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Abstract

Unsupervised representation learning with contrastive

learning achieved great success. This line of methods du-

plicate each training batch to construct contrastive pairs,

making each training batch and its augmented version for-

warded simultaneously and leading to additional computa-

tion. We propose a new jigsaw clustering pretext task in this

paper, which only needs to forward each training batch it-

self, and reduces the training cost. Our method makes use of

information from both intra- and inter-images, and outper-

forms previous single-batch based ones by a large margin.

It is even comparable to the contrastive learning methods

when only half of training batches are used.

Our method indicates that multiple batches during train-

ing are not necessary, and opens the door for future re-

search of single-batch unsupervised methods. Our mod-

els trained on ImageNet datasets achieve state-of-the-art

results with linear classification, outperforming previous

single-batch methods by 2.6%. Models transferred to

COCO datasets outperforms MoCo v2 by 0.4% with only

half of the training batches. Our pretrained models outper-

form supervised ImageNet pretrained models on CIFAR-10

and CIFAR-100 datasets by 0.9% and 4.1% respectively.

1. Introduction

Unsupervised visual representation learning, or self-

supervised learning, is a long-standing problem, which aims

at obtaining general feature extractors without human su-

pervision. This goal is usually achieved by carefully de-

signing pretext tasks without annotation to train feature ex-

tractors.

According to the definition of pretext tasks, most main-

stream approaches fall into two classes: intra-image tasks

and inter-images tasks. Intra-image approaches, including

colorization [43, 20] and jigsaw puzzle [29], design a trans-

form of one image and train the network to learn the trans-

form. Since only the training batch itself is forwarded each

time, we name them single-batch methods. This kind of

Split Shuffle Stitch

Input batch

Target: Recover the input batch to original images

Original Images

Figure 1. Sketch of our proposed pretext task. Images in the

same batch are split into multiple patches, which are shuffled and

stitched to form a new batch as input images for the network. The

target is to recover the batch similar to the original images. We use

two images here as an example.

tasks can be achieved using only one image’s information,

limiting the learning ability of feature extractors.

Inter-images tasks are developed rapidly in recent years,

which require the network to discriminate among different

images. Contrastive learning is popular now since it reduces

the distance between representation of positive pairs and en-

larges the distance between representation of negative pairs.

To construct positive pairs, another batch of images with

different augmented views are used in the training process

[5, 15, 26]. Since each training batch and its augmented ver-

sion are forwarded simultaneously, we name these methods

dual-batches methods. They greatly raise resource required

for training an unsupervised feature extractor. The way to

design an efficient single-batch based method with similar

performance to dual-batches methods is still an open prob-

lem.

In this paper, we propose a framework for efficient train-

ing of unsupervised models using Jigsaw Clustering (Jig-

Clu). Our method combines advantages of solving jig-

saw puzzles and contrastive learning, and makes use of

both intra- and inter-image information to guide feature

extractor. It learns more comprehensive representations.

Our method only needs a single batch during training and

yet greatly improves results compared to other single-batch
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methods. It even achieves comparable results with dual-

batches methods with only half of the training batches.

Jigsaw Clustering Task In our proposed Jigsaw Clus-

tering task, every image in a batch is split into different

patches. They are randomly permuted and stitched to form

a new batch for training. The goal is to recover these dis-

rupted parts back to the original images, as shown in Figure

1. Different from [29], the patches are permuted in a batch

instead of a single image. The image each patch belongs to

and the location of each patch in the origin are predicted in

our work.

Also, we use montage images instead of single patches

as input of the network. This modification greatly improves

the difficulty for the task of [29] and provides more use-

ful information for the network to learn. The network now

has to distinguish between different parts of one image and

identifies their original positions to recover the original im-

age from multiple montage input images.

This task allows the network to learn both intra- and

inter-images information by only forwarding the stitched

images, using half of the training batches compared to other

contrastive learning methods.

To recover patches across images, we design a clustering

branch and a location branch as shown in Figure 2. Specif-

ically, we first decouple the global feature map of stitched

images into the representation of each patch. Then these

two branches operate on representation of each patch. The

clustering branch is to separate these patches into clusters,

each of which only contains patches from the same image.

The location branch, on the other hand, predicts location of

every patch in an image agnostic manner.

