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Abstract

We propose a new convolution called Dynamic Region-

Aware Convolution (DRConv), which can automatically as-

sign multiple filters to corresponding spatial regions where

features have similar representation. In this way, DR-

Conv outperforms standard convolution in modeling seman-

tic variations. Standard convolutional layer can increase

the number of filers to extract more visual elements but re-

sults in high computational cost. More gracefully, our DR-

Conv transfers the increasing channel-wise filters to spa-

tial dimension with learnable instructor, which not only im-

prove representation ability of convolution, but also main-

tains computational cost and the translation-invariance as

standard convolution dose. DRConv is an effective and ele-

gant method for handling complex and variable spatial in-

formation distribution. It can substitute standard convolu-

tion in any existing networks for its plug-and-play property,

especially to power convolution layers in efficient networks.

We evaluate DRConv on a wide range of models (MobileNet

series, ShuffleNetV2, etc.) and tasks (Classification, Face

Recognition, Detection and Segmentation). On ImageNet

classification, DRConv-based ShuffleNetV2-0.5× achieves

state-of-the-art performance of 67.1% at 46M multiply-

adds level with 6.3% relative improvement.

1. Introduction

Benefiting from powerful representation ability, con-

volutional neural networks (CNNs) have made significant

progress in image classification, face recognition, object de-

tection and many other applications. The powerful repre-

sentation ability of CNNs stems from that different filters

are responsible for extracting information at different level

of abstraction. However, current mainstream convolutional

operations perform in filter sharing manner across spatial

domain, so that more effective information can only be cap-
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Figure 1. Illustration of DRConv with kernel size k×k and region

number m. We get guided feature from X with standard k × k

convolution and get m filters from filter generator module G(·).
The spatial dimension is divided into m regions as guided mask

shows. Every region has individual filter Wi which is shared in

this region and we execute k × k convolution with corresponding

filter in these regions of X to output Y .

tured when these operations are applied repeatedly (e.g., in-

creasing channels and depth with more filters). This repeat-

ing manner has several limitations. First, it is computation-

ally inefficient. Second, it causes optimization difficulties

that need to be carefully addressed [13, 33].

Different from the filter sharing methods, to model more

visual elements, some studies focus on making use of the

diversity of semantic information by using multiple filters

in spatial dimension. [10, 29] came up with alternative con-

volutions to possess individual filter at each pixel in spa-

tial dimension, and we collectively call them local con-

volution for convenience. Therefore, the feature of each

position will be treated differently, which is more effec-

tive to extract the spatial feature than standard convolution.

[29, 27, 26] have shown local convolution’s power on face

recognition task. Although local convolution doesn’t in-

crease the computation complexity compared with standard

convolution, it has two fatal drawbacks. One is to bring
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a large amount of parameters, which is proportional to the

spatial size. The other is that local convolution destroys

translation-invariance, which is unfriendly to some tasks

requiring translation-invariant features (e.g., local convo-

lution doesn’t work for classification task). Both of them

make it hard to be widely used in neural networks. Be-

sides, local convolution still shares filters across different

samples, which makes it insensitive to the specific feature of

each sample. For example, there are samples with different

poses or viewpoints on face recognition and object detec-

tion tasks. Therefore, shared filters across different samples

can not be effective to extract customized features.

Considering above mentioned limitations, in this paper,

we put forward a new convolution named Dynamic Region-

Aware Convolution (DRConv), which can automatically as-

sign filters to corresponding spatial-dimension regions with

learnable instructor. As a consequence, DRConv has power-

ful semantic representation ability and perfectly maintains

translation-invariance property. In detail, we design a learn-

able guided mask module to automatically generate the fil-

ters’ region-sharing-pattern for each input image accord-

ing to their own characteristic. The region-sharing-pattern

means that we divide spatial dimension into several regions

and only one filter is shared within each region. The filters

for different samples and different regions are dynamically

generated based on the corresponding input features, which

is more effective to focus on their own vital characteristic.

