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Abstract

It is well acknowledged that person re-identification

(person ReID) highly relies on visual texture information

like clothing. Despite significant progress has been made

in recent years, texture-confusing situations like clothing

changing and persons wearing the same clothes receive lit-

tle attention from most existing ReID methods. In this pa-

per, rather than relying on texture based information, we

propose to improve the robustness of person ReID against

clothing texture by exploiting the information of a person’s

3D shape. Existing shape learning schemas for person

ReID either ignore the 3D information of a person, or re-

quire extra physical devices to collect 3D source data. Dif-

ferently, we propose a novel ReID learning framework that

directly extracts a texture-insensitive 3D shape embedding

from a 2D image by adding 3D body reconstruction as an

auxiliary task and regularization, called 3D Shape Learn-

ing (3DSL). The 3D reconstruction based regularization

forces the ReID model to decouple the 3D shape informa-

tion from the visual texture, and acquire discriminative 3D

shape ReID features. To solve the problem of lacking 3D

ground truth, we design an adversarial self-supervised pro-

jection (ASSP) model, performing 3D reconstruction with-

out ground truth. Extensive experiments on common ReID

datasets and texture-confusing datasets validate the effec-

tiveness of our model.

1. Introduction

The aim of person ReID is to find the target person

among an existing set of persons captured by a distributed

camera system. Some works [7, 34, 44, 46] have demon-

strated that person ReID largely depends on clothing ap-

# Equal Contribution.

* Corresponding Author.

ID 1 ID 1

ID 2 ID 3

Clothing-change

Similar Clothing

Texture-confusing Person 

ReID

Human 

Shape

Learning

Point Cloud Depth Map

Ratio 

Frequency

3D Source Data

ID 1 ID 1 ID 2 ID 3

Monocular 3D Reconstruction

Keypoint Contour

2D Image Space

Extra Device 

Dependency

Large intra-class 

distance

yellow 

T-shirt

plaid 

shirt

Small inter-class 

distance

white 

T-shirt

black

pants

white 

T-shirt

black

pants

Viewpoint 

Limitation

Figure 1. Illustration of texture-confusing person ReID. Human

shape information is crucial when clothing texture is misleading.

However, modeling shape upon 2D measurement could not cap-

ture the intact shape perception and collection of 3D source data

relies on auxiliary devices. Single-view 3D human reconstruction

could help to learn 3D shape feature in surveillance environments.

pearance textures, and most of existing methods decline a

lot when clothing texture is confusing. Considering cloth-

ing texture-confusing situations (see Figure 1) that people

might change their clothing [44] or different people wear

very similar clothing [46], clothing texture would become

unreliable for ReID. Situations like suspects wearing differ-

ent clothes, or different people wearing similar uniforms in

hospitals or schools are ubiquitous.

To extend the scalability of real-world person ReID, in

this paper, we explicitly model discriminative clues beyond

human clothing textures, i.e., human shape representations.

Existing works try to learn shape-related features in two

ways: 2D image space [7, 34, 44] and 3D source data

[21, 31, 41]. 2D-based methods mainly make attempt to ex-

tract shape feature based on visual statistics, such as contour

[44] and keypoint [34], or via adversarial feature disentan-

glement [21]. These methods only utilize the structure and

shape information in 2D space while 3D information like
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depth or relative 3D position is ignored. 3D-based source

data could be collected from kinect cameras [41] or ratio

signals [7], which has the potential to capture the integrated

shape from an all-around horizon. However, collecting 3D

data might be infeasible in a surveillance environment.

In order to learn 3D shape representation without extra

3D devices, we propose a novel feature learning schema

combining 3D human reconstruction from a single image

[1, 2, 4, 5, 14, 18, 32]. Instead of extracting ReID fea-

tures from imprecise reconstructed 3D meshes [50], we

train a ReID model that extracts texture-insensitive 3D fea-

tures directly from the original 2D images by adding 3D

reconstruction as an auxiliary task and regularization to the

ReID feature learning. The 3D reconstruction based regu-

larization is able to force the ReID model to decouple the

3D shape information from the visual texture, and acquire

discriminative 3D shape ReID features that are more reli-

able for texture-confusing persons. In practice, a multi-task

framework is adopted, and ReID feature is supervised by

both identification losses (e.g., softmax loss and triplet loss)

and 3D reconstruction losses.

One of the troublesome obstacles for training 3D hu-

man reconstruction lies in the lack of 3D ground truth. To

overcome the data limitation, following the literature of 3D

reconstruction [14, 32], we design a purely unsupervised

framework called Adversarial Self-Supervised Projection

(ASSP). We first utilize external unlabeled 3D data [26] to

train a discriminator distinguishing the reconstruction re-

sults from real 3D parameters in an adversarial way. This

could prevent abnormal poses and shapes in a coarse level.

