
Distilling Knowledge via Knowledge Review

Pengguang Chen1 Shu Liu2 Hengshuang Zhao3 Jiaya Jia1,2

The Chinese University of Hong Kong1 SmartMore2 University of Oxford3

{pgchen, leojia}@cse.cuhk.edu.hk liushuhust@gmail.com hengshuang.zhao@eng.ox.ac.uk

Abstract

Knowledge distillation transfers knowledge from the

teacher network to the student one, with the goal of greatly

improving the performance of the student network. Previ-

ous methods mostly focus on proposing feature transforma-

tion and loss functions between the same level’s features to

improve the effectiveness. We differently study the factor

of connection path cross levels between teacher and stu-

dent networks, and reveal its great importance. For the first

time in knowledge distillation, cross-stage connection paths

are proposed. Our new review mechanism is effective and

structurally simple. Our finally designed nested and com-

pact framework requires negligible computation overhead,

and outperforms other methods on a variety of tasks. We

apply our method to classification, object detection, and in-

stance segmentation tasks. All of them witness significant

student network performance improvement.

1. Introduction

Deep convolution neural networks (CNNs) have

achieved remarkable success in a variety of computer

vision tasks. However, the success of CNN is often

accompanied with considerable computation and memory

consumption, making it a challenging topic to apply to

devices with limited resource. There have been techniques

for training fast and compact neural networks, including

designing new architectures [10, 2, 11, 26], network prun-

ing [20, 15, 34, 4, 19], quantization [13] , and knowledge

distillation [9, 25].

We focus on knowledge distillation in this paper consid-

ering its practicality, efficiency, and most importantly the

potential to be useful. It forms a very general line, appli-

cable to almost all network architectures and can combine

with many other strategies, such as network pruning and

quantization [32], to further improve network design.

Knowledge distillation is first proposed in [9]. The pro-

cess is to train a small network (also known as the stu-

dent) under the supervision of a larger network (a.k.a. the

teacher). In [9], knowledge is distilled though the teacher’s

logit, which means the student is supervised by both ground

truth labels and teacher’s logits. Recently, effort has been

made to improve distillation effectiveness. FitNet [25] dis-

tilled knowledge though intermediate features. AT [38] fur-

ther optimized FitNet and used the attention map of features

to deliver knowledge. PKT [23] modeled knowledge of the

teacher as a probability distribution while CRD [28] used a

contrastive objective to transfer knowledge. All these solu-

tions focused on transformation and loss functions.

Our New Finding We in this paper tackle this challeng-

ing problem from a new perspective regarding the connec-

tion path between the teacher and student. To briefly un-

derstand our idea, we first show how previous work deals

with these paths. As shown in Figure 1(a)-(c), all previ-

ous methods only use the-same-level information to guide

the student. For example, when supervising the student’s

fourth-stage output, always the teacher’s fourth-stage infor-

mation is utilized. This procedure looks intuitive and easy

to construct. But we intriguingly reveal that it is in fact a

bottleneck in the whole knowledge distillation framework

– quick update of the structure surprisingly improves the

whole-system performance consistently for many tasks.

We investigate the previously neglected importance of

designing connection paths in knowledge distillation and

propose a new effective framework accordingly. The key

modification is to use low-level features in the teacher net-

work to supervise deeper features for the student, which re-

sults in much improved overall performance.

We further analyze the network structure and discover

the fact that the student high-level stage has the great capac-

ity to learn useful information from the teacher’s low-level

features. More analysis is provided in Section 4.4. This

process is analogous to human learning curve [35] where a

young kid can only comprehend a small portion of knowl-

edge that is taught. During the course of grow-up, more and

more knowledge from past years may be gradually under-

stood and remembered as experience.

Our Knowledge Review Framework Based on these

discoveries, we propose to use multi-level information of

the teacher to guide one-level learning of the student net-
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Figure 1. (a)-(c) Previous knowledge distillation frameworks.