The structure of our DRConv is shown in Fig. 1. We

apply standard convolution to generate guided feature from

the input. According to the guided feature, the spatial di-

mension is divided into several regions. As can be seen,

pixels with same color in the guided mask are attached to

the same region. In each shared region, we apply filter gen-

erator module to produce a filter to execute 2D convolu-

tion operation. So the parameters needed to be optimized

are mainly in filter generator module, and its amount has

nothing to do with spatial size. Therefore, apart from sig-

nificantly improving networks’ performance, our DRConv

can greatly reduce the amount of parameters compared with

local convolution, and nearly doesn’t increase the computa-

tion complexity compared with standard convolution.

To verify the effectiveness of our method, we conduct a

series of empirical studies on several different tasks, includ-

ing image classification, face recognition, object detection

and segmentation by simply replacing standard convolution

with our DRConv. The experimental results show that DR-

Conv can achieve excellent performance on these tasks. We

also offer adequate ablation studies for analyzing the effec-

tiveness and robustness of our DRConv.

In brief, this work makes the following contributions,

1. We present a new Dynamic Region-Aware Convolu-

tion, which not only has powerful semantic represen-

tation ability but also perfectly maintains translation-

invariance property.

2. We specially design the backward propagation process

for learnable guided mask, so that our region-sharing-

pattern is determined and updated according to the gra-

dient of the overall task loss through backward propa-

gation, which means our method can be optimized in

an end-to-end manner.

3. Our DRConv can achieve excellent performance on

image classification, face recognition, detection and

segmentation tasks by simply replacing standard con-

volution without increasing much computation cost.

2. Related Work

We distinguish our work from other methods in term of

spatial related work and dynamic mechanism.

Spatial Related Convolution. From the perspective

of spatial related convolution design, the earliest enlight-

enment is local convolution. To effectively utilize the

semantic information in image data, local convolution [10]

applies individual unshared filters to each pixel, which

has great potential in tasks that don’t require translation-

invariance. DeepFace [29] and DeepID series [27, 26]

demonstrate the advantages of local convolution on

face recognition task. These works illustrate that local

distribution of spatial dimension is important.

On other tasks, such as detection, R-FCN [5] uses

region-based fully convolutional networks to extract the lo-

cal representations. It enlarges output channels to 3 × 3
times, and then selects corresponding subtensor in different

channels to put together to form 3 × 3 blocks. On person

re-identification, Sun et al. [28] applies part-based convo-

lution to learn discriminative part-informed features, which

can also be viewed as a kind of spatial related convolution.

Besides the mentioned methods above, some studies try

to change the spatial feature to better model the semantic

variations. Spatial Transform Networks [23] learns trans-

formation to warp the feature map but difficult to be trained.

Jeon et al. [18] introduces a convolution unit called active

convolution unit (ACU), which produces unfixed shape be-

cause they can learn to any form through back propagation

during training. ACU augments the sampling locations in

the convolution with the learning offsets, and the offsets be-

come static after training. Deformable Convolutional Net-

works [6] further makes the location offsets dynamic and

then add the offsets to the regular grid sampling locations in

the standard convolution.

Compared with the mentioned studies above, our method

adaptively divides the spatial dimension into several regions

and shares one filter within each region. What’s more, our

design can maintain translation-invariance and extract more

plentiful information.
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Dynamic Mechanism. With the prevalence of data de-

pendency mechanism [1, 17, 30] , which emphasizes to ex-

tract more customized feature [23]. Studies about dynamic

mechanism have promoted many tasks to new state-of-the-

art. Benefiting from data dependency mechanism, networks

can flexibly adjust themselves, including the structure and

parameters, to fit the diverse information automatically and

improve representation ability of neural networks.