Then, we introduce a self-supervised learning loop that re-

projects 3D reconstruction results back to the 2D plane and

minimize the reconstruction error compared with 2D obser-

vations (e.g., keypoints and silhouettes). This could further

fit personalized 3D bodies in a fine level.

3D human reconstruction tends to obtain a mean shape

representation, and thus a global 3D shape feature is not

discriminative enough. To enhance the discriminative abil-

ity of ReID, we propose the Multi-Granularity Shape fea-

ture (MGS) learning to combine both global and part shape

features. In MGS, the global 3D shape feature corresponds

to the global shape parameter estimation and part 3D shape

features are used to estimate subtle local shape displace-

ments. This could help to capture 3D shape features in dif-

ferent scopes and enrich the diversity of features.

We summarize our contributions as follows:

- We propose a novel end-to-end architecture combin-

ing person ReID and 3D human reconstruction to learn

texture-insensitive 3D shape embedding. We further

propose a multi-granularity shape (MGS) learning to

enhance discriminative ability for person ReID.

- To address the problem of lacking 3D ground truth,

we design the Adversarial Self-supervised Projec-

tion (ASSP) combining adversarial learning and self-

supervised projection, validating that 3D reconstruc-

tion is capable to promote ReID in a unified training

schema even without 3D ground truth.

The experimental results in common person ReID

datasets (Market1501 [48], DukeMTMC-ReID [51]) and

texture-confusing datasets (PRCC [44], VC-Clothes [39],

LTCC [34], FGPR [46]) have demonstrated the effective-

ness of the proposed model.

2. Related Work

2.1. Person ReID

Person ReID has been well advanced [9, 22, 29, 42, 45].

However, some works [7, 34, 44, 46] have argued that

most person ReID methods including hand-crafted methods

[11, 20, 38] and deep models [22, 29] degenerate a lot in

performance when clothing texture is misleading due to the

lack of the specifically designed mechanisms.

In this paper, we target at clothing texture-confusing

ReID situations where the same identity might change

clothing or different identities might wear similar clothing.

There are several directions in the ReID literature learning

texture-insensitive representation. Attribute-based methods

[23, 36] overcome texture bias to some extent. Yu et al.

utilize the given description to perform retrieval from a

database of predefined clothing templates [47]. However,

the above methods require auxiliary annotation and cost

extra labour. Another routine devotes to directly captur-

ing identity-invariant shape-related representation beyond

clothing texture [7, 21, 31, 34, 41, 44]. Existing methods

rely on either 2D image space [7, 34, 44] or 3D source data

[21, 31, 41] to extract shape features. The former seeks to

model a shape representation based on visual characteris-

tics [34, 44] or via adversarial feature disentanglement [7].

For example, Yang et al. transform contours in polar co-

ordinates for shape learning [44]. This kind of approaches

could only capture partial shape representation, limited by

viewpoint change and pose variation. The latter focuses on

directly characterizing shape concept based on 3D source

data, like the depth map [41], ratio frequency [21] and 3D

skeletons [31]. Although 3D source data could reflect the

full-view shape representation, it is usually hard to collect

such data in real applications. In this paper, we utilize the

invariance of 3D shape to break the limitations of 2D-based

shape and get rid of extra 3D devices because what we use

is only a single image.

2.2. Singleview 3D Human Reconstruction

Many methods leverage parametric models, such as

SCAPE [3] and SMPL [25], to digitize 3D human rep-

resentations. Most recent methods estimate pose and

shape parameters of the SMPL model under the super-

vision of 3D ground truth [5, 14, 19, 30, 32]. To cap-
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ture finer details, models [1, 2] extend the basic SMPL to

“SMPL+Displacement”.

Some works have made attempt to perform person ReID

with the help of single-view 3D human reconstruction and

the SMPL model. Zheng et al. directly use the recon-

structed 3D meshes as inputs to perform ReID [50]. Li

et al. rely on the SMPL model to synthesize 3D data for

ReID [21]. Since the extracted 3D reconstruction meshes

are not precise enough, such processing might lead to cor-

rupted feature learning. Different from the above works, we

integrate ReID and 3D reconstruction in a unified end-to-

end training framework, which could adaptively learn more

robust 3D shape features and reduce information loss.

3. Method

3.1. Overview

In this paper, we propose a novel framework to solve

clothing texture-confusing person ReID, which can be spec-

ified as two cases: (1) the same identity changes clothing

[44]; (2) different identities wear the same uniforms [46].