They only transfer knowledge within the same levels. (d) Our pro-

posed “knowledge review” mechanism. We use multiple layers of

the teacher to supervise one layer in the student. Thus, knowledge

passing arises among different levels.

work. Our novel pipeline is shown in Figure 1(d), which

we call “knowledge review”. The review mechanism is to

use previous (shallower) features to guide the current fea-

ture. It means a student has to always check what has been

studied before for refreshing understanding and context of

“old knowledge”. It is a common practice for our human

study to connect knowledge taught at different stages dur-

ing a period of time of study.

However, how to extract useful information from multi-

level information from the teacher and how to transfer them

to the student are open and challenge problems. To tackle

them, we propose a residual learning framework to make

the learning process stable and efficient. Further, a novel at-

tention based fusion (ABF) module and a hierarchical con-

text loss (HCL) function are designed to boost performance.

Our proposed framework makes the student network much

improve the effectiveness of learning.

By applying this idea, we achieve better performance in

many computer vision tasks. Extensive experiments in Sec.

4 manifest the vast advantage of our proposed knowledge

review strategy.

Main Contributions

• We propose a new review mechanism in knowledge

distillation, utlizing multi-level information of the

teacher to guide one-level learning of the student net.

• We propose a residual learning framework to better re-

alize the learning process of the review mechanism.

• To further improve the knowledge review mechanism,

we propose an attentation based fusion (ABF) module

and a hierarchical context loss (HCL) function.

• We achieve state-of-the-art performance of many com-

pact models in multiple computer vision tasks by ap-

plying our distillation framework.

2. Related Work

Knowledge distillation concept was proposed in [9],

where the student network learns from both the ground-

truth labels and the soft-labels provided by the teacher. Fit-

Net [25] distilled knowledge through one stage intermediate

feature. The idea in FitNet is simple, where the student net-

work feature is transferred to the same shape of the teacher

though convolution layers. L2 distance is used to measure

the distance between them.

Many methods follow FitNet and use one-stage feature

to distill knowledge. PKT [23] modeled knowledge of the

teacher as a probability distribution and used KL divergence

to measure the distance. RKD [22] used multiple example

relation to guide learning of the student. CRD[28] com-

bined contrastive learning and knowledge distillation, and

used a contrastive objective to transfer knowledge.

There are also methods using multi-stage information to

transfer knowledge. AT [38] used multiple layer attention

maps to transfer knowledge. FSP [36] generated FSP matrix

from layer feature and used the matrix to guide the student.

SP [29] further improved AT. Instead of single input infor-

mation, SP uses the similarity between examples to guide

the student. OFD [8] contained a new distance function to

distill major information between the teacher and student

using marginal ReLU.

All previous methods do not discuss the possibility to

“review knowledge”, which, however, is found in our work

very effective to quickly improve system performance.

3. Our Method

We first formalize the knowledge distillation process and

the review mechanism. Then we propose a novel framework

and introduce attention based fusion module and hierarchi-

cal context loss function.

3.1. Review Mechanism

Given an input image X and student network S , we let

Ys = S(X) represent the output logit of the student. S
can be separated into different parts (S1,S2, · · · ,Sn,Sc),
where Sc is the classifier and S1, · · · ,Sn are different

stages separated by downsample layers. Thus, the process

of generating output Ys can be denoted as

Ys = Sc ◦ Sn ◦ · · · ◦ S1(X). (1)

We refer to “◦” as nesting of functions where g ◦ f(x) =
g(f(x)). Ys is the output of student, and intermidate fea-

tures are (F1
s, · · · ,F

n
s ). The ith feature is calculated as

F
i
s = Si ◦ · · · ◦ S1(X). (2)

For the teacher network T , the process is almost the same

and we omit the details. Following previous notations,

single-layer knowledge distillation can be represented as

LSKD = D
(

Mi
s(F

i
s),M

i
t(F

i
t)
)

, (3)
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Figure 2. (a) Architecture for supervising one layer of the student according to the review mechanism. (b) Direct generalization from one

layer to muliple ones. The process is straightforward but costly. (c) The architecture in (b) is optimized with fusion modules to obtain a

compact framework. (d) We further improved the procudure in a progressive manner and utlize redisual learning as our final architecture.