Some methods [2, 35] indicate that different regions in

the spatial dimension are not equally important in represen-

tation learning. For instance, activation in important regions

needs to be amplified so that it can play dominant role in

the forward propagation. [31, 34, 8] use dynamic inference

to reduce computation time. SKNet [20] designs an effi-

cacious module to channel-wisely select suitable receptive

fields on the basis of channel attention and achieves bet-

ter performance. It dynamically restructures the networks

for the sake of different receptive fields in dilated convo-

lutions [37, 38]. In semantic segmentation, [39] imposes

a pixel-group attention to remedy the deficiency of spatial

information in SENet and [16] builds a link between each

pixel and its surrounding pixels to capture important infor-

mation. Attention mechanism is designed to dynamically

calibrate the information flow in the forward propagation

by learnable method.

From the aspect of dynamic weights, CondConv [36] ob-

tains dynamic weights by dynamical linear combination of

several weights. And the specialized convolution kernels

for each sample are learned in a way similar to mixture of

experts. In spatial domain, to handle object deformations,

Deformable Kernels [9] directly resamples the original ker-

nel space to adapt the effective receptive field (ERF). Local

Relation Networks [15] adaptively determines aggregation

weights for spatial dimension based on the compositional

relationship of local pixel pairs. Non-local [33] operation

computes the response at each position by weighted sum of

the features at all positions, which can make it to capture

long-range dependencies.

Different from above dynamic methods, DRConv ap-

plies a dynamic guided mask to automatically determine the

distribution of multiple filters so that it can handle variable

distribution of spatial semantics.

3. Our Approach

The weight sharing mechanism inherently limits stan-

dard convolution to model semantic variations due to single

filter’s poor capacity. Therefore, standard convolution has

to violently increase the number of filters across channel

dimension to match more spatial visual elements, which is

inefficient. Local convolution makes use of the diversity of

spatial information but sacrifices translation-invariance. To

deal with the above limitations once for all, we go a step fur-

ther and propose a feasible solution called DRConv as Fig. 1

shows, which not only increases the diversity of statistic by

using more than one filter across spatial dimension, but also

maintains translation-invariance for these positions having

similar feature.

3.1. Dynamic Region­Aware Convolution

We first briefly formulate standard convolution and ba-

sic local convolution, then transfer to DRConv. For conve-

nience, we omit kernel size and stride of filters. The input

of standard convolution can be denoted as X ∈ R
U×V×C ,

where U, V, C mean height, width and channel respectively.

And S ∈ R
U×V denotes spatial dimension, Y ∈ R

U×V×O

for the output, and W ∈ R
C for standard convolution fil-

ters. For the o-th channel of output feature, the correspond-

ing feature map is

Yu,v,o =

C∑

c=1

Xu,v,c ∗W
(o)
c (u, v) ∈ S, (1)

where ∗ is 2D convolution operation.

For basic local convolution, we use W ∈ R
U×V×C to

denote the filters which don’t share across spatial dimen-

sion. Therefore the o-th output feature map can be ex-

pressed as

Yu,v,o =

C∑

c=1

Xu,v,c ∗W
(o)
u,v,c (u, v) ∈ S, (2)

where W
(o)
u,v,c represents individual unshared filter at pixel

(u, v) which is different from standard convolution.

Following above formulations, we define a guided mask

M = {S0, · · · , Sm−1} to represent the regions divided

from spatial dimension, in which only one filter is shared

in region St, t ∈ [0,m − 1]. M is learned from the input

features according to the data dependency mechanism. We

denote the filters of the regions as W = [W0, · · · ,Wm−1],
where the filter Wt ∈ R

C is corresponding to the region St.

The o-th channel of this layer’s output feature map can be

expressed as

Yu,v,g =

C∑

c=1

Xu,v,c ∗W
(o)
t,c (u, v) ∈ St, (3)

where W
(o)
t,c represents the c-th channel of the W

(o)
t and

(u, v) is one of the points in region St. It needs to be noted

that the point (u, v) we use here is corresponding to the cen-

ter of convolutional filter if the kernel size is larger than

1 × 1. That means a filter with kernel size 3 × 3 or 5 × 5
will extract features in adjacent regions on the border.