Our main contribution lies in the 3D shape learning

(3DSL) branch, which combines person ReID and human

3D reconstruction in an end-to-end training framework for

the first time. The goal of 3DSL is to learn a 3D shape

feature which could not only distinguish different identities

but also estimate shape-related parameters of the 3D model

SMPL [25]. Specifically, we train a sequence of deep net-

works E3D and Eshape that extract a 3D shape feature from

an image, denoted as Fshape. As shown in Figure 2, apart

from supervised by ReID losses (i.e., softmax and triplet

losses), Fshape is also the input of the 3D reconstruction

sub-network that predicts the shape parameters of the 3D

human model. In this way, the 3D human reconstruction

task is added as an auxiliary regularizer to force Fshape to

focus on 3D shape information.

Furthermore, to overcome the lack of 3D ground truth

(e.g., 3D skeletons, 3D point clouds), similar to the litera-

ture of human reconstruction [14, 32], the 3D reconstruction

branch is trained in a self-supervised framework, called Ad-

versarial Self-Supervised Projection (ASSP). As shown in

Figure 2, two kinds of supervisions are conducted in ASSP.

Firstly, the discriminator D trained on extra unlabeled 3D

parameters is used to distinguish 3D SMPL parameters esti-

mated based on Fshape from real 3D parameters. Secondly,

ASSP re-projects the reconstructed 3D meshes to the 2D

plane and computes the 2D reconstruction error with 2D

keypoints and silhouettes obtained from the original RGB

image.

Since some RGB features like faces and attributes could

also be texture-insensitive, we construct an extra network

branch to learn these useful RGB features. Here, we pro-

pose a sampling strategy for the triplet loss [12] specifi-

cally designed for different clothing texture-confusing ReID

tasks. Finally, the texture-insensitive 3D shape feature

Fshape and RGB feature Frgb are pooled and concatenated

to form the final ReID feature.

3.2. 3D Shape Learning

The branch of 3D shape learning (3DSL) essentially

trains person ReID and 3D human reconstruction in an end-

to-end network.

3.2.1 3D Parametric Model

We choose the parametric 3D model SMPL [25] as a base

model to carry out human reconstruction. Thanks to the

SMPL’s prior manifold, extra prior knowledge on 3D body

shape can be transferred into the ReID model and the in-

tegrity of the reconstructed results will be better attained

even when ground truth is unavailable. Moreover, differ-

ent groups of parameters in SMPL contain specific seman-

tics (i.e., shape-related, pose-related). It helps us to extract

specific features for each group of parameters and decou-

ple identity relevant shape features from identity irrelevant

pose ones. SMPL is modeled as a function of the pose

parameter θ ∈ R
24×3 and the shape parameter β ∈ R

10

returning NV = 6890 vertices and NF = 13776 faces.

However, the shape parameter has only 10 dimensions and

does not have enough capacity to construct a discrimina-

tive 3D model to represent diverse human shapes. Hence,

we introduce vertice-wise displacement values denoted as

δ ∈ R
6890×3 into the 3D modeling for accommodating to

the ReID learning:

M(β, θ, δ) =W (T (β, θ, δ), J(β), θ,W), (1)

where W is a linear blend-skinning function applied to the

rest pose T (β, θ, δ) and the skeleton joints J(β). Please

refer to [25] for the detailed implementation of W .

Denoting the 3D ReID shape feature as Fshape, in our

method the SMPL’s shape parameter θ and displacement δ

are estimated with a sub-network from Fshape. In this way,

we could also make Fshape decouple with pose interference

and become pose-invariant.

3.2.2 3D Shape Feature Extraction

In this section we introduce how to use 3D human recon-

struction to facilitate extracting 3D shape ReID features.

As shown in the green branch in Figure 2, the general

feature containing all 3D information is extracted by a base

network E3D. The output of E3D is then fed into the 3D

reconstruction network. There are two groups of 3D model

parameters: shape irrelevant parameters (i.e., pose param-

eters θ, camera parameters ψ) and shape relevant param-

eters (i.e., shape parameters β, vertice-wise displacements

δ). 3D reconstruction models [14] predict different groups
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Figure 2. The overview of the proposed model. The model consists of two branches. One is for learning 3D shape features under the

regularization of 3D human reconstruction, named 3D Shape Learning (3DSL, see Section 3.2). The another branch is for learning texture-

insensitive RGB features from original images via metric learning, which is introduced in Section 3.3.

of parameters as a holistic distribution, which would hin-

der the extraction of identity-specific features since shape

irrelevant information is an interference factor for ReID.

