formulation. In the loss formulation,

our goal is to associate positive pairs from the same class

and disassociate negative ones. Our distillation objective

brings class labels into contrastive learning, and performs

alignment jointly in the feature and prediction space by the

multi-class NCE (Lnce) and the JSD loss (LJSD). To ex-

amine our objective empirically, we first compare our multi-

class NCE Lnce (Eq. (4)) to an ablative baseline using the

instance-level contrastive loss Lct based on InfoNCE (Eq.

(3)). Table 3 shows that CCL performs much better than
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PlayingFlute PlayingFlute PlayingFlute PlayingFlute PlayingFlute

IceDancing IceDancing IceDancing IceDancing IceDancing

Figure 5. Qualitative results on UCF51. (a) Left: query videos;

Right: 4-NN retrieved items. (b) Visualisation with t-SNE [38].

the baseline “CCL w Lct”, improving the accuracy by 4.5%

(64.9-60.4), 2.2% (70.0-67.8) on the setup of (A), (AI). This

confirms the benefit of bringing class labels into contrastive

learning. Next, we study the effect of similarity constraints

in the feature and prediction space, we compare CCL to

two ablative baselines: CCL w/o Lnce, CCL w/o LJSD,

which remove one constraint at a time. As Table 3 shows,

CCL performs the best. Removing Lnce decreases the per-

formance of CCL by 1.8% (64.9-63.1), 1.7% (69.1-67.4),

3.7% (70.0-66.3) in the setup of (A), (I), (AI); while remov-

ing LJSD also leads to performance degradation. These re-

sults indicate that Lnce, LJSD are complementary and work

synergistically to distill knowledge across modalities.

Qualitative Results. To understand the video representa-

tions qualitatively, we analyse CCL with qualitative results.

For k-NN retrieval (Figure 5(a)), we observe that given the

query videos, videos of the same or similar classes are re-

trieved, e.g. for the video “ice dancing”, the top retrieved

videos are from the same class. For the video “apply eye

makeup”, two videos are from the same class and the other

two are from a similar action with subtle differences.

When visualising the video embeddings (Figure 5 (b)),

we see that the embeddings of different classes (in differ-

ent colours) are grouped into separated clusters; while the

test set embeddings are lying on the manifolds similar to the

training set. This means videos from training and test sets

are grouped in a consistent way, where embeddings from

the same class are associated with higher similarities. Our

qualitative results overall show that CCL learns discrimina-

tive video representations from multi-modal distillation.

Qualitative Analysis on Cross-Modal Correspondence.

To understand the cross-modal semantic gap, we provide

visual examples of audio-video correspondence. As Figure

6 shows, based on the top-10 predicted audio classes, we

can manually distinguish the audio-video correspondence

PlayingCello

Bowed string 

instrument; Double 

bass; Cello; Music;

Musical instrument;

String section;

Violin, fiddle;

Classical music; 

Speech; Orchestra

Speech; Chopping 

(food), Dog; 

Animal; Domestic 

animals, pets; Inside, 

small room; Bow-

wow; Bark; Yip; 

Canidae, dogs, 

wolves
WritingOnBoard

Music; Singing; 

Country

Tender music; Guitar; 

Acoustic guitar; 

Musical instrument; 

Plucked string 

instrument; Speech; 

Christmas music
ApplyLipstick

(a)

(b) (c)

Computer keyboard;

Typing; Animal;

Speech; Horse;

Clip-clop; Vehicle;

Inside, small room;

Music; Typewriter

Typing

Figure 6. Audio-video correspondence: videos (labels in blue)

from UCF51 and top-10 audio classes predicted by the audio net-

work. Highly/weakly correlated audio events are in red/green. (a),

(b), (c) denote video, audio are highly, weakly, or not correlated.

as highly, weakly, or not correlated. In (a), the audio event

“cello” is highly related to the video action. In (b), the audio

is dominated by speech but contains the sound “chopping”

weakly related to the sound made by “writing on board”.

In (c), the audio is irrelevant “music”. These evidences are

in line with our assumption of the cross-modal semantic gap

in unconstrained videos. Similarly, an image frame may not

capture the whole video action, leading to a possible seman-

tic gap between the image and video modalities. Notably,

our model tackles this issue by introducing the composi-

tional embeddings for compositional contrastive learning.

More analyses are given in the supplementary.

5. Discussion and Conclusion

We present a novel compositional contrastive learning

(CCL) framework, a generic and effective approach to dis-

till knowledge learned from heterogeneous data modalities

for video representation learning. As there may exist a

cross-modal semantic gap, we introduce the learnable com-

positional embeddings to close the gap and capture the task-

related semantics. Our approach uniquely brings the uni-

modal knowledge (from teacher networks) and multi-modal

knowledge (from composition functions) collectively to fa-

cilitate effective knowledge distillation. We compare our

approach to a variety of state-of-the-art distillation methods,

and demonstrate its performance advantages for both video

recognition and video retrieval in different setups. Our em-

pirical results also provide a realistic benchmark for future

research in multi-modal distillation. As a future extension,

our approach also opens up the possibility to bridge multiple

modalities for multi-modal recognition and retrieval tasks.
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