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Abstract

We propose a novel point annotated setting for the

weakly semi-supervised object detection task, in which the

dataset comprises small fully annotated images and large

weakly annotated images by points. It achieves a balance

between tremendous annotation burden and detection per-

formance. Based on this setting, we analyze existing de-

tectors and find that these detectors have difficulty in fully

exploiting the power of the annotated points. To solve this,

we introduce a new detector, Point DETR, which extends

DETR by adding a point encoder. Extensive experiments

conducted on MS-COCO dataset in various data settings

show the effectiveness of our method. In particular, when

using 20% fully labeled data from COCO, our detector

achieves a promising performance, 33.3 AP, which outper-

forms a strong baseline (FCOS) by 2.0 AP, and we demon-

strate the point annotations bring over 10 points in various

AR metrics.

1. Introduction

Object detection is one of the fundamental problems in

computer vision. Modern object detectors [12, 14, 15, 22,

29] have achieved great success with the help of tremen-

dous annotated data. However, it is very costly to annotate

a large amount of detection data. Specifically, for each ob-

ject instance, a precise bounding box needs to be labeled

manually and carefully, which is quite time-consuming: it

takes 10-35 seconds [27, 24, 1] for labeling an object.

To reduce the cost of data annotation, weakly super-

vised object detection (WSOD) and semi-supervised object

detection (SSOD) methods are proposed. Weakly super-

vised object detection methods [2, 11, 25, 36] utilize large

data with weak annotations, such as image labels, which

is far easier to collect than precisely annotated bound-

ing boxes. The semi-supervised object detection methods

[10, 17, 26, 28, 31] learn detectors with a small amount

of box-level labeled images and large unlabeled images,

*Equally contribution.
†Corresponding author.

where the cost of image annotation is small. Although

these methods can reduce the cost of annotation signifi-

cantly, their performance is far inferior to their supervised

counterparts [14, 15, 29]. To make a trade-off between an-

notation cost and performance, weakly semi-supervised ob-

ject detection methods (WSSOD) [33] are studied, which

use small box-level labeled images as well as large weakly

labeled images to learn detectors. However, image-level

annotations in weakly annotated data are not optimal for

object detection task since image labels do not contain the

instance-level information of all objects. Motivated by [1],

we annotate each instance in the image by one point (as

shown in Figure 1d) instead of image-level annotation, for

two main reasons. Firstly, compared with image-level an-

notation, points bring much richer information, not only the

category of the object but also the strong prior of object

location. Secondly, there is no strict requirement on point

annotations, such as center points of objects. Thus, the in-

crease in the cost of labeling is marginal compared with

the image-level annotation [1]: 23.3 sec/image vs. 20.0

sec/image in VOC dataset [6].

Though the above new setting is better for weakly semi-

supervised object detection, most recent detectors [14, 15,

29] have difficulty in predicting object boxes based on point

annotations. In most detectors, FPN [14] is a basic compo-

nent, which utilizes multi-level feature maps to predict ob-

ject boxes. FPN can boost the performance of detectors, but

it is incompetent to predict object boxes using point anno-

tations since it is difficult to select the optimal box predic-

tion from multi-level ones, predicted for a point annotation.

For the single-level feature detectors, they may suffer from

bad performance [20, 21, 22] or strict requirement on point

annotations [5, 12, 35] even though they avoid choosing

feature map levels.

Inspired by DETR [4] which achieves competitive per-

formance with a single-level feature map, we propose a

novel detector, Point DETR, by adding a point encoder to

DETR in this paper. It can predict object boxes precisely

from point annotations. Specifically, it uses a single-level

feature map to predict object boxes, avoiding the multi-level

selection problem and can predict object boxes with loose
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(a) Weakly supervised object detection (b) Semi-supervised object detection

(c) Weakly semi-supervised object detection with image-level label (d) Weakly semi-supervised object detection with points (ours)

Figure 1. Different types of object detection settings to reduce the cost of data annotation

points, having no strict requirement on point annotations.