In order to decouple the information of different parameter

groups, separate estimation sub-networksEpose andEshape

are adopted. The output feature map of Eshape contains all

the 3D shape related information, which is exactly what we

need for the 3D shape ReID feature, denoted as Fshape.

Besides receiving supervision from 3D reconstruction,

Fshape is also supervised by ReID losses including the soft-

max and triplet losses. In this way, Fshape is both 3D shape-

related and identity discriminative.

3.2.3 Adversarial Self-Supervised Projection

In the literature of 3D human reconstruction, training a

model commonly requires high-quality 3D ground truth

(e.g., 3D keypoints, 3D model parameters, 3D point

clouds). However, in the surveillance videos, we do not

have any 3D annotations for training. Following the litera-

ture of 3D reconstruction [14, 32], we design a purely unsu-

pervised pipeline called adversarial self-supervised projec-

tion (ASSP). As shown in the blue branch in Figure 2, ASSP

combines adversarial learning [10] and self-supervised pro-

jection from 3D to 2D, which train 3D reconstruction in

coarse and fine levels, respectively.

Adversarial Learning for 3D reconstruction. The goal

of adversarial learning is to generate reasonable 3D human

models and avoid abnormal poses and shapes at a coarse

level. Specifically, we train a discriminator network D (as

shown in Figure 2) to distinguish the 3D reconstruction pa-

rameters estimated by E3D, Epose and Eshape from the ex-

tra real 3D human parameters.

Following [14], we transform the 3-dim rotation vector

of each joint into 3×3 rotation matrix via the Rodrigues for-

mula. That is to say, the pose parameter θ ∈ R
24×3 would

be transformed to R
24×3×3. Then we put the transformed

pose parameter and β as the input of the discriminator D,

where the architecture of D is the same as [14]. A large-

scale dataset of SMPL parameters [26] is used as the real

human body data, denoted as θreal and βreal. The adversar-

ial loss for the discriminator D could be formulated as:

Ladv(D) = E[(1−D(θreal, βreal))
2
] + E[D(θ, β)

2
],
(2)

The adversarial loss for the estimation network E3D,

Epose and Eshape is defined as:

Ladv(E3D, Epose, Eshape) = E[(1−D(θ, β))
2
], (3)

Self-Supervised Projection from 3D to 2D. The goal of

self-supervised projection is to reconstruct 3D meshes that

fit to the original 2D image at a fine level. This is done

by projecting the estimated 3D meshes back to the original

2D plane, making the projections consistent with 2D obser-

vations (e.g., keypoints, silhouettes) predicted from origi-

nal input images. In this way, 3DSL is trained under self-

generated supervision signals in an end-to-end loop, which

has been widely applied [5, 14, 19, 30, 32].

Here we choose keypoints and silhouettes as intermedi-

ary to bridge 2D and 3D spaces. We utilize the off-the-shelf

detector [8] to predict keypoint locations K ∈ R
P×2 from

original input images. For silhouettes M , we follow the

processing in [28] and apply GrabCut [35] for prediction.

Since the projection from the 3D space to 2D image space

requires the 3D position of the camera, we simultaneously

estimate the camera position parameter ψ ∈ R
3. We adopt

the same camera model and parameters as [14]. For the

keypoint projection from 3D to 2D, it is a sparse mapping

through a projection matrix derived from ψ and the camera
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Multi-Granularity Shape Feature (MGS) Learning

Figure 3. The illustration of Multi-Granularity Shape (MGS)

learning. In MGS, there is a global shape feature Fglobal to es-

timate the global shape parameter β and part shape features Fpart

to estimate part displacements. We partition the 3D vertices into

typically 3 parts. Eglobal and Epart both consists of shallow con-

volution and fully-connected layers.

model. The keypoint projection loss is defined as:

Lkey =
∥

∥

∥
K − K̂

∥

∥

∥

2

2

, (4)

where K̂ = Πkey(β, θ, δ, ψ) is the projected keypoints from

the reconstructed 3D meshes as shown in Figure 2.

The silhouette projection should be carried out with the

help of a differentiable renderer to make it end-to-end train-

ing. We choose the neural renderer [15]. The silhouette pro-

jection could be expressed as: M̂ = Πsil(β, θ, δ, ψ). The

silhouette projection loss is formulated as:

Lsil =
∥

∥

∥
M − M̂

∥

∥

∥

2

2

+ ‖δ‖
2
, (5)

where we restrict the value of δ to avoid recovering clothing

details and keep the reconstructed meshes smooth.