With prediction from these two branches, the Jigsaw

Clustering problem is solved. The clustering branch is

trained as a supervised clustering task since we know the

patches are from the same image, or not. The location

branch is considered as a classification problem, where each

patch is assigned with a label to indicate its location in the

origin image. This branch predicts the label of every patch.

The reason that our method achieves decent results is that

models trained with our proposed task can learn different

kinds of information. At first, discriminating among differ-

ent patches in one stitched image forces the model to cap-

ture instance-level information inside an image. This level

of feature is missing in general in other contrastive learning

methods.

Further, clustering different patches from multiple input

images helps the model learn image-level features across

images. This is the key that recent methods [15, 6, 5]

achieve high-quality results. Our method retain this impor-

tant property. Finally, arranging every patch to the correct

location requires detailed location information, which was

considered in single-batch methods [29, 43] before. It is,

however, ignored in recent methods of [5, 26, 15, 6, 22].

We note this piece of information is still important to fur-

ther improve results.

Performance of Our Method Learning by our method

yields both intra- and inter-images information. This com-

prehensive learning brings a spectrum of superiority. First,

with only one batch during training, our method outper-

forms other single-batch ones by 2.6% on linear evalua-

tion on the ImageNe-1k dataset. Second, our method is

more data-efficient. When the training data size is not large,

our method can still produce decent results, much better

than many other existing ones. On the ImageNet-100 and

ImageNet-10% datasets, our system outperforms MoCo v2

by 6.2% and 6.0% respectively. Our method also converges

more quickly with less training time. We use only a quarter

of epochs of MoCo v2 to achieve the same results on the

ImageNet-100 dataset.

Finally, the comprehensive information learned by our

models is suitable for many other vision tasks. On the

COCO detection dataset, our result is 0.4% better than

MoCo v2, with only half of training batches. On the

CIFAR-10 and CIFAR-100 datasets, models tuned with our

pretrained weights achieve 0.9% and 4.1% higher results

than that with supervised training weights, respectively.

The extensive experiments demonstrate the superiority of

our proposed pretext method.

2. Related Work

Handcrafted pretext tasks Many pretext tasks were pro-

posed to train unsupervised models. Recovering the input

image under corruption is an important topic, with tasks

of descriminating synthetic artifacts [18], colorization [20,

43], image inpainting [31], and denoising auto-encoders

[37], etc. Besides, many methods generate persuade-

labels by transformation to train the network without hu-

man annotations. Applications involve predicting relation

of two patches [9, 38], solving jigsaw puzzles [29, 19],

and discriminating among surrogate classes [12]. [28] is

an improved vision of jigsaw puzzles [29], which utilizes

more complex methods to choose patches. Video informa-

tion is also widely used for training unsupervised models

[1, 25, 27, 30].

Contrastive learning Our method is also related to con-

trastive learning, which is first proposed in [14]. Follow-

ing work [11, 39, 45, 36] further improved performance.

Recently, constructing contrastive pairs using different aug-

mentation of images [15, 5, 26, 44] achieves great success.

Espectially, [44] also utilize both intre- and inter-image in-

formation from pixel level. We note much training resource

is required for training contrastive learning methods with

11527



multiple batches of images. Our work tackles this problem

with newly designed contrastive pairs in a single batch.

3. Jigsaw Clustering

In this section, definition of the task is presented. We

then propose a very simple network, which only needs

hardly modification of the original backbone network, to

accomplish this task. Finally, a novel loss function is de-

signed to better suit our clustering task.

3.1. The Jigsaw Clustering Task

There are n randomly selected images in one batch X =
x1, x2, ..., xn. Every image xi is split into m ×m patches.

There are n × m × m patches in a batch totally. These

patches are randomly permuted to form a new batch of mon-

tage images X′ = x′
1
, x′

2
, ..., x′

n. Every new image consists

of m×m patches, which may come from different images

in X.

The task is to cluster the n × m × m patches given the

new batch X
′ into n clusters, and predict the location to

recover the n original images with every m×m patches in

the same cluster. The process is shown in Figure 1.

The key to the proposed task is to use montage images

as input instead of every single patch. It is noteworthy

that directly using small patches as input leads to the so-

lution with only global information. Besides, small-size in-

put images are not common for many applications. Only

use them here raises the image-resolution difference prob-

lem between pretext and other downstream tasks. This may

also lead to degradation of performance. Trivially scaling

up small patches would violently increase the resource for

training.