Besides, it inherits the strong representation of DETR, hav-

ing a good performance on object detection. But, different

from DETR, we encode position and category of annotated

points into object queries with the point encoder, which eas-

ily establishes one-to-one correspondences between points

and object queries, being fit for box prediction based on

points. In addition, to boost detection performance and

make optimization easier, we do box predictions as offsets

w.r.t. point position rather than make box predictions di-

rectly like DETR.

To show the superiority of our detector, we mainly eval-

uate our proposed detector on the MS-COCO dataset [16].

To make a fair comparison, we take FCOS [29] as the de-

fault baseline, which is regarded as a point-based detector.

Following our proposed weakly semi-supervised object de-

tection setting, object instances of small image data fraction

(5% ∼ 50%) are annotated fully and the rest are annotated

by points. In these various settings with a different frac-

tion of fully-annotated image data, our proposed detector

outperforms other modern detectors, including multi-level

feature detectors and single-level feature detectors. In par-

ticular, when using 20% fully labeled data from COCO, our

detector outperforms FCOS and Faster R-CNN by 2.0 AP

and 1.9 AP, respectively.

Our main contributions can be summarized as follows:

• We propose a potential and novel setting for the weakly

semi-supervised object detection task, which com-

prises small fully annotated images and large weakly

annotated images by points. Compared with the

image-level data setting [1], this setting introduces

weakly instance-level information with marginal an-

notation cost, which is fit for object detection. This

provides a new perspective to improve detection per-

formance with weakly annotated detection images.

• Based on the above setting, we analyze the drawbacks

of existing modern object detectors and propose Point

DETR, which is simple and easily implemented. The

proposed detector takes object points as input, trans-

forms these points into object queries, and predicts ob-

ject box precisely for these queries, as shown in Fig-

ure 3.

• Extensive experiments on COCO dataset [16] are con-

ducted to demonstrate the effectiveness of our pro-

posed detector. Our detector outperforms most modern

detectors in various data settings. We also do quantity

and quality experiments to show our detector solves

the problems suffered by most modern detectors.

2. Related Work

Supervised Object Detection: With the large-scale fully

annotated detection data, existing modern detectors [12, 14,

15, 22, 29] have obtained great improvements in the ob-

ject detection task. These detectors can be divided into

two categories: two-stage detectors and one-stage detectors.

FPN [14] is a popular two-stage detector, which predicts

object proposals firstly and refines these proposals finally.

Unlike two-stage detectors, one-stage detectors [12, 15, 29]

directly outputs the classification and location of each ob-

ject without refinement. Though achieving great success,

these detectors are trained with a large amount of fully-

annotated data, which is costly to annotate. Thus, there are

many works proposed to reduce the annotation cost.

Semi-Supervised/Weakly Supervised Object Detection:

Semi-supervised object detection (SSOD) [10, 17, 26, 28,

31] and weakly-supervised object detection (WSOD) [2,

11, 25, 36] are introduced to reduce the large cost of data

annotation. The semi-supervised object detection methods

learn detectors with a small amount of box-level labeled

images and large unlabeled images. Jeong et al. [10] em-

ploy consistency constraints for object detection to exploit
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unlabeled data. While, weakly supervised object detection

methods utilize large data with weak annotations, such as

image labels. Bilen et al. [2] learn an object detector un-

der image-level supervision by combining region classifica-

tion and selection. Furthermore, pursuing the performance

of supervised detection and keeping the low cost of an-

notation, weakly semi-supervised object detection methods

(WSSOD) [33] are studied, which use small box-level la-

beled images as well as large weakly labeled images to learn

detectors. Unlike these semi-/weakly-supervised object de-

tection, our proposed detector utilizes a new low-cost anno-

tation: points, which provide instance location. Recently,

UFO2 [23] also uses point supervision as weak labels, but

it does not explore the point information sufficiently as we

shown in Section 4.3.

Point based Semi-Supervised Segmentation: Point su-

pervision [1, 19, 34] has been employed by semantic seg-

mentation. Bearman et al. [1] incorporate point super-

vision along with objectness prior to boost segmentation

performance and alleviate annotation burden. Qian et

al. [19] leverage semantic relationships among several la-

beled points to address the semantic scene parsing task. Dif-

ferent from these works, we focus on object detection task,

where point-based detection has been explored little. Due

to a lack of exploitation, existing detectors do not fit point-

level annotation well.