3.2.4 Multi-Granularity Shape Feature

In order to enhance the ReID discriminative ability, we in-

troduce the part-based ReID paradigm and propose Multi-

granularity Shape (MGS) feature learning, which extracts

local 3D shape features from different parts of human bod-

ies. The MGS feature is used as the input of a sub-network

to predict the vertice-wise displacements for a body part,

which forces this feature to contain local shape information.

Specifically, as shown in Figure 3, we partition the ver-

tices of the 3D SMPL model into P parts, and each part

corresponds to displacements of a sub-group of vertices, de-

noted as δi ∈ R
pi×3, where pi is the vertice number of i-th

part. Taking Fshape as input, several shallow sub-networks

are applied to predict the global shape feature Fglobal and

part shape feature Fpart, respectively. Fglobal is responsible

to estimate the global shape parameter β. Fpart is first parti-

tioned into several stripes like the part-based model [38] and

each stripe F i
part is responsible for predicting vertice-wise

displacements δi of the i-th part. Both Fglobal and Fpart

would be supervised by the losses of person ReID.

3.3. Textureinsensitive RGB Features

Besides 3D shape features, there are some other useful

texture-insensitive RGB features, which also play an im-

portant role in clothing texture-confusing situations, such as

face features and some other local attributes (e.g., glasses).

An extra network branch (Ergb in Figure 2) is con-

structed to excavate valuable information mentioned above.

To force this branch to pay more attention to areas irrele-

vant to clothing texture, we adaptively modify the sampling

strategy of triplet loss [12] via provided clothing informa-

tion [34, 39, 44, 46], based on the characteristics of specific

tasks. For datasets with clothing change, images with the

same identity but different clothes are selected as positive

pairs. For the situation that different identities wear similar

uniforms, images wearing similar clothes will be selected

as negative pairs

Our two-branch model could also be adapted to solve the

common person ReID problem [48, 51]. In this situation,

positive and negative pairs are randomly sampled to train

Ergb. The 3D shape learning branch could serve as supple-

ment of texture information because in this situation texture

is more powerful.

4. Experiment

4.1. Datasets

We conduct experiments on 4 clothing texture-confusing

person ReID datasets, i.e., PRCC [44], VC-Clothes [39],

LTCC [34], FGPR [46], and 2 common datasets, i.e., Mar-

ket1501 [48], DukeMTMC-ReID [51], which demonstrates

the effectiveness of our model in different situations.

Clothing texture-confusing person ReID datasets. There

are two types of clothing texture-confusing benchmarks.

The first type of datasets are collected for evaluating the

performance when the same identity would change cloth-

ing, such as PRCC [44], LTCC [34], VC-Clothes [39]. The

PRCC dataset is captured under 3 disjoint camera views and

samples of identities dressed in different clothing are col-

lected under different camera views. There are 33698 im-

ages in the PRCC, with 150 identities in the training set

and 71 identities in the testing set. The LTCC contains

17138 images of 152 identities. In the training set with 77

identities, 46 people appears in different clothing and the

other 31 people do not change clothing while the testing set

consists of 45 clothing-change identities and 30 clothing-

consistent ones. The VC-Clothes dataset is a virtual bench-

mark synthesized by game engines under 4 camera views.

VC-Clothes has 9449 images of 256 identities in the train-

ing set and 9611 images of 256 identities in the testing set.

The second type of datasets are used for solving the problem

of different identities wearing similar clothes, e.g., FGPR

[46]. There are 115106 images and 245 identities, which

are split into “blue” and “white” groups. 10 train/test splits

are conducted and for each split, 150 identities are divided
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Figure 4. Samples of datasets.

for training and 95 identities for testing. We use the video-

based setting for both training and testing and we apply av-

erage pooling on features obtained on every sequence.

Common person ReID datasets. We utilize two large-

scale benchmarks to validate that our method also achieves

comparable performance on common person ReID situa-

tions. Market1501 [48] includes 1501 identities and 32688

images collected in 6 non-overlapping cameras. 12936 im-

ages of 751 identities form the training set and the other 750

identities form the query set (3368 images) and gallery set

(19734 images). DukeMTMC-ReID [51] covers 8 disjoint

camera views. There are 702 identities and 16522 images

for training, while the testing set contains 702 identities,

with 2228 query samples and 16522 gallery samples.

We apply the evaluation protocol of the PRCC dataset

the same as [44] and that of the FGPR dataset the same as

[46]. Notably, the evaluation of the above datasets is single-

shot, so we only report the cumulative match characteristic

(CMC) curve. For other datasets, we use the CMC curve and

mean average precision (mAP) for evaluation. For PRCC

[44], LTCC [34], VC-Clothes [39] and FGPR [46], we only

report the performance involving clothing texture-confusing

situations as the original papers.