Our montage images as input nicely avoid these draw-

backs. First, the input images form only one batch with

the same size as the original batch, which costs half of

resource during training compared with recent methods

[5, 15]. More importantly, to better complete this task, the

network has to learn detailed intra-image features to dis-

criminate among different patches in one image, as well as

global inter-image features to pull together different patches

from the same original image. We observe that learning of

comprehensive features greatly accelerates training of fea-

ture extractors. More experimental results are presented in

Section 4.

The way to divide the image is a crucial part of our

method. The choice of m affects the difficulty of the task.

Our ablation study on a subset of ImageNet (see Section 5)

shows that m = 2 achieves the best result. We conjecture

that a larger m would exponentially increase the complexity

and make the network fail to learn effectively. Besides, we

observe that cutting the image into disjoint patches is not

optimal. With an extend of intersection as shown in Fig-

ure 3, the network learns better features. It is explainable

that different regions of some images are too diverse. They

cause difficulty for learning without any evidence of over-

lap. More analysis is presented in Section 5.

3.2. Network Design

We design a new decouple network for this task as illus-

trated in Figure 2. One module is a feature extractor, which

can be any common architectures [16, 34, 42, 41, 35]. There

is also a parameter-free decouple module to separate the

feature into m×m parts corresponding to different patches

in one input image. Then a multi-layer perceptron (MLP) is

used to embed every patch’s feature for the clustering task; a

fully-connected layer (FC) is used for the localization task.

The decouple module first interpolates the feature map of

the backbone into a new one whose side length is a multiple

of m. We enlarge the feature map instead of narrowing it

to avoid information loss. For example, a typical input size

of ImageNet dataset is 224 × 224. The feature map pro-

duced by a ResNet-50 backbone is 7 × 7. For m = 2, we

interpolate the feature map into 8× 8 by bilinear interpola-

tion. When the length of the feature map is a multiple of m,

we use average pooling to downsample the feature map to

n×m×m× ĉ. Then the features of a batch are disentangled

to (n×m×m)× ĉ, which means there are (n×m×m)
vectors of dimension ĉ.

Every vector is then embedded into length c with a two-

layer MLP to form a set of vectors Z = z1, z2, ..., znmm

for the clustering task. In the meantime, a FC layer is at-

tached after the (n × m × m) × ĉ vertors as the classifier

to produce logits L = l1, l2, ..., lnmm for the localization

task.

Our network is notably efficient, the additional decouple

module is parameter-free. Compared to recent work, the

computation of taking one batch remains almost the same,

and we only need one batch during training. This greatly

reduces training cost.

3.3. Loss Functions

The clustering branch is a supervised clustering task, be-

cause m×m-size patches are in the same class. The super-

vised clustering task is convenient, and we use constractive

learning to achieve it. We consider the target of clustering

as pulling together objects from the same class and pushing

away patches from different classes. Cosine similarity is

used to measure the distance between patches. So for evey

pair of patches in the same cluster, the loss function is

ℓi,j = −log
exp(cos(zi, zj)/τ)

Σnmm
k=1

✶k 6=i exp(cos(zi, zk)/τ)
, (1)

where ✶ denotes the indicator function and τ is a temparture

parameter to smooth or shappen the distance. The final loss

function is summarized over all pairs from the same cluster
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Figure 2. Pipeline of our method. We use light yellow rectangles to represent features produced by different parts of the network and light

pink rectangles to represent parts of the network. The input images first go through the backbone network to produce n feature maps. Then

the n feature maps are decoupled into n × m × m vectors, each corresponding to one patch through a parameter-free decouple module.

Afterwards, a MLP and a FC are used to embed vectors into logits to compute clustering loss and localization loss separately.

cross

Figure 3. Patches split in images have a level of overlap.

as

Lclu =
1

nmm
Σi

(

1

mm− 1
Σj∈Ci

ℓi,j

)

, (2)

where Ci denotes the set of patch indices in the same cluster

of i.

The location branch is considered as a classification task.

The loss function is simply cross-entropy loss, and the loss

of localization is formulated as

Lloc = CrossEntropy(L,Lgt), (3)

where Lgt denotes the ground truth for every-patch loca-

tion.