DETR: Unlike existing detectors, DETR [4] removes the

need for many hand-designed components like a non-

maximum suppression procedure or anchor generation. By

virtue of Transformer [30], DETR takes an image as input

and directly outputs a fixed set of box predictions. For the

point-based detection task, DETR has a beneficial charac-

teristic: a single-level feature map, avoiding the multi-level

selection problem. However, directly applied DETR into

point-based detection task is not practical. Object queries

in DETR are general embeddings and have no specific point

information. Conversely, our detector encodes the position

and category of annotated points into object queries with the

point encoder and establishes one-to-one correspondences

between point annotations and object queries.

3. Method

In this section, we first introduce the task of weakly

semi-supervised object detection (WSSOD) with point an-

notations and discuss why existing object detectors can not

fit this task well. Next, in order to solve it, we illustrate our

novel detector, Point DETR, in detail.

WSSOD with point annotations: WSSOD generally uses

a small set of instance-level labeled images and tremendous

weakly image-level labeled images as training data (Fig-

ure 1c). However, for object detection, image-level labeled

horse

person

step2. generate pseudo-labelsstep1. train a teacher model

Teacher

supervised images weakly supervised images

supervised images pseudo-labeled images

Student

horse

person

horse

person

horse

person

step3. train a student model

Figure 2. Overall framework. The white arrows represent the

training stage, and the black arrows represent the inference stage.

The steps of the framework are represented by red, yellow, blue

rounded rectangles respectively. Best viewed in color.

images do not fit WSSOD well, since it can not provide in-

stance information. This raises a natural question: is there a

new data annotation for weakly labeled images, which has

instance information without a large annotation burden? In

this paper, we introduce point annotation for weakly labeled

images.

Point Annotations: It is introduced by Bearman et al. [1]

for weakly semantic segmentation, but it has not been ex-

plored well in object detection. In object detection, we de-

fine point annotation as follows: it locates on the object and

takes object class as its category. Thus, we represent an

object as (x, y, c), where (x, y) ∈ [0, 1]2 and c represent

point location and object category, respectively. We must

note that our method is robust to point location, as shown

in Table 1e. Therefore, the point annotations can locate at

the anywhere of objects. In this way, we can alleviate the

annotation burden.

Overall Framework: With this new setting that a small

number of supervised images and a large number of

weakly supervised images, we adapt self-training as our

default training pipeline, which has made considerable

progress in semi-supervised learning (e.g. Lee [13],Noise-

Student [32],STAC [26]). The steps are summarized as fol-

lows:

1. Train a teacher model on available labeled images.
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Figure 3. Point DETR takes the image and its corresponding object points as input. The object points are normalized to [0, 1]2, and are

encoded into object queries by the point encoder module. The transformer decoder takes the object queries and additionally attends to

the image features (extracting by backbone and encoder). The output of the transformer decoder is passed to the head, generating box

predictions. The box predictions are the relative offsets from the four sides of a bounding box to the point location. The components that

are different from DETR are highlighted by light yellow.

2. Generate pseudo-labels of weakly point annotated

images using the trained teacher model.

3. Train a student model with fully labeled images and

pseudo-labeled images.

The overall framework is shown in Figure 2. For most

self-training based detection methods, hyper-parameters are

selected carefully since they must keep true object boxes

and screen out false ones as much as possible. Instead, we

can directly predict the corresponding object box for each

point annotation without duplicate object boxes. Although

choosing hyper-parameters is no longer an obstacle to per-

formance, predicting object boxes from point-level annota-

tions with existing detectors remains a problem.

Discussion on Existing Detectors: Existing detectors can

be divided into two categories: multi-level feature detectors

and single-level feature detectors. For multi-level detec-

tors (e.g. FCOS[29]), it is difficult for them to predict ob-

ject boxes with point annotations since point annotations do

not have feature-level information, which is used to select

one prediction from multi-level box predictions (Figure 8b).