4.2. Implementation details.

We leverage ResNet50 [11] for Ergb. E3D is the part

of ResNet50 [11] before res conv4. Epose and Eshape

both consists of the sub-networks res conv4 & conv5 in

ResNet50. Eglobal and Epart consists of two 1 × 1 convo-

lution layers, a global average pooling layer and two fully-

connected layers. We resize images to 256×128 for training

and testing. The batch size is set as 64 with the number of

identities T = 16 and the sample number of each identities

S = 4. The optimizer is Adam [16]. The total epoch is set

as 120. The initial learning rates of E3D and Epose are set

as 0.0001 while those of Ergb, Eshape, Eglobal, Epart and

D are set as 0.0008. Learning rates would be decayed by 10

after 40 and 90 epochs. The weight decay is set as 0.0005.

4.3. Comparison with stateoftheart

We compare our model with the state-of-the-art ReID

methods separately on clothing texture-confusing and com-

mon ReID datasets, including: (1) hand-crafted feature

representations, e.g., LOMO [22], GOG [27] and metric

learning, e.g., XQDA [22], KISSME [17]; (2) state-of-

the-art deep models on common ReID datasets (image-

based or video-based), e.g., MGN [40], PCB [38], AGRL

[43]; (3) state-of-the-art deep models on clothing texture-

confusing ReID datasets, e.g., SPT+ASE [44], SE+CESD

[34]. The Baseline model in our experiment is a plain two-

branch model that combines two original ResNet50 net-

works, which are trained separately and features are con-

catenated for evaluation.

From Table 1, Table 2 and Table 3, we could observe

that our model significantly exceeds other competitors on

clothing texture-confusing situations. For example, our

model achieves a rank-1/mAP improvement of more than

10.5%/13.9% over those models on VC-Clothes. For

FGPR where different identities might wear similarly, our

model outperforms other methods by about 2.5% in rank-

1. Simultaneously, our model achieves comparable perfor-

mance on Market-1501 and DukeMTMC-ReID.

Comparison on clothing texture-confusing datasets. As

shown in Table 1, on datasets that the same identity might

change clothing, part-based models like MGN [40] achieve

relatively better performance than the basic ReID feature

[11] by considering local ReID features, but still could not

capture effective clues for ReID. The 2D shape-based meth-

ods (e.g., SE+CESD [34]) exceed the RGB based model on

some of the clothing change datasets while they are limited

by the ambiguity of 2D shape representations. Compared

with the above competitors, our method achieves the highest

performance on all three clothing changing datasets thanks

to the modeling of effective 3D shape embedding.

Table 2 shows the performance comparison on the

dataset that different identities would wear similar cloth-

ing. Note that FGPR is a video based ReID dataset and

we make comparison with video-based ReID methods. Our

method still archives the highest performance in terms of

rank-1. This verifies that 3D shape embedding has not only

inherent invariance to identify the same person but also bet-

ter discriminability to distinguish different identities. The

MGS emphasizes on both global and local 3D shapes, and

captures shape differences in different granularities.

Comparison on common datasets. On common ReID

datasets, person clothing texture is the most crucial clue. As

shown in Table 3, although our method does not put much

effort on improving the RGB based feature, our method still

achieves comparable results with the state-of-the-art com-

mon ReID models. The experimental results reveal that the

3D shape feature embedding could help to improve the per-

formance of the baseline method. Additionally, we could

observe that the performance of state-of-the-art ReID mod-

els on the cloth-confusing benchmark is extremely unsta-

ble. For example, MGN [40] achieves 95.7% rank-1 in Mar-

ket1501 while 47.2% in PRCC. In comparison, our model
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Table 1. Performance on clothing change person ReID datasets. The best and second best results are indicated by Red and Blue, respectively.

“†” indicates that we carry out experiments with open codes by ourselves. Performance is measured by %.

Model
PRCC

Model
LTCC

Model
VC-Clothes (cam3&cam4)

rank-1 rank-10 rank-1 mAP rank-1 mAP

LOMO[22]+XQDA[22] 14.5 43.6 LOMO[22]+XQDA[22] 11.0 5.6 LOMO[22]+XQDA[22] 34.5 30.9

LOMO[22]+KISSME[17] 18.6 49.8 LOMO[22]+KISSME[17] 11.0 5.3 GOG[27]+XQDA[22] 35.7 31.3

ResNet [11]† 44.8 81.2 ResNet [11] 20.1 9.0 ResNet [11] 36.4 32.4

PCB [38]† 45.6 82.3 PCB [38] 23.5 10.0 PCB [38] 62.0 62.2

MGN [39]† 47.2 84.3 OSNet [52] 24.0 10.8 MDLA [33] 59.2 60.8

SPT+ASE [44] 34.4 77.3 SE+CESD [34] 26.2 12.4 Part-aligned [37] 69.4 67.3

Baseline 45.6 83.0 Baseline 25.0 9.7 Baseline 73.6 71.5

Our Model 51.3 86.5 Our Model 31.2 14.8 Our Model 79.9 81.2

Table 2. Performance (%) results of our method and other com-

pared methods on FGPR. The “All groups”, “Blue group” and

“White group” settings are the same as [46]. “†” indicates that

we carry out experiments with open codes by ourselves. “∗” in-

dicates the model performance reported in the original paper [46]