In general, our method is mainly divided into two steps.

First, we use a learnable guided mask to divide the spatial

features into several regions across spatial dimension. As

Fig. 1 shows, pixels with same color in the guided mask
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are attached to same region. And from the prospective of

image semantics, the semantically similar features will be

assigned to the same region.

Second, in each shared region, we use filter generator

module to produce a customized filter to execute normal

2D convolution operation. The customized filter can be

adjusted automatically according to the important charac-

teristic of the input images. To better explain our method,

we mainly introduce the following two modules: Learnable

guided mask and Filter generator module. Learnable guided

mask decides which filter will be assigned to which region.

Filter generator module generates the corresponding filters

which will be assigned to different regions.

3.2. Learnable guided mask

As one of the most important parts of our proposed

DRConv, learnable guided mask decides the distribution

(which filter will be assigned to which region) of filters

across spatial dimension and is optimized by loss function.

So that the filters can automatically adapt to the variance of

spatial information for each input and the filter distribution

will vary accordingly. In detail, as for a k×k DRConv with

m shared regions, we apply a k × k standard convolution

to produce guided feature with m channels (k means ker-

nel size). We use F ∈ R
U×V×m to denote guided feature,

M ∈ R
U×V for guided mask. For each position (u, v) in

spatial domain, we have

Mu,v = argmax(F 0
u,v, F

1
u,v, · · · , F

m−1
u,v ), (4)

where argmax(·) outputs the maximum value’s index and

Fu,v denotes the vector of guided feature at position (u, v)
and has m elements. So values in guided mask vary from 0
to m − 1 and indicate the index of filters which should be

used in corresponding positions.

To make guided mask learnable, we must get the gradi-

ent for weights which produce guided feature. However,

there is no gradient for guided feature, resulting in that

the related parameters can not be updated. Therefore,

we design approximate gradient for guided feature in an

alternative way as shown in Fig. 2(a). We will explain the

forward and backward propagation in detail.

Forward propagation: Since we have the guided

mask as Eq.(4), we can get the filter Ŵu,v for each position

(u, v) as flowing:

Ŵu,v = WMu,v
Mu,v ∈ [0,m− 1] = W ∗Mu,v, (5)

where WMu,v
is one of the filters [W0, · · · ,Wm−1] gener-

ated by G(·) and Mu,v is the index of the maximum across

the channel dimension of guided feature F at position

(u, v). In this way, m filters will build corresponding

relationship with all positions and the entire spatial pixels

can be divided into m groups. These pixels using the same

filter are of similar context because a standard convolution

with translation-invariance conveys their information to

guided feature.

Backward propagation: As shown in Fig. 2(a), we

first introduce F̂ , which is the substitution of guided

mask’s one-hot-form(e.g., Mu,v = 2,m = 5, and Mu,v’s

one-hot-form is [0, 0, 1, 0, 0]) in backward propagation,

F̂ j
u,v =

eF
j
u,v

∑m−1
n=0 eF

n
u,v

j ∈ [0,m− 1], (6)

Eq.(6) is softmax(·) function, which is applied to guided

feature F across channel dimension. With softmax

operation, we expect F̂ j
u,v to approximate 0 or 1 as close

as possible. As a result, the gap between F̂ j
u,v and guided

mask’s one-hot-form becomes very small. Moreover, Ŵu,v

in Eq.(5) can be viewed as the filters [W0, · · · ,Wm−1]
multiplied by the one-hot-form of Mu,v which can be

approximated by [F̂ 0
u,v, · · · , F̂

m−1
u,v ]. Then the gradient of

F̂ j
u,v can be got by

▽
F̂

j
u,v

L = 〈▽
Ŵu,v

L,Wj〉 j ∈ [0,m− 1], (7)

where 〈, 〉 denotes dot product and ▽·L means the tensor’s

gradient with respect to loss function. As Fig. 2(a) shows,

Eq.(7) is the approximate backward propagation of Eq.(5).