On the other hand, single-level feature detectors (e.g. Faster

R-CNN[22]) suffer from the bad performance or strict re-

quirement on point annotations though avoiding choosing

feature map levels (Figure 8c). For more experiments see

Section 4.3.

3.1. Point DETR

To avoid the drawbacks of existing detectors in the WS-

SOD with point annotations task, we introduce a novel de-

tector, Point DETR: adding a point encoder to DETR. It

transforms point annotations into object queries, extracts

image features for each object query, and outputs the cor-

responding object box. Next, we introduce a key element of

Point DETR, point encoder, which is critical to the WSSOD

with point annotations task.

DETR: We begin by reviewing DETR [4], which is an end-

to-end set-based object detector. DETR consists of a CNN

backbone, an encoder-decoder transformer, and a predic-

tion head. DETR first extracts a single-level 2D feature map

from the CNN backbone, flattens it, and supplements it with

a positional encoding. Then, the encoder-decoder trans-

former takes as input a fixed set of object queries (learned

positional embeddings) and attends to 1D image feature em-

beddings. Finally, the output embeddings of the transformer

are passed to the prediction head that predicts either a de-

tection (class and bounding box) or a “no object” class.

Point DETR: Point DETR, as shown in Figure 3, adopts

most components of DETR. To fit the point annotated im-

ages, Point DETR has a special module, point encoder.

Point encoder can encode the point annotations into object

queries, which are taken as input by the transformer de-

coder. Unlike the object queries in DETR that are learned

positional embeddings, these object queries are specific in-

stance embeddings which contain position and category in-

formation of object instances. Thus, these object queries

have a one-to-one correspondence with object instances.

Moreover, the number of object queries varies with the

number of object instances in an image instead of a fixed

number(e.g. 100) like DETR.

During training, we simply define the loss of each ob-

ject query as L = Lbox, since we already have category

for each object query and only need to regress the object

box. The bounding-box loss Lbox is identical as it defined

in DETR. But, for the box prediction b̂i, it calculated by

b̂i = b̂initi +∆b̂i, where b̂initi ∈ [0, 1]4 is (x, y, x, y), (x, y)

is the location of point annotation and ∆b̂i ∈ [0, 1]4 is

the relative offsets w.r.t. the point location (x, y) follow-

ing FCOS [29]. In our experiments, we show this way of

regression can alleviate the mismatch between point anno-

tation and object box, see Section 4.3.

Point Encoder: In point DETR, how to encode point an-

notations into object queries is critical for point encoder.
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Figure 4. Point encoder. For each point (x, y, c), it encodes the po-

sition (x, y) and category c separetely, and then takes the element-

wise addition as the point embedding.

As shown in Figure 4, a point annotation (x, y, c) is decom-

posed to a 2D coordinate (x, y) ∈ [0, 1]2 and category index

c. Based on (x, y), the position embedding epos ∈ R
256 is

extracted from fixed spatial positional encodings [30, 18, 4],

which is the same as one used in the transformer encoder.

For category embedding ecat ∈ R
256, it is obtained from

predefined learnable category embeddings by category in-

dex, i.e. c. In the end, we fuse these embedding to get the

object query by sum operation.

Though point encoder is simple and easily implemented,

it bridges the divisions between point annotations and ob-

ject queries. In the experiments, we show the essentials of

every component (positional encoder and category encoder)

in point encoder, see section 4.3.

4. Experiments

We evaluate our models on the COCO 2017 detection

dataset [16] with synthetic point annotations (details in sec-

tion 4.1). We report the standard COCO metrics including

AP (averaged over IoU thresholds), AP50, AP75. In addi-

tion, to show the quality of generated pseudo-boxes, we also

calculate the mIoU between the generated pseudo-boxes

and the ground truth bounding boxes.

With existing detectors that can not be directly applied to

our point annotated settings, we make some modifications

to existing detectors: FCOS and Faster R-CNN. These mod-

ified detectors are denoted as FCOS† and Faster R-CNN†,

respectively. For FCOS†, we separately extract point fea-

tures from multi-level feature maps by bilinear interpola-

tion [9] and predict the corresponding object box, finally

use the box prediction with the highest point category score

as the pseudo-box. As for Faster R-CNN†, we extract point

features from one-level feature map, and then predict boxes

(a) Ground truth. (b) Absolute regression. (c) Relative regression.