Structures of ABF and HCL are in Figure 3. This figure is best viewed in color.

where M is transformation that transfers the feature to tar-

get representation of attention maps [38] or factors [14]. D
is the distance function that measures the gap between the

student teacher. Similarly, multiple-layers knowledge dis-

tillation is written as

LMKD =
∑

i∈I

D
(

Mi
s(F

i
s),M

i
t(F

i
t)
)

, (4)

where I stores the layers of features to transfer knowledge.

Our review mechanism is to use previous features to

guide the current feature. The single-layer knowledge dis-

tillation with the review mechanism is formalized as

LSKD R =

i
∑

j=1

D
(

Mi,j
s (Fi

s),M
j,i
t (Fj

t )
)

. (5)

Although at the first glance it shares some similarity with

multiple-layers knowledge distillation, it is in fact funda-

mentally different. Here feature of the student is fixed to

F
i
s, and we use the teacher’s first i levels of features to guide

F
i
s. The review mechanism and multiple-layers distillation

are complementary concepts. When combining the review

mechanism with multiple-layers knowledge distillation, the

loss function becomes

LMKD R =
∑

i∈I





i
∑

j=1

D
(

Mi,j
s (Fi

s),M
j,i
t (Fj

t )
)



 . (6)

In our experiments, the LMKD R loss is simply added alone

with original losses during the training process, and the in-

ference is exactly the same as the original model. So our

method is totally cost-free at test time. We use factor λ to
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Figure 3. (a) Architecture of ABF. Different levels’ features of the

student are aggregated together with attention maps. (b) Archi-

tecture of HCL. The student and teacher’s features are pyramid

pooled to extract different context information to distill.

balance the distillation loss and original losses. Taking the

classification task as an example, the whole loss function is

defined as

L = LCE + λLMKD R. (7)

In our proposed review mechanism, we only use shallower

features of the teacher to supervise deeper features of the

student. We found that the opposite brings marginal bene-

fit and wastes many resources instead. The intuitive expla-

nation is that deeper and more abstracted features are too

complicated for early-stage learning. More analysis is in

Section 4.4.

3.2. Residual Learning Framework

Following previous work, we first design a straightfor-

ward framework, as shown in Figure 2(a). The transfor-

mation Mi,j
s is simply composed of convolution layers and

nearest interpolation layers to transfer the ith feature of the

student to match the size of teacher’s jth feature. We do

not transform teacher features Ft. The student feature is

transformed into the same size as the teacher features.

Figure 2(b) shows directly applying the idea to multiple-

layer distillation with all-stage features distilled. However,

this strategy is not optimal because of the huge informa-

tion difference between stages. Also, it yields a compli-

cated process where all features are used. For instance, a

network with n stages needs to calculate n(n + 1)/2 pairs

of features regarding the loss functions, which makes the

learning process cumbersome and costs many resources.

To make the procedure more feasible and elegant, we

reformulate Eq. (6) for Figure 2(b) as

LMKD R =

n
∑

i=1





i
∑

j=1

D
(

F
i
s,F

j
t

)



 . (8)

where the transform of features is omited for simplicity. We

now switch the order of two summations of i and j as

LMKD R =

n
∑

j=1





n
∑

i=j

D
(

F
i
s,F

j
t

)



 . (9)

When j is fixed, Eq. (9) accumulates the distance between

the teacher feature F
j
t and student features F

j
s-Fn

s . With

fusion of features [40, 16], we approximate the summation

of distance as the distance of fused features. It leads to
n
∑

i=j

D
(

F
i
s,F

j
t

)

≈ D
(

U(Fj
s, · · · ,F

n
s ),F

j
t

)

, (10)

where U is a module to fuse features. This approximation

is illustrated in Figure 2(c) where the structure is more ef-

fective now. But the calculation of fusion can be further op-

timized in a progressively manner as shown in Figure 2(d)

for higher efficiency. Fusion of Fj
s, · · · ,F

n
s is calculated by

combination of Fj
s and U(Fj+1

s , · · · ,Fn
s ), where the fusion

operation is recursively defined as U(·, ·), applied to consec-

utive feature maps. Denoting F
j+1,n
s as fusion of features

from F
j+1
s to F

n
s , the loss is written as

LMKD R = D(Fn
s ,F

n
t ) +

1
∑

j=n−1

D
(

U(Fj
s,F

j+1,n
s ),Fj

t

)

,

(11)

Here we loop from n− 1 down to 1 to make use of Fj+1,n
s .