▽Fu,v
L = F̂u,v ⊙ (▽

F̂u,v
L − 1〈F̂u,v,▽F̂u,v

L〉), (8)

where ⊙ denotes element-by-element multiplication and

Eq.(8) is exactly the backward propagation of Eq.(6). If we

don’t design special backward propagation, SGD can’t opti-

mized relevant parameters because the function argmax(·)
is non-differentiable and will stop the propagation of gradi-

ent. Therefore, softmax(·) function is used to be an ap-

proximate replacement of argmax(·) in backward propa-

gation, which is differentiable and will minify the gap be-

tween the two function’s outputs. More importantly, we can

utilize it to transfer the gradient to guided feature so that

guided mask can be optimized.

3.3. Dynamic Filter: Filter generator module

In our DRConv, multiple filters will be assigned to differ-

ent regions. Filter generator module is designed to generate

filters for these regions. Due to the diversity of character-

istics among different images, shared filter across images

is not effective enough to focus on their own characteris-

tics. Such as images with different poses and viewpoints

in face recognition and object detection tasks, which cus-

tomized features are needed to focus on specific character-

istic of each image.
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Figure 2. (a) is the optimization process of learnable guided mask. Symbols are defined as Section 3.2. We assign Ŵu,v = Wi when F
i
u,v

is the maximum across channel dimension. (b) is the architecture of DRConv for illustrating filter generator module. DRConv∗ denotes

part of DRConv, AAP for adaptive average pooling and Conv(·) for standard convolution

Following the symbols we use above, we denote the in-

put as X ∈ R
U×V×C and G(·) for filter generator module

which mainly includes two convolution layers. The m fil-

ters are denoted as W = [W0, · · · ,Wm−1] and each filter

is only shared in one region St. As shown in Fig. 2(b), to

get m filters with kernel size k × k, we use adaptive av-

erage pooling to downsample X to size k × k. Then we

apply two consecutive 1 × 1 convolution layers: the first

uses sigmoid(·) as activation function and the second with

group = m doesn’t use activation function. Filter gener-

ator module can enhance the ability of capturing specific

characteristics of different images. As Fig. 2(b) shows, the

filters for convolution are predicted based on the feature of

each sample respectively. So each filter can be adjusted au-

tomatically according to their own characteristic.

4. Experiments

In this section, we will prove the effectiveness of our

proposed DRConv by embedding it into the existing popu-

lar neural networks including ShuffleNetV2 [22] and Mo-

bileNet series [14, 25]. We compare DRConv with ex-

isting state-of-the-art on ImageNet [24], MS1M-V2 [11],

and COCO in terms of image classification, face recogni-

tion, object detection and segmentation. Unless otherwise

specified, all the experiments of DRConv are based on 8-

learnable-region (i.e. m = 8).

4.1. Classification

The ImageNet 2012 dataset [24] is a widely accepted and

authoritative image classification dataset, consisting of 1.28
million training images and 50k validation images from

1000 classes. Following the mainstream works, all the mod-

els are trained on the entire training dataset and evaluated

by the single-crop top-1 validation set accuracy. And for

both training and evaluation, the input image resolution is

224 × 224. The training setting follows [22], all models in

our experiments are trained for 240 epochs, with learning

rate which starts from 0.5 and linearly reduces to 0.