The final objective of our proposed Jigsaw Clustering

task is to optimize

L = αLclu + βLloc, (4)

where α and β are hyperparameters to balance these two

tasks. In our experiments, α = β = 1 produces reasonable

results.

4. Experiments

We report the performance of our unsupervised training

method on ImageNet-1k [8] and ImageNet-100 datasets.

ImageNet-1k is a widely used classification dataset.

There are 1.2+ million images uniformly distributed in

1,000 classes. We use the training set without labels to train

our models.

ImageNet-100 is a subset of ImageNet-1k dataset, which

is introduced in [36]. This dataset randomly chooses 100

classes of ImageNet-1k, containing around 0.13 million im-

ages. It is also well balanced in terms of class distribution.

We use this small dataset to verify data efficiency of our

method and perform fast ablation studies.

Unsupervised Training We use SGD to optimize our net-

work with momentum 0.9. The weight decay is set to be

1e − 4. We train all models using batch size 256 on four

GPUs. The learning rate is initialized as 0.03 and is de-

cayed with cosine policy. All models are trained for 200

epochs if there is no further explanation.

4.1. Linear Evaluation

We first evaluate the feature learned by our method with

a linear classification protocol. We train a ResNet-50 back-

bone on the ImageNet dataset with unsupervised learning.

Then a supervised linear classifier is trained on the top of the
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Method # of Batch in Training Accuracy

Supervised single-batch 77.2

Colorization [43] single-batch 39.6

JigPuz [29] single-batch 45.7

DeepCulster [4] single-batch 48.4

NPID [39] single-batch 54.0

BigBiGan [10] single-batch 56.6

LA [45] single-batch 58.8

SeLa [2] single-batch 61.5

CPC v2 [17] single-batch 63.8

JigClu (Ours) single-batch 66.4

MoCo [15] dual-batches 60.6

PIRL [26] dual-batches 63.6

SimCLR [5] dual-batches 64.3

PCL [22] dual-batches 65.9

MoCo v2 [6] dual-batches 67.7

Table 1. Linear evaluation results of ResNet-50 models on the

ImageNet-1k dataset. Our model outperforms previous single-

batch methods by a large margin, achieving comparable results

with dual-batches methods.

fixed backbone. The linear evaluation results on ImageNet-

1k dataset are summarized in Table 1. Our method outper-

forms previous single-batch based methods by a large mar-

gin, greatly reduces the gap from dual-batch based methods.

Comparison with JigPuz JigPuz [29] also solves the jig-

saw puzzle for unsupervised learning. It defines the prob-

lem as sorting the patches inside every single image. Our

method, contrarily, solves the jigsaw problem from a gen-

eral perspective, and enrichs the feature learned from it. The

Jigsaw Clustering task outperforms JigPuz by 19.9% on the

linear evaluation pipeline.

Comparison with Clustering Methods DeepCluster [4]

and SeLa [2] are also based on clustering. But they use

unsupervised clustering to guide the learning of models.

We, instead, split images into different patches to generate

ground truth for the clustering tasks. The supervised clus-

tering task is more powerful for learning for our task and

leads to much better representation.

Comparison with Contrastive-based Methods Sim-

CLR [5] and MoCo [15, 6] are recently proposed based

on contrastive learning. They achieve high-quality results

at the cost of more training resource, since an additional

batch is required during training. These methods need to

scan twice of the batches compared with single-batch based

methods. We also utilize contrastive loss for our clustering

task, but do not need extra batches.

Dataset ImageNet-100 ImageNet-10%

SimCLR 70.5 35.8

MoCo v2 74.7 38.3

JigClu (Ours) 80.9 44.3

Table 2. Linear evaluation results of ResNet-50 models on

ImageNet-100 and ImageNet-10% datasets. Our results are sig-

nificantly better than those of other methods on small datasets.

Our method achieves comparable results with state-of-

the-art dual-batch based methods with only half of the train-

ing batches. MoCo v2 models yield slightly better results

than ours on linear evaluation. Since MoCo v2 learns more

of the inter-image information, it is suitable for the classi-

fication tasks. In contrast, our models learn comprehensive

information, and therefore outperforms MoCo v2 on the de-

tection tasks as shown in Section 4.3.