F
n,n
s = Mn,n

s (Fn
s ). The detailed structure is shown in Fig-

ure 2(d), where ABF and HCL are fusion module and loss

function designed for this structure, respectively. Their de-

tails are discussed in Section 3.3.

The structure in Figure 2(d) is elegant and eases the dis-

tillation process with utilizing the concept of residual learn-

ing. For instance, the stage-4’s feature of the student is ag-

gregated with stage-3’s feature of the student to mimic the

stage-3’s feature of the teacher. Therefore, stage-4’s fea-

ture of the student learns the residual of stage-3’s feature

between the student and teacher. The residual information

is very likely to be the key factor that the teacher yields

higher-quality results.

This residual learning process is more stable and effec-

tive than directly letting high-level features of the student

learned from low-level features of the teacher. With the

residual learning framework, the high-level features of the

student can better extract useful information progressively.

Further, using Eq. (11), we eliminate the summation and

reduce the total complexity to n pairs of distances.
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Distillation

Mechanism

Teacher ResNet56 ResNet110 ResNet32x4 WRN40-2 WRN40-2 VGG13

Acc 72.34 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet32 ResNet8x4 WRN16-2 WRN40-1 VGG8

Acc 69.06 71.14 72.50 73.26 71.98 70.36

Logits KD [9] 70.66 73.08 73.33 74.92 73.54 72.98

Single Layer FitNet [25] 69.21 71.06 73.50 73.58 72.24 71.02

Single Layer PKT [23] 70.34 72.61 73.64 74.54 73.54 72.88

Single Layer RKD [22] 69.61 71.82 71.90 73.35 72.22 71.48

Single Layer CRD [28] 71.16 73.48 75.51 75.48 74.14 73.94

Multiple Layers AT [38] 70.55 72.31 73.44 74.08 72.77 71.43

Multiple Layers VID [1] 70.38 72.61 73.09 74.11 73.30 71.23

Multiple Layers OFD [8] 70.98 73.23 74.95 75.24 74.33 73.95

Review Ours 71.89 73.89 75.63 76.12 75.09 74.84

Table 1. Results on CIFAR-100. The teacher and student have architectures of the same style.

Distillation

Mechanism

Teacher ResNet32x4 WRN40-2 VGG13 ResNet50 ResNet32x4

Acc 79.42 75.61 74.64 79.34 79.42

Student ShuffleNetV1 ShuffleNetV1 MobileNetV2 MobileNetV2 ShuffleNetV2

Acc 70.50 70.50 64.6 64.6 71.82

Logits KD [9] 74.07 74.83 67.37 67.35 74.45

Single Layer FitNet [25] 73.59 73.73 64.14 63.16 73.54

Single Layer PKT [23] 74.10 73.89 67.13 66.52 74.69

Single Layer RKD [22] 72.28 72.21 64.52 64.43 73.21

Single Layer CRD [28] 75.11 76.05 69.73 69.11 75.65

Multiple Layers AT [38] 71.73 73.32 59.40 58.58 72.73

Multiple Layers VID [1] 73.38 73.61 65.56 67.57 73.40

Multiple Layers OFD [8] 75.98 75.85 69.48 69.04 76.82

Review Ours 77.45 77.14 70.37 69.89 77.78

Table 2. Results on CIFAR-100 with the teacher and student having different architectures.

3.3. ABF and HCL

There are two key components in Figure 2(d). They are

attention based fusion (ABF) and hierarchical context loss

(HCL). We explain them here.

ABF module utilizes the insight of [30, 12], as shown in

Figure 3(a). The higher level features are first resized to the

same shape as the lower level features. Then two features

from different levels are concatenated together to generate

two H × W attention maps. These maps are multiplied

with two features, respectively. Finally, the two features are

added to generate the final output.