To prove the effectiveness of DRConv, we compare DR-

Conv with state-of-the-art methods including [9, 36]. The

results are shown in Table 1. In the first column, for ex-

ample, CondConv-ShuffleNetV2 means that all 1 × 1 stan-

dard convolutions in ShuffleNetV2 are replaced by Cond-

Conv [36]. For DRConv-based model, we replace all the 1×
1 standard convolutions in the backbone with DRConv. As

can be seen, with comparable computational cost, DRConv-

ShuffleNetV2 achieves 6.3% and 3.6% gain over Shuf-

fleNetV2 for 0.5× and 1× scale respectively. DRConv-

MobileNetV2 achieves a 3.7% gain over MobileNetV2 and

DRConv-MobileNetV1 achieves a 4.9% gain over the base-

line MobileNetV1. We also evaluate our approach by us-

ing fewer computational cost, and found that we still had

an advantage over CondConv in using fewer calculations as

shown in model tagged with ∗. These experimental results

show that DRConv-based networks not only have a consid-

erable improvement over the baselines, but also a great im-

provement over the state-of-the-art methods, demonstrating

the effectiveness of our method.

As a basic of some other tasks, classification needs to

extract as ample information as possible for predicting im-

age’s label because the large number of categories in Ima-

geNet dataset. Traditional large networks can realize state-

of-the-art due to their huge depth and width. As for effi-

cient networks which are expected to be used in practice,

they need to improve the efficiency of extracting useful in-

formation under the constraint of limited depth and width.
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Table 1. Comparisons with state-of-the-art in terms of Top-1 classification accuracy (%) on ImageNet. DRConv outperforms previous

methods (global 2×2 & local 4×4 means global 1× 1 Deformable kernels with scope size 2×2 and local 3× 3 Deformable kernels with

scope size 4×4. ∗ means using fewer computational cost. MADDs refers to the number of multiply-adds operations)

Model Setting MADDs Top-1 ACC.(%)

ShuffleNetV2 0.5× baseline 42M 60.8

CondConv-ShuffleNetV2 0.5× 8 weights 43M 65.0

DRConv-ShuffleNetV2 0.5×* (Ours) 8 regions 39M 64.9

DRConv-ShuffleNetV2 0.5× (Ours) 8 regions 46M 67.1

ShuffleNetV2 1× baseline 147M 69.5

CondConv-ShuffleNetV2 1× 8 weights 152M 72.0

DRConv-ShuffleNetV2 1×* (Ours) 8 regions 109M 72.2

DRConv-ShuffleNetV2 1× (Ours) 8 regions 157M 73.1

MobileNetV2 [25] baseline 300M 72.0

CondConv-MobileNetV2 [36] 8 weights 329M 74.6

DK-MobileNetV2 [9] global 2×2 & local 4×4 760M 74.8

DRConv-MobileNetV2* (Ours) 8 regions 201M 74.7

DRConv-MobileNetV2 (Ours) 8 regions 328M 75.7

MobileNetV1 [14] baseline 569M 70.6

CondConv-MobileNetV1 [36] 8 weights 600M 73.7

DRConv-MobileNetV1* (Ours) 8 regions 344M 74.4

DRConv-MobileNetV1 (Ours) 8 regions 610M 75.5

Table 2. Results of DRConv on Megaface. “ACC.” refers to the

rank-1 face identification accuracy with 1M distractors. (Training

dataset: MS1M-V2)

Model MADDs (×106) ACC.(%)

MobileFaceNet 189 91.3

Local-MobileFaceNet 189 94.9

CondConv-MobileFaceNet 195 94.8

DRConv-MobileFaceNet 201 96.2

Therefore, we design DRConv to augment representation

capacity by making full use of the diversity of spatial in-

formation without extra computation cost. The multi-filter

strategy for spatial information means it can match more

information pattern.

4.2. Face Recognition

We use MobileFaceNet [3] as our backbone which has

only 1M parameters and 189M MADDs with input size

112× 96. To keep stability of training, we replace the Arc-

face loss [7] with AM-Softmax loss [32] in our implemen-

tation. The dataset we use for training is MS1M-V2, which

is introduced as a large-scale face dataset with 5.8M images

from 85k celebrities. It is a semi-automatic refined version

of the MS-Celeb-1M dataset [11] which consists of 1M pho-

tos from 100k identities and has a large number of noisy im-

age or wrong ID labels. The dataset we use for evaluation

is MegaFace [19], which includes 1M images of 60k iden-

tities as the gallery set and 100k images of 530 identities

from FaceScrub as the probe set. Due to the same reason, it

is also a refined version by manual clearing.