where the dataset used is different with the released one. We list it

here just for reference.

Models
All groups Blue group White group

rank-1 rank-5 rank-1 rank-5 rank-1 rank-5

LOMO[22]+XQDA[22]† 20.6 35.1 22.1 38.5 24.1 40.0

GOG[27]+XQDA[22]† 22.6 37.1 23.5 37.9 26.5 42.2

ResNet[11]† 83.0 92.0 84.2 94.0 85.1 94.7

STMP[24]† 85.0 93.4 86.2 94.2 87.5 96.4

AGRL[43]† 85.5 94.5 87.9 96.7 86.5 94.9

FGPR[46]∗ 87.1 95.2 93.6 97.2 99.0 100.0

Baseline 84.6 93.2 85.8 93.8 86.0 94.2

Ours 88.0 95.0 88.3 96.0 88.9 95.9

Table 3. Performance (%) results of our method and other com-

pared methods on Market1501 (under the single-query setting) and

DukeMTMC-ReID.

Models Reference
Market1501 DukeMTMC-ReID

rank-1 mAP rank-1 mAP

HA-CNN [20] CVPR 2018 91.2 75.7 80.5 63.8

PCB [38] ECCV 2018 92.3 77.4 81.8 66.1

MGN [40] ACMMM 2018 95.7 86.9 88.7 78.4

DGNet [49] CVPR 2019 94.8 86.0 86.6 74.3

MHN [6] ICCV 2019 93.6 83.6 87.5 75.2

OSNet [52] ICCV 2019 94.8 86.0 88.6 73.5

SAN [13] AAAI 2020 96.1 88.0 87.9 75.5

Baseline 94.7 84.8 86.8 74.0

Ours 95.0 87.3 88.2 76.1

adaptively captures optimal features in different situations

and achieves more favourable trade-offs.

4.4. Ablation Study

In ablation study, we carry out experiments to demon-

strate: (1) the effectiveness of 3D shape features and the

combination with texture-insensitive RGB features; (2) the

effectiveness of different components of learning 3D shape

features including losses in ASSP and MGS. Please refer to

Section 4.3 for the implementation of the baseline.

Comparison with 3D shape features and RGB Features.

As shown in Table 4, two types of RGB features are trained

in this ablation study, i.e., RGB features with random triplet

sampling and RGB features with triple sampling described

Table 4. Performance (%) comparison of combining different fea-

tures in our methods. Rank-1, rank-5 and mAP are reported. “†”

indicates evaluation with the single feature of one branch. Others

are evaluated with concatenation of features from two branches.

3D Shape
RGB Feature PRCC Market1501

Random Strategy rank-1 rank-5 rank-1 mAP

×
√

× 45.6 83.0 94.7 84.8√ √
× 50.4 85.7 95.0 87.3√

×
√

51.3 86.5 - -

×† × × 44.9 83.2 94.5 84.2√
† ×

√
49.2 84.2 93.2 83.7

Table 5. Performance (%) comparison of different components in

3DSL. Rank-1, rank-5 and mAP are reported.
ASSP

MGS
PRCC Market1501

Ladv Lkey Lsil rank-1 rank-5 rank-1 mAP

× × × × 45.6 83.0 94.7 84.8√ √ √
× 50.1 83.6 94.2 86.7√ √ √ √

51.3 86.5 95.0 87.3√
× ×

√
47.0 82.9 93.9 84.5

×
√ √ √

49.8 84.0 94.5 86.7√ √
×

√
49.0 83.5 93.9 85.5√

×
√ √

49.5 83.9 94.1 86.0

in Section 3.3. We observe that compared with the base-

line, adding 3D shape learning achieves a 4.8% rank-1

improvement on PRCC and 2.5% mAP improvement on

Market1501 in total. The texture-insensitive RGB feature

learned with specifc triplet sampling strategy outperforms

random sampling. Single 3D shape features outperform

RGB features on PRCC but achieve worse performance on

Market1501, demonstrating that clothing texture informa-

tion is more important on common ReID datasets.