The ABF module can generate different attention maps

according to input features. So the two feature maps can

be dynamically aggregated. The adaptive sum is better than

direct sum because the two feature maps are from different

stages of the network and their information is diverse. The

low- and high-level features may focus on different parti-

tions. The attention maps can aggregate them more reason-

ably. More experimental results are included in Section 4.4.

The detail of HCL is shown in Figure 3(b). Usually, we

use L2 distance as the loss function between the two feature

maps. The L2 distance is effective to transfer information

between features from the same level. But in our frame-

work, different levels’ information is aggregated together to

learn from the teacher. The trivial global L2 distance is not

powerful enough to transfer compound levels’ information.

Inspired by [41], we propose HCL, utilizing spatial pyra-

mid pooling, to separate the transfer of knowledge into dif-

ferent levels’ context information. In this way, the infor-

mation is better distilled in different abstract levels. The

structure is very simple: we first extract different levels’

knowledge from the feature using spatial pyramid pooling,
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Setting Teacher Student KD [9] AT [38] OFD [8] CRD [28] Ours

(a)
Top-1 76.16 68.87 68.58 69.56 71.25 71.37 72.56

Top-5 92.86 88.76 88.98 89.33 90.34 90.41 91.00

(b)
Top-1 73.31 69.75 70.66 70.69 70.81 71.17 71.61

Top-5 91.42 89.07 89.88 90.01 89.98 90.13 90.51

Table 3. Results on ImageNet. (a) MobileNet as student, ResNet50 as teacher. (b) ResNet18 as student, ResNet34 as teacher.

and then use L2 distance to distill between them respec-

tively. Despite the simple structure, HCL is suitable for our

framework. More experimental results are shown in Section

4.4.

4. Experiments

We conduct experiments on various tasks. First, we com-

pare our method with other knowledge distillation ones re-

garding classification. We experiment with different set-

tings varying architecture and datasets. Also, we apply our

method to the object detection and instance segmentation

tasks. Our method also improves the baseline model by

large margins consistently.

4.1. Classification

Datasets (1) CIFAR-100 contains 50K training images

with 0.5K images per class and 10K test images. (2) Im-

ageNet [3] is the most challenging dataset for classification,

which provides 1.2 million images for training and 50K im-

ages for validation over 1,000 classes.

Implementation Details On CIFAR-100 dataset, we ex-

periment with different representative network architec-

tures, including VGG [27], ResNet [7], WideResNet [37],

MobileNet [26], and ShuffleNet [39, 21]. We use the same

training setting of [28], except for linearly scaling up the

initial learning rate and setting batch size following [5].

Specifically, we train all models for 240 epochs with

learning rate decayed by 0.1 for every 30 epochs after the

first 150 epochs. We initialize the learning rate to 0.02 for

MobileNet and ShuffleNet, and 0.1 for other models. The

batch size is 128 for all models. We train all models for

three times and report the mean accuracy. For fairness, pre-

vious method results are either reported in previous papers

(when the training setting is the same as ours) or obtained

using author released codes with our training setting.

On ImageNet, we use the standard training process that

trains the model for 100 epochs and decays the learning rate

for every 30 epochs. We initialize learning rate to 0.1 and

set batch size to 256.

Results on CIFAR-100 Table 1 summarizes results on

CIFAR-100 with the teacher and student having architec-

tures of the same style. We separate previous methods in

different groups according to the features they use. KD is

the only method that uses logits. Methods in FitNet group

use single-layer information, and methods in AT group use

multiple-layer information. Our method employs multi-

layer feature with the review mechanism. It outperforms

all previous methods on all architectures.

We also experiment with the setting that the student and

teacher have different architectural styles, and show results

in Table 2. Method of OFD [8] and ours use multiple

layers for distillation. They outperform those with distil-

lation from the last layer, manifesting that our knowledge

review mechanism successfully relaxes previously empha-

sized intermediate- or last-layer distillation condition [28].