Training and Evaluation: We use SGD with momen-

tum 0.9 to optimize the model and the batch size is 512. We

train all the models for 420k iterations. The learning rate

begins with 0.1 and is divided by 10 at 252k, 364k and 406k

iterations. The setting of weight decay follows [3]. For eval-

uation, we use face identification metric which refers to the

rank-1 accuracy on MegaFace as the evaluation indicator.

In order to verify the effectiveness of our DRConv, we

compare DRConv with several related methods. Based on

the MobileFaceNet backbone, we simply replace 1×1 stan-

dard convolution in all bottleneck blocks with our DRConv.

As Table 2 shows, DRConv-MobileFaceNet outperforms

the baseline by a margin of 4.9%, and achieves a 1.4%

gain over CondConv. For further comparison, we choose lo-

cal convolution which works for face recognition but needs

huge amount of parameters. Under the limitation of de-

vice memory, we apply local convolution in the last three

layers. DRConv-MobileFaceNet achieves 1.3% higher ac-

curacy than Local-MobileFaceNet(using local convolution

in MobileFaceNet), further indicating the superiority of our

proposed DRConv. Due to spatial stationarity of local statis-

tics in face dataset, DRConv’s guided mask module can

learn clear semantic pattern. As shown in Fig. 3, the facial

components appear in these guided masks.

4.3. COCO Object Detection and Segmentation

We further evaluate the effectiveness of our DRConv

on object detection and segmentation. We use the COCO
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Figure 3. Visualizations: guided mask of image on classification and face recognition. The first column represents the original images. The

second and third columns represent visualizations of different layers’ guided masks, respectively

Table 3. Results of DRConv on COCO object detection and segmentation. “R” in 8R denotes region number. We replace 1 × 1 standard

convolutions in the backbone of DetNAS-300M and only two-layer in FPN of Mask R-CNN with DRConvs.

Model APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

DetNAS-300M 36.6 57.4 39.3 \ \ \
DRConv-DetNAS-300M 8R 38.4 59.6 41.6 \ \ \

MaskRCNN 39.1 59.0 42.8 34.5 55.8 36.6

DRConv-MaskRCNN 4R 39.8 60.3 43.3 35.3 57.1 37.4

DRConv-MaskRCNN 8R 40.2 60.8 44.0 35.5 57.6 37.6

DRConv-MaskRCNN 16R 40.3 61.2 44.2 35.6 58.0 37.6

dataset which consists of 80k train images and 40k val im-

ages. As in many previous works, we train on the union of

80k train images and a 35k subset of val images excluding

5k minival images, on which we evaluate our DRConv.

In experiments, we use DetNAS-300M [4] and Mask

R-CNN [12] framework with FPN [21] and a 4conv1fc

box head as the basis to assess our method. Weights

are initialized by the parameters of ClsNASNet [4] and

ResNet50 [13] respectively which are trained on the Im-

ageNet dataset [24] and used as the feature extractor. In

DetNAS-300M, training settings follow [4]. In Mask R-

CNN, the number of proposals in the head part for possible

objects is set as 512. We train the detection and segmenta-

tion networks on 8 GPU with a batch size of 16 for 180k

iterations. At beginning, we warm up the networks with

factor 0.33 for 500 iterations. During the training process,

we use the learning rate 0.2 and decay the learning rate by

0.1 times at 120k, 140k and 150k iterations.

Our goal is to assess the effect when we replace 1 × 1
standard convolutions in the backbone of DetNAS-300M

and only two-layer in FPN of Mask R-CNN with DR-

Convs, so that any improvement on performance can be

attributed to the effectiveness of our DRConv. In addi-

tion, we apply 4-learnable-region, 8-learnable-region and

16-learnable-region settings to DRConv for analysing the

influence of different number of regions.