Data Efficiency We also experiment with our method on

ImageNet-100 and a subset of ImageNet, which contains

10% data of every class in ImageNet. We train the ResNet-

50 model on these datasets with unsupervised methods first.

We report the linear evaluation results on the dataset to rep-

resent model ability. The results are presented in Table 2,

notably better than those of other contrastive learning meth-

ods on relatively small datasets. This is because our method

makes use of both intra- and inter-image information. The

comprehensive learning strategy utilizes limited data more

effectively.

Convergence We train unsupervised models on the

ImageNet-100 dataset with different epochs and show the

linear evaluation results in Figure 4. Our method achieves

decent results with a very small number of training epochs,

while other contrastive learning methods require longer

training time to reach the same accuracy.

We explain that effective contrastive pairs are more fre-

quent in our pretext tasks because of the split of input im-

ages. For exmaple, pairs in SimCLR are similar and are

easy to recognize, leading to futile pairs. But the patches in

the same cluster of our method come from different regions

of the image, helpfully improve the quality of positive pairs.

4.2. Semi­supervised Learning

We also finetune the unsupervised model under the semi-

supervised setting on the ImageNet-1k dataset with 10%

and 1% labels. The labels are still class-balanced, provided

in [5]. We finetune our model with a randomly initialized

linear classifier on the labeled data. The results are summa-

rized in Table 3.

Results of MoCo v2 are produced by us with the offi-

cial model offered in [33]. We train it for 200 epochs for
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Figure 4. Results of ResNet-50 model on the ImageNet-100

dataset with linear evaluation protocol. The accuracy increases

along with more of the total training epochs. Our method con-

verges quickly. Note MoCo v2 costs around 160 epochs to reach

the same level of output from our method in the 40th epoch.

Method

Label fraction

1% 10%

Top-1 Top-5 Top-1 Top-5

Supervised 25.4 48.4 56.4 80.4

Methods using label-propagation:

Pseudo-label [21] - 51.6 - 82.4

Entropy-Min [13] - 47.0 - 83.4

S4L-Rotation [3] - 53.4 - 83.8

UDA* [40] - 68.8 - 88.5

Methods using unsupervised learning:

NPID [39] - 39.2 - 77.4

PIRL [26] - 57.2 - 83.8

MoCo v2 [6] 34.5 62.2 61.1 83.9

JigClu (Ours) 40.7 68.9 63.0 85.2

Table 3. Results of our pretrained model on the semi-supervised

ImageNet classification tasks. Our method outperforms previous

unsupervised learning ones. * indicates using RandAugment [7].

fair comparison. Compared with state-of-the-art represen-

tation learning methods, we achieve better results with only

half of the training batches. The results of semi-supervised

learning further manifest the superiority of our method. Re-

sult of UDA is with higher accuracy because it is specially

designed for semi-supervised learning and utilizes powerful

RandAugment [7].

4.3. Transfer Learning

We apply our pretrained ResNet-50 models to other vi-

sion tasks to prove generalization of our ResNet-50 models

trained on ImageNet.

Objection Detection Following [33], we finetune our

pretrained weights on the COCO detection dataset [24] with

the Faster-RCNN R-50-FPN framework [32, 23]. The re-

sults are summarized in Table 4. Our results are better

Models AP AP50 AP75 APs APm APl

MoCo v2 38.9 58.8 42.5 23.3 41.8 50.0

JigClu (Ours) 39.3 59.4 42.5 23.6 42.5 49.7

Table 4. Results of Faster-RCNN R50-FPN models trained on

COCO detection dataset with pretrained weights provided by un-

supervised training on ImageNet.

Models CIFAR-10 CIFAR100

finetune

Rand init. 88.4 61.6

Supervised 88.6 60.6

JigClu (Ours) 89.5 64.7

linear
Supervised 62.5 41.0

JigClu (Ours) 68.8 45.0

Table 5. Results of ResNet-50 models trained on CIFAR-10 and

CIFAR-100 datasets with different initialization.

than those of MoCo v2 pretrained weights. Our models

learn comprehensive information including instance-level

discrimination and location recognition, useful for the de-

tection tasks.