Figure 5. Absolute vs. Relative Regression: Different colors to

distinguish instances and the color of the point annotation is con-

sistent with its corresponding box. Best viewed in color.

for different anchors, finally use one with the highest point

category score as the pseudo-box.

4.1. Implementation Details

We use ResNet-50 [8] as the default backbone for differ-

ent detectors and set the hyper-parameters following these

detectors.

Dataset: We train the model with 118k training images and

evaluate the performance of the detectors on the remaining

5k val images. Specially, for our point annotated setting,

we randomly sample 5%, 10%, 20%, 30%, 40%, 50% of

training images as the fully labeled set and use the rest of

the images as a weakly labeled set. In this paper, we noted

them as different data settings for simplicity, e.g. 20% data

setting. For the weakly labeled set, we synthesize the point

annotations for each object as follows: (a) if the object has

instance segmentation, randomly sample a point from the

instance mask as the point annotation for the object; (b) if

not, simply randomly sample a point in its bounding box.

Training: In our framework, there are two models: the

teacher model and student model. Our teacher model in-

cludes Point DETR, FCOS†, and Faster R-CNN†. While we

simply choose FCOS as the default student model since the

student model is only used to evaluate the effectiveness of

the teacher model. We show by experiments (in section 4.3)

that our method is robust to the architecture of the student

model.
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Figure 6. Comparison in APs of the student model (i.e. FCOS)

for different methods on MS-COCO. “Supervised” refers to the

student models trained on labeled data only.

For the training of the teacher model, it is simple for

FCOS† and Faster R-CNN†. We train them with their de-

fault training settings. For a fair comparison, we also use

data augmentation as shown in [4]. For Point DETR, it fol-

lows most of the training settings used in [4] with several

differences: we train the model for 108 epochs on 8 GTX

1080Ti GPUs, with 2 images per GPU. To ensure training

stability, we use a warmup scheme [7] in the first epoch.

The learning rate is reduced by a factor of 10 at epoch 72

and 96, respectively. In the training, we randomly sample a

point in each bounding box and transform points into point

annotations. With these point annotations, we train Point

DETR as shown in Figure 3.

For the default student model, we combine the fully la-

beled images and pseudo-labeled images generated by the

teacher model to train the student, as showed in Figure 2.

4.2. Main Results

We first show the effectiveness of Point DETR on dif-

ferent data split settings, see Figure 6. We train the stu-

dent model (i.e. FCOS) only with the fully annotated im-

ages (noted as “Supervised”). By comparing “Supervised”

with the student model trained with pseudo-boxes, we can

evaluate the benefits brought by the pseudo-boxes. Point

DETR and FCOS† outperform “Supervised” by a large mar-

gin. This demonstrates that images with point annotations

can improve the performance of the detection task. Further-

more, Point DETR outperforms FCOS† by a considerable

margin.

Next, we verify the factors that contribute to the great

performance of our method. We compare the accuracies of

FCOS and DETR as shown in Figure 7, DETR performs

worse than FCOS in most settings. Given that our method

based on DETR achieves greater performance, we can con-

clude that the high accuracy of our method does not mainly

20.9

25.4

30.9

33.3

34.9 35.4

18.2

23.7

29.3

32.9

34.8

36.3

15

20
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30

35

0% 10% 20% 30% 40% 50%

A
P

COCO

FCOS

DETR

Figure 7. Comparison in APs of FCOS and DETR to demonstrate

the improvement comes from our method rather than a stronger

teacher model. FCOS trained in DETR augmentation for a fair

comparison. In most cases (5% ∼ 40%), FCOS has a better per-

formance than DETR.

benefit from its strong representation. Moreover, we con-

duct quality and quantity experiments to show the superi-

ority of our method on pseudo-object boxes, see Figure 8.