The results of comparing our DRConv with standard

convolution are shown in Table 3. From the results we can

see that DRConv with 8 regions in DetNAS-300M can sig-

nificantly improve the performance by 1.8% for detection,

only two DRConv layers with 16 regions in FPN of Mask

R-CNN can improve the performance by 1.2% for detec-

tion and 1.1% for segmentation on COCO’s standard AP

metric. DRConv utilizes guided mask to divide spatial di-

mension into groups so that each filter can focus on special

context. On other hand, the noise like background can be
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Figure 4. Results of DRConv-ShuffleNetV2 and DRConv-

MobileNetV2 on different model size. Small models will achieve

higher gain

easily separated from other regions of interest and most of

the filters can concentrate on important regions. For dif-

ferent number of shared regions, the results are shown that

DRConv can achieve better performance when we divide

spatial dimension to more regions. More divided regions

make every group’s context more dedicated and each filter

can be optimized more easily.

5. Ablation Study

The ablation experiments are conducted on clas-

sification (ImageNet 2012 [24]) and face recognition

(MS1M-V2 [11]). The experimental settings are the same

as that in section 4. In this section, we analyze the semantic

information of learnable guided mask, the influence of

different model size. The influence of different region

number and different spatial size with respect to DRConv

is analyzed in the supplementary material.

Visualization of dynamic guided mask. In order to

explore the mechanism of the learnable guided mask in our

method, we visualize guided mask with m = 4 for image

on classification task and face recognition task respectively.

Fig. 3 shows that our method successfully assigns filters

to regions with the same semantics. In other words, we

have made it possible to learn that different regions use

different filters according to image semantics, which is

reasonable and effective. Due to more clear semantic

representation, guided mask may automatically form less

number of regions in deeper layer.

It needs to be noted that the guided mask is totally de-

cided by the spatial information distribution so that one

region might be connected points or discrete points. The

points of a region in shallow layers tend to be discrete be-

cause the feature is more relevant to the detailed context of

the input image. The points of a region in deep layers tend

to be connected because the points have a bigger receptive

field which is more relevant to the semantic information.

Different model size. Besides the investigation above,

we conduct the ablation study of DRConv’s performance

on different model size. On ImageNet dataset, we carry

out experiments on [0.5×, 1×, 1.5×, 2×] of ShuffleNetV2

and [0.25×, 0.5×, 0.75×, 1×] of MobileNetV2 to analyse

the effectiveness of our DRConv. From our experimental

results shown in Fig. 4, smaller models with DRConv will

gain more bonus than larger models. Obviously, small mod-

els are of less input channels and filters in each layer and

they can’t extract enough feature for next layer. By replac-

ing standard convolution with DRConv, small models will

conspicuously improve their capability of modeling seman-

tic information, resulting in better performance.

6. Conclusion

In this paper, we propose a new convolution named Dy-

namic Region-Aware Convolution (DRConv), which is mo-

tivated by partial filter sharing in spatial domain and suc-

cessfully maintains translation-invariance property. There-

fore, our proposed DRConv can entirely become substitute

of standard convolution in any existing networks. We de-

sign a small learnable module to predict the guided mask for

instructing the filters’ assignment, which guarantees simi-

lar feature in a region can match the same filter. Further-

more, we design filter generator module to produce the cus-

tomized filters for each sample, which makes it possible

that different inputs can use their own specialized filters.

Comprehensive experiments on several different tasks have

shown the effectiveness of our DRConv, which can outper-

form state-of-the-art and other superior manually designed

methods in classification, face recognition, object detection

and segmentation. And our experiments in ablation study

manifest that learnable guided mask plays a key role in fil-

ter distribution for each sample, which can help to achieve

better performance.
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