Image Classification We also apply our pretrained

weights to CIFAR-10 and CIFAR-100 datasets. The clas-

sifiers of models are randomly initialized and backbones

are initialized in different ways including random values,

supervised training models on ImageNet, and unsupervised

pretrained models on ImageNet in our JigClu task.

The results are listed in Table 5. We use finetuning and

linear evaluation to test representation learned by JigClu.

In the finetuning setting, the backbone and classifier are

trained on the target dataset together. Our weights provide

the best initialization for both CIFAR-10 and CIFAR-100

datasets. In the linear evaluation process, only the linear

classifier is trained on new datasets. Our model is better

than the supervised pretrained model on ImageNet, which

demonstrates the generality of our learned representation.

5. Analysis

5.1. Montage Input

We split every image in the batch into m × m patches

and randomly permute them to form a new batch. The new

batch used in our method consists of montage images as

shown in Figure 5(c).

Using montage images as input is better than directly us-

ing patches. On the one hand, if we do not scale up the

patches (Figure 5(a)), the network is trained with small im-

ages, which greatly reduces the representation ability when

dealing with high-resolution images. On the other hand, af-

ter we resize the patches into a larger shape (Figure 5(b)),
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(a) (b) (c)

Figure 5. (a) Small size patches. (b) Scaled-up patches. (c) Mon-

tage images.

Input Format Accuarcy (%) Time Memory

(a) Small-size Patch 67.0 5.5h 2700MB

(b) Scaled-up Patch 71.3 16.8h 7300MB

(c) Montage Image 70.9 5.7h 3000MB

Table 6. Linear evaluation results of ResNet-18 models on the

ImageNet-100 dataset. The scaled-up images lead to the best re-

sult, and yet cost much resource. Our proposed montage images

achieve comparable results with scaled-up images, and only cost

around 1/3 of the original training resource.

the size of input batches is m × m times larger than the

orginal one, which greatly increases demand of training re-

source. Putting aside the size of patches, straightly using

patches as input may cause missing a lot of instance-level

intra-image information.

To prove the superiority of our proposed montage im-

ages, we conduct experiments on the ImageNet-100 dataset

with ResNet-18 models. We choose ResNet-18 because it is

much faster. Using scaled-up patches as input for ResNet-

50 also causes the out-of-memory issue on our limited com-

puting resource. We first train the models on the ImageNet-

100 dataset, and evaluate them with a linear evaluation pro-

tocol.

The results are reported in Table 6. Concluded from the

table, using small patches as input is very fast, and yet leads

to low performance. Scaled-up patches much improve re-

sult quality. But they cost too much resource during train-

ing. Using our montage images as input overcomes these

limitations, attaining high performance on limited comput-

ing resource. Although the way to use montage images

in our method is still primary, amazing results are yielded.

This opens the door for future research of single-batch un-

supervised methods with montage images.

5.2. Data Augmentation

Data augmentation is very important in recent con-

trastive learning methods. We simply use the policy of

MoCo v2 as our baseline augmentation. There is a split

operation, which divides the image into m × m patches.

We apply the baseline augmentation to every patch inde-

Split Augment Stitch

Figure 6. The position of augmentation used in our method. We

augment every patch independently right after the split operation.

In real cases, patches are mixed across images.

Augmentation position Accuracy (%)

Aug before split 3.7

Split during aug 39.3

Aug after split 80.9

Aug after montage Na

Table 7. The linear evaluation results of ResNet-50 models on the

ImageNet-100 dataset with different augmentation policies. Ap-

plying augmentation on patches individually produces the best re-

sults.

pendently right after the split operation and before we per-

form the montage operation, as shown in Figure 6. There

are many other choices; but empirically we find this simple

strategy suffices. We analyze the position of augmentation

in this section.

Using the augmentation after the montage operation is

not feasible, because random-crop may cut off some patches

from the montage image. The augmentation could be used

on original images before the split operation. However, this

would cause many problems. First, the clustering branch

may learn the augmentation bias instead of image features,

because patches from the same images use the same aug-

mentation. Second, the location of patches is hard to learn

in an image-agnostic manner, because the augmented im-

ages may be at any positions of the original images.

An improvement option is to use the split operation be-

tween transform. For example, we could first crop the orig-

inal images, and then split the cropped image into patches.

These patches are further transformed by other operations

such as color jitterring. This strategy only partially solves

previous problems. Our augmentation right on patches tack-

les these issues.