FCOS†, a multi-level feature detector, can not predict ob-

ject boxes well due to FPN, and Faster R-CNN†, a single-

level feature detector, also has difficulty regressing box ow-

ing to poor representation. But, Point DETR can gener-

ate a more precise object box than other detectors. Specif-

ically, the mIoU of Point DETR is larger than FCOS† and

Faster R-CNN† by 6.3 and 5.3, respectively. Based on the

above experiments, our method achieves considerable per-

formance mainly by generating precise pseudo-object boxes

from point annotations.

4.3. Ablation Experiments

We conduct the ablation experiments at 20% data setting.

Results are shown in Table 1 and discussed in detail next.

Point Encoder: Table 1a shows the effectiveness of the

components in the point encoder module (as we shown in

Figure 4) . Point DETR with only positional embeddings

outperforms one with only category embeddings and point

DETR has a severe loss in AP (18.6 points) without posi-

tional embeddings. Based on that our method only regresses

the object boxes, this suggests that it is difficult to learn the

relative offsets of a point with respect to the bounding box

without positional embeddings. We also find that adding

category embeddings to positional embeddings can boost

the performance by 2 points. We conjecture this improve-

ment is caused by the that category embeddings can provide

object prior, such as object shape.

Student Model: For student model, we use FCOS [29] as

the default detector. To exploit robustness of our approach,
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pos? cate? AP AP50 AP75

Point Encoder

X 14.7 34.3 10.4

X 31.3 51.0 32.6

X X 33.3 53.5 34.8

(a) Point Encoder: The effectiveness of positional encoder

and category encoder.

Teacher Student AP AP50 AP75

FCOS†

RetinaNet
30.4 49.9 31.6

Ours 32.5 52.8 33.7

FCOS†

FCOS
31.3 50.7 32.6

Ours 33.3 53.5 34.8

(b) Student Model: RetinaNet [15] as the student model demonstrates

the effectiveness of our approach is not related to the student model.

AP AP50 AP75

Faster R-CNN† 31.4 51.6 32.6

Ours 33.3 53.5 34.8

(c) Single-Level Detector: Point DETR

vs. Faster R-CNN†.

Supervised AP AP50 AP75

UFO2 29.1 30.1 - -

Ours 28.1 33.5 53.8 34.8

(d) Comparison with UFO2 [23]: “Super-

vised” refers to the model trained with fully la-

beled data only.

center? AP AP50 AP75

Ours 33.3 53.5 34.8

Ours X 33.3 53.6 34.6

(e) Point Location: The effectiveness

of the point location.

points? score? AP AP50 AP75 APs APm APl AR1 AR10 AR100 ARs ARm ARl

DETR
19.1 33.2 18.7 5.6 20.2 31.3 22.9 32.8 33.6 12.0 35.0 51.0

X 26.9 43.8 27.5 9.2 27.7 39.9 24.2 33.2 33.6 12.0 35.0 51.0

Ours X 26.8 52.3 24.2 12.6 29.5 38.9 30.7 44.0 44.5 22.8 46.9 63.9

∆ -0.1 +8.5 -3.3 +3.4 +1.8 -1.0 +6.5 +10.8 +10.9 +10.8 +11.9 +12.9

(f) Point Annotations: To confirm the benefits of point annotations, we compare Point DETR (with points) vs. DETR (without points)

by analyzing the generated boxes with respect to ground truth boxes. With AR far exceeding DETR, our AP remains comparable.

Table 1. Ablations. All ablation experiments are conducted at 20% data setting except (d).

(a) Ground truth. (b) FCOS†. mIoU: 57.1. (c) Faster R-CNN†. mIoU: 58.1. (d) Point DETR (ours). mIoU: 63.4.

Figure 8. Visualized results of FCOS†, Faster R-CNN† and Point DETR ( ours). The mIoU between the ground truth boxes and pseudo-

boxes on the entire weakly labeled images are provided. Different colors to distinguish instances, and the color of the point annotation is

consistent with its corresponding box. Best viewed in color.

we replace FCOS with RetinaNet [15]. In Table 1b, we

find that our method has a 2.1 AP gain over baseline. This

demonstrates that our method is robust to the student model.

Single-Level Detector: We compare Point DETR with

single-level feature detectors and choose Faster R-CNN†

as the default single-level feature detector. As shown in

Table 1c, Point DETR outperforms Faster R-CNN† by 1.9

points. This highlights that effectiveness of Point DETR.