Results on ImageNet The number of images in CIFAR-

100 is small. So we also conduct experiments on ImageNet

to verify the scalability of our method. We experiment with

two settings of distillation from ResNet50 to MobileNet

[11], and from ResNet34 to ResNet18 respectively. Our

method, again, outperforms all other methods, as reported

in Table 3. Setting (a) is challenging due to architecture dif-

ference. But the advantage of our method is consistently

prominent. On setting (b), gap between the student and

teacher is already reduced to a very small value 2.14 by pre-

vious best method. We further reduce it to 1.70, achieving

20% relative performance improvement.

4.2. Object Detection

We also apply our method to other computer vision tasks.

On object detection, like the procedure for the classification

task, we distill between the student and teacher’s backbone

output features. More details are presented in the supple-

mentary file. We use the representative COCO2017 dataset

[18] to evaluate our method and take the most popular open-

source report Detectron2 [33] as our strong baseline. We

use the best pre-trained model provided by Detrctron2 as

teacher. Student models are trained using the standard train-

ing policy following tradition [31]. All performance is eval-

uated on COCO2017 validation set. We conduct experi-

ments on both two- and one-stage methods.

Since only a few methods [31, 8] are claimed workable

for detection, we reproduce the popular ones [9, 25] and the

latest one [31]. The comparison is presented in Table 4. We

note that knowledge distillation methods, such as KD and
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Method mAP AP50 AP75 APl APm APs

Teacher Faster R-CNN w/ R101-FPN 42.04 62.48 45.88 54.60 45.55 25.22

Student Faster R-CNN w/ R18-FPN 33.26 53.61 35.26 43.16 35.68 18.96

w/ KD [9] 33.97 (+0.61) 54.66 36.62 44.14 36.67 18.71

w/ FitNet [25] 34.13 (+0.87) 54.16 36.71 44.69 36.50 18.88

w/ FGFI [31] 35.44 (+2.18) 55.51 38.17 47.34 38.29 19.04

w/ Our Method 36.75 (+3.49) 56.72 34.00 49.58 39.51 19.42

Teacher Faster R-CNN w/ R101-FPN 42.04 62.48 45.88 54.60 45.55 25.22

Student Faster R-CNN w/ R50-FPN 37.93 58.84 41.05 49.10 41.14 22.44

w/ KD [9] 38.35 (+0.42) 59.41 41.71 49.48 41.80 22.73

w/ FitNet [25] 38.76 (+0.83) 59.62 41.80 50.70 42.20 22.32

w/ FGFI [31] 39.44 (+1.51) 60.27 43.04 51.97 42.51 22.89

w/ Our Method 40.36 (+2.43) 60.97 44.08 52.87 43.81 23.60

Teacher Faster R-CNN w/ R50-FPN 40.22 61.02 43.81 51.98 43.53 24.16

Student Faster R-CNN w/ MV2-FPN 29.47 48.87 30.90 38.86 30.77 16.33

w/ KD [9] 30.13 (+0.66) 50.28 31.35 39.56 31.91 16.69

w/ FitNet [25] 30.20 (+0.73) 49.80 31.69 39.69 31.64 16.39

w/ FGFI [31] 31.16 (+1.69) 50.68 32.92 42.12 32.63 16.73

w/ Our Method 33.71 (+4.24) 53.15 36.13 46.47 35.81 16.77

Teacher RetinaNet101 40.40 60.25 43.19 52.18 44.34 24.03

Student RetinaNet50 36.15 56.03 38.73 46.95 40.25 21.37

w/ KD [9] 36.76 (+0.61) 56.60 39.40 48.17 40.56 21.87

w/ FitNet [25] 36.30 (+0.15) 55.95 38.95 47.14 40.32 20.10

w/ FGFI [31] 37.29 (+1.14) 57.13 40.04 49.71 41.47 21.01

w/ Our Method 38.48 (+2.33) 58.22 41.46 51.15 42.72 22.67

Table 4. Results on object detection. We use AP on different settings to evaluate results. R101 represents using ResNet101 as backbone,

and MV2 stands for MobileNetV2.