Comparison of components in 3DSL. The losses used

in ASSP determine the accuracy of 3D reconstruction and

whether we could capture the intrinsic 3D shape embed-

ding. In Table 5, we observe that the version with only ad-

versarial learning (i.e., Ladv) achieves limited performance

since this only ensures a coarse 3D model without sufficient

discriminative ability. The introduction of self-supervised

projection (i.e., Lkey + Lsil) could bring remarkable im-

provement because it fits to fine-level body and captures

distinguishable body shapes. The combination of all losses

integrates multi-level reconstruction, and thus performs the

best. Moreover, MGS gives 1.2% rank-1 improvement on

PRCC and 0.6% mAP improvement on Market1501.
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Figure 5. Rank list of the baseline and our model in PRCC [44].

Green boxes indicate matched samples while red ones indicate

mismatched. Notably, evaluation of PRCC is single-shot, which

means that there is only one matched sample in the gallery set.

4.5. Further Analysis

Visualization of rank list. To further have an insight on

how 3D shape feature makes sense in texture-confusing sit-

uations, we do some visualization work in this section. As

shown in Figure 5, when applying the baseline model, the

most similar identities are those who have similar clothing

texture or color with the query identity, which typically il-

lustrates the texture bias that we target at in this paper (e.g.,

biase to the red clothing pattern in the first line). On the

other hand, as our model uses texture-insensitive 3D shape

feature, we could capture the inherent invariance for each

identity and overcome the distraction of clothing texture.

Visualization of feature distribution. We visualize feature

distributions to better understand the effectiveness of the 3D

shape feature. In Figure 6a, we could observe that for each

identity, features of samples with the same clothing (circles

and triangles) flock together while samples with different

clothing (squares) keep away from the other two kinds of

features. This phenomenon reveals that for general deep

models, the main obstacle lies in large intra-class distance,

which essentially originates from the excessive attention on

clothing texture. In Figure 6b, the intra-class distance is

obviously reduced, illustrating the invariance of 3D shape.

Features of different identities also remain at certain dis-

tance mainly thanks to the discriminative ability of 3DSL.

Visualization of 3D reconstruction. In Figure 7, we

visualize 3D human reconstruction to evaluate the influ-

ence of coarse-level adversarial learning and fine-level

self-supervised projection in ASSP. The results with only

“Ladv” could ensure valid human models based on extra

auxiliary information but could not accurately fit to cor-

responding shapes and poses. In contrast, reconstructions

with only “Lkey+Lsil” might generate abnormal poses and

shapes. For example, joint rotations of “ID 2” are unrea-

sonable and the body size of “ID 3” is malformed. With

the combination of coarse and fine loss constraints, the pro-

posed ASSP could best fit to specific identities.

Notably, distinction of different body shapes could be

reflected by the reconstruction results. For example, recon-

structed under the same viewpoint, “ID 1” and “ID 3” in

Figure 7 are obviously distinguishable in body size.

(a) Baseline (b) Our Model

Figure 6. t-SNE visualization of different feature distributions of

randomly selected identities in PRCC [44]: (a) features of baseline

model; (b) features of our model. Under Camera A (circles) and

Camera B (triangles), the same identity would not change clothing

while under Camera C (square) clothing change occurs.

𝓛𝒌𝒆𝒚 +𝓛𝒔𝒊𝒍𝓛𝒂𝒅𝒗 𝓛𝒂𝒅𝒗 +𝓛𝒌𝒆𝒚+𝓛𝒔𝒊𝒍
ID 1

ID 2

ID 3

Coarse Fine Coarse+Fine

Figure 7. Visulizaiton of 3D human reconstruction under different

losses in ASSP.

5. Conclusion

In this paper, we propose to learn a texture-insensitive

3D shape representation and demonstrate the effectiveness

in the situations when clothing texture becomes confusing.

Specifically, we propose a novel framework to capture 3D

shape ReID features by combining person ReID and 3D hu-

man reconstruction in an end-to-end training manner. To

solve the problem of lacking ground truth to train 3D re-

construction, we introduce an unsupervised module called

Adversarial Self-Supervised Projection (ASSP) to ensure

coarse body manifolds via adversarial learning and fit the

fine body details via self-supervised projection from 3D to

2D. To enhance the discriminative ability of 3D shape fea-

tures, we propose Multi-Granularity Shape (MGS) learning

to capture part 3D shapes and increase the feature diversity.

Experimental results on either clothing texture-confusing

ReID benchmarks or common ReID benchmarks have il-

lustrated the effectiveness of the proposed modules.
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