We experiment with different augmentation ways, and

report the results in Table 7. The ResNet-50 models are un-

supervisedly pretrained on ImageNet-100 dataset with dif-

ferent augmentation policies, and the linear evaluation re-

sults are used to measure learning of representation. The

model learns nothing when images are augmented before

the split operation. Bringing forward the crop operation

helps the model learn some useful information to produce

non-trivial results. Applying augmentation to every patch is

clearly a decent choice. It obtains high-quality results.
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m 2 3 4

Accuracy (%) 80.9 74.7 70.1

Table 8. The linear evaluation results of ResNet-50 models on the

ImageNet-100 dataset with different m. When m is larger than 2,

the performance decreases because of the increased difficulty.
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Figure 7. Accuracy in terms of different overlap ratios of adjacent

patches. The x-axis is the length of overlapping regions, which is

measured in terms of the percentage of image size. When x = 0,

the patches are completely separated without overlap.

5.3. Split Operation

Number of Patches We split every image into m × m
patches, where the choice of m is highly related to our task.

The minimum value for m is 2. So we start from 2 to find

an optimal m. The results are listed in Table 8.

We report the linear evaluation results of unsupervised

learning ResNet-50 models on the ImageNet-100 datasets.

It is obvious to conclude that the result of m = 3 is worse

than m = 2. And we do not try larger ms. This result

shows that setting m = 3 already makes the model difficult

to learn because of the small input size (224 × 224). In

this case, it becomes a problem to distinguish among these

many patches inside one montage image. Without further

notes, we use m = 2 in all our experiments.

Overlapped Region Size The size of overlap between ad-

jacent patches also influences our method. We conduct ex-

periments to find an optimal size for the overlapped regions.

We train ResNet-18 on the ImageNet-100 dataset with our

proposed unsupervised pretext task and use the linear eval-

uation to measure learning results. We use m = 2 in our

experiments.

The results are summarized in Figure 7. Concluded from

the figure, when there is no overlap between patches, the

model does not learn effective features, because it is hard

to distinguish among patches from the same image without

any ideas how they are overlapped. When the overlap be-

tween patches becomes large, the result quality also drops.

In this condition, patches from the same image may be very

similar to each other and are easy to recognize, leading to

reduction of effective positive pairs.

We find that using 0.3 of the original image’s side length

Clustering branch Location branch Accuracy (%)

✔ 65.1

✔ 3.2

✔ ✔ 66.4

Table 9. Ablation study of the two branches. The results is mea-

sures by the linear evaluation protocol of ResNet-50 models on the

ImageNet-1k dataset.

produces the best results. This ratio achieves a good bal-

ance of difficulty and efficiency for positive pairs. All our

experiments are trained using this ratio.

5.4. Importance of the Two Branches

The proposed pretext task is solved by the two branches:

clustering branch and location branch. Each branch has

a loss function. The clustering branch is supervised by

a contrastive-like loss, aiming to cluster patches from the

same original images. This branch dominates the training

of models. Both instance- and image-level information is

learned from this branch. The location branch is supervised

by a classification loss, which predicts the position of every

patch in an image-agnostic manner. This branch assists the

clustering branch with more detailed location information.

We train branches separately and summarize the results

in Table 9. The results are measured on linear evalua-

tion of unsupervised training with ResNet-50 models on

the ImageNet-1k dataset.We can observe from the table that

only training with the location branch leads to trivial ac-

curacy. It reflects that the location information cannot be

effectively learned from such complex montage input indi-

vidually. However, the location branch is a nice auxiliary

for the clustering branch. Joint training of both branches

achieves the best results.

6. Conclusion

In this paper, we have proposed a novel Jigsaw Clus-

tering pretext task/method, taking the advantage of both

contrastive learning and previous handcrafted pretext tasks.

Models trained with our method can learn both intra- and

inter-images information with a single batch during train-

ing. Our method outperforms previous single-batch ones by

large margins, and achieves comparable results with dual-

batch methods with only half of the training batches. Our

method naturally applies to other tasks.

Our work manifests, intriguingly, that single-batch meth-

ods have the potential to be in par with or even outperform

dual-batch ones. We believe this line is worth further study.

New applications can be expected.
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