Comparison with UFO2 [23]: To show the effectiveness

of our method, we compare Point DETR with UFO2.

For fair comparison, we train Point DETR following the

dataset split in UFO2: COCO-35 (fully labeled images) and
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COCO-80 (point labeled images). As shown in Table 1d,

our method has inferior performance than UFO2 when is

only trained on COCO-35, but it outperforms UFO2 by 3.4

points adding COCO-80. This indicates that our method

can make better use of point annotation information.

Point Location: To validate that our method is robust to

the point location, we compare performances between two

point location schemes: center point and arbitrary point on

objects. As shown in Table 1e, our method has comparable

performance between these two point location scheme.

Absolute vs. Relative Regression: Our method use rela-

tive regression to predict object boxes. In Figure 5, we com-

pare our relative regression with absolute regression used in

DETR. Absolute regression incorrectly matches the point

with the bounding box that does not correspond (e.g. the

green clock in Figure 5b) in some cases. Compared with

absolute regression, relative regression has little mismatch

problem between point and object box, we attribute it to its

use of the prior knowledge: the point is in the bounding box.

Point Annotations: To evaluate the effectiveness of point

annotations, we compare our approach with the method

without point annotations. For a fair comparison, we use

DETR as the method without point annotations. We ap-

ply a self-training framework (following [26]) on DETR

directly. We train DETR with only fully labeled images

first, and then generate pseudo-boxes for weakly labeled im-

ages without point annotations. To remove duplicate boxes,

we use a threshold τ = 0.7 which results in the best box

predictions on weakly labeled images. For the generated

pseudo-object boxes, they do not have the one-to-one cor-

respondence with point annotations. Thus, it is impractical

to calculate the mIoU between generated boxes and ground

truth boxes. To make comparison available, we use stan-

dard COCO metrics instead of mIoU , as shown in Table 1f.

Point DETR performs on par with DETR on mAP and out-

performs DETR by a large margin in the recall. Specifically,

Point DETR achieves over 10 points of improvements in

various AR metrics (e.g. ARs, ARm, ARl, AR100) and its

AP is comparable with DETR (26.8 vs. 26.9). Though Point

DETR is 3.3 points AP75 lower than DETR, which is possi-

bly explained by that high τ screens out low-quality boxes

and remains high-quality boxes, the higher recall of Point

DETR can offset this bad influence.

Additionally, we set the classification score of pseudo-

boxes generated by DETR to a constant value like 0.5,

which is consistent with our method. In this setting, the

performance of DETR drops by a large margin and per-

forms much worse than our method. This highlights that

with point annotations, our method does not suffer from the

quality of classification score.

We also analyze the errors of the generated boxes by

TIDE [3] in Figure 9. Missed ground truths is the largest

(a) DETR. (b) Point DETR (ours).

Figure 9. Diagnosing the errors of generated pseudo-boxes by

TIDE [3]. Different error types: Cls: localized correctly but classi-

fied incorrectly, Loc: classified correctly but localized incorrectly,

Both: both cls and loc error, Dupe: duplicate detection error, Bkg:

detected background as foreground, Miss: missed ground truth er-

ror.

issue for DETR, while it does not affect the performance of

Point DETR greatly. This is explained by that with point an-

notations, Point DETR does not miss objects like DETR. In

addition, unlike DETR, location error is the main challenge

of Point DETR. Also, Point DETR also has duplicate de-

tection errors. This is caused by those point annotations re-

siding in multiple bounding boxes that would predict object

boxes for wrong ground truths, which results in a ground

truth that has multiple box predictions.

5. Conclusion

In this work, we verify the effectiveness of point anno-

tations in the weakly semi-supervised detection task. We

also show that the power of point annotations is hindered

by existing detectors. In order to solve this, we propose

the Point DETR which applies a point encoder to the point

annotations to establish the one-to-one correspondence be-

tween point annotations and objects. Our approach is sim-

ple and implemented easily. We demonstrate its efficacy by

the extensive experimental analysis showing that it achieves

state-of-the-art performance.
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