Method mAP AP50 AP75 APl APm APs

Teacher Mask R-CNN w/ R101-FPN 38.63 60.45 41.28 55.29 41.33 19.48

Student
Mask R-CNN w/ R18-FPN 31.25 51.07 33.10 45.53 32.80 14.18

+ Our Method 33.62 (+2.37) 53.91 35.96 50.30 35.31 15.03

Teacher Mask R-CNN w/ R101-FPN 38.63 60.45 41.28 55.29 41.33 19.48

Student
Mask R-CNN w/ R50-FPN 35.24 56.32 37.49 50.34 37.71 17.16

+ Our Method 36.98 (+1.74) 58.13 39.60 53.19 39.57 17.54

Teacher Mask R-CNN w/ R50-FPN 37.17 58.60 39.88 53.30 39.49 18.63

Student
Mask R-CNN w/ MV2-FPN 28.37 47.19 29.95 41.70 29.01 12.09

+ Our Method 31.56 (+3.19) 50.70 33.44 47.39 32.44 12.76

Table 5. Instance segmentation results. R101 and MV2 stand for ResNet101 and MobileNetV2.

FitNet, also improve the performance of detection. But the

gain is limited. FGFI [31] is directly designed for detection,

and works better than other methods on this task. Still, our

method outperforms it by a large margin.

We also vary experimental setting to check the gen-

erality. On the two-stage method FasterRCNN [24], we

change backbone architectures. The knowledge distilla-

tion between architectures of the same style boosts mAP

of ResNet18 and ResNet50 by 3.49 and 2.43 respectively.

They are significant numbers. The distillation between

ResNet50 and MobileNetV2 still promotes the baseline

from 29.47 to 33.71. On one-stage detector RetinaNet [17],

the gap between student and teacher is small, our method

also improves the mAP by 2.33. The success on challeng-

ing object detection tasks demonstrates the generality and

effectiveness of our method.
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Teacher Stage

1 2 3 4
S

tu
d

en
t

S
ta

g
e 1 69.5 69.0 68.2 66.3

2 69.6 69.6 61.4 61.1

3 69.2 69.8 71.0 50.4

4 69.2 69.3 70.3 70.3

Table 6. Results of knowledge distillation between different stages

of the teacher and student. The student’s baseline result is 69.1.

We use red color to mark numbers lower than baseline and blue

for those higher than baseline. It is clear that using the lower level

information of the teacher to supervise the deeper stage of the stu-

dent is helpful.

4.3. Instance Segmentation

In this section, we apply our method to the even more

challenging instance segmentation task. As far as we know,

this is the first time for the knowledge distillation meth-

ods to apply to instance segmentation. We also use the

strong baseline provided by Detectron2 [33]. We take

Mask R-CNN [6] as our models and distill between differ-

ent backbone architectures. The models are trained on the

COCO2017 training set and are evaluated on the validation

set. The results are shown in Table 5.

Our method also improves the performance of instance

segmentation tasks notably. For distillation between archi-

tectures of the same style, we boost the performance of

ResNet18 and ResNet50 by 2.37 and 1.74, and reduce the

gap between the teacher and student by 32% and 51% rela-

tively. Even for the distillation on architectures of different

styles, we better MobileNetV2 by 3.19.

The fact that our method performs decently on all image

classification, object detection, and instance segmentation

tasks and accomplishes all SOTA results, manifest the re-

markable efficacy and applicability of our method.

4.4. More Analysis

Knowledge Distillation across Stages We analyze the ef-

fectiveness of knowledge transfer across stages. We use

ResNet20 as the student and ResNet56 as the teacher on

CIFAR-100 dataset. There are four stages in ResNet20 and

ResNet56. We choose the different stages in the student and

vary stages in the teacher to supervise them. The results are

summarized in Table 6 .

These results conclude that distilling student with the

same stage information from the teacher is the best solu-

tion. This is in accordance with our intuition. Further, it

is intriguing to observe that information from lower layers

is also helpful. But distilling from teacher’s higher levels

adversely affects training of the student.

It indicates that deeper stages of the student are capa-

RM RLF ABF HCL Accuracy

74.3 ± 5e-2

✔ 75.2 ± 6e-2

✔ ✔ 75.6 ± 6e-2

✔ ✔ ✔ 76.0 ± 6e-2

✔ ✔ ✔ 75.8 ± 5e-2

✔ ✔ ✔ ✔ 76.2 ± 4e-2

Table 7. RM: The proposed review mechanism (Section 3.1). RLF:

Residual learning frame work (Section 3.2). ABF: Attentation

based fusion module (Section 3.3). HCL: Hierarchical context loss

function (Section 3.3).

ble of learning useful information from lower stages of the

teacher. In the other way around, deeper and more ab-

stracted features from teacher are too complicated for early-

stage of the student. This is consistent with our understand-

ing and our proposed review mechanism, which uses shal-

low stages of the teacher to supervise deeper stages of the

student.

Ablation Study Ablation experiments are conducted, in

which the ablation components are added one-by-one to

measure their effect. The results are summarized in Table 7

with accuracy and variance. We use WRN16-2 as the stu-

dent and WRN40-2 as the teacher on CIFAR100 dataset.

The baseline is trained with L2 distance between the same

level’s features of the student and the teacher.

With our proposed review mechanism, the result is im-

proved over the baseline, as shown in the second line, which

uses the trival structure as shown in Figure 2(b). When we

further refine the structure with the residual learning frame-

work, the student yields larger gains. The attention based

fusion module and hierarchical context loss function also

provide great improvement when utilized separately. And

when we aggregate them together, the best results are ob-

tained. It is surprising that they are even better than the

teacher.

5. Conclusion

In this paper, we have studied knowledge distillation

from a new perspective and accordingly proposed the re-

view mechanism, which uses multiple layers in the teacher

to supervise one layer in the student. Our method achieves

significant improvement consistently on all classification,

object detection and instance segmentation tasks, compared

with all previous SOTA. We only use output of stages, and

already accomplish decent results in general.

For future work, we will also employ features inside a

stage. Also, other loss functions will be investigated in our

framework.
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ten Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, ed-

itors, NIPS, 2018. 3

[15] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

ICLR, 2017. 1

[16] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,

Bharath Hariharan, and Serge J. Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 4

[17] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,

and Piotr Dollár. Focal loss for dense object detection. In

ICCV, 2017. 7

[18] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James

Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C. Lawrence Zitnick. Microsoft COCO: common objects in

context. In ECCV, 2014. 6

[19] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning. In

ICLR, 2019. 1

[20] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In ICCV, 2017. 1

[21] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet V2: practical guidelines for efficient CNN archi-

tecture design. In Vittorio Ferrari, Martial Hebert, Cristian

Sminchisescu, and Yair Weiss, editors, ECCV, 2018. 6

[22] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Rela-

tional knowledge distillation. In CVPR, 2019. 2, 5

[23] Nikolaos Passalis and Anastasios Tefas. Probabilistic knowl-

edge transfer for deep representation learning. CoRR,

abs/1803.10837, 2018. 1, 2, 5

[24] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.

Faster R-CNN: towards real-time object detection with re-

gion proposal networks. In NIPS, 2015. 7

[25] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. In Yoshua Bengio and Yann LeCun,

editors, ICLR, 2015. 1, 2, 5, 6, 7

[26] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 1, 6

[27] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015. 6

[28] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive representation distillation. In ICLR, 2020. 1, 2, 5,

6

[29] Frederick Tung and Greg Mori. Similarity-preserving knowl-

edge distillation. In ICCV, 2019. 2

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Isabelle Guyon,

Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob

Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,

NIPS, 2017. 5

[31] Tao Wang, Li Yuan, Xiaopeng Zhang, and Jiashi Feng. Dis-

tilling object detectors with fine-grained feature imitation. In

CVPR, 2019. 6, 7

[32] Yi Wei, Xinyu Pan, Hongwei Qin, Wanli Ouyang, and Junjie

Yan. Quantization mimic: Towards very tiny CNN for ob-

ject detection. In Vittorio Ferrari, Martial Hebert, Cristian

Sminchisescu, and Yair Weiss, editors, ECCV, 2018. 1

[33] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.

com/facebookresearch/detectron2, 2019. 6, 8

5016



[34] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. Au-

toprune: Automatic network pruning by regularizing auxil-

iary parameters. In Hanna M. Wallach, Hugo Larochelle,

Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
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