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Abstract

As the computing power of modern hardware is in-

creasing strongly, pre-trained deep learning models (e.g.,

BERT, GPT-3) learned on large-scale datasets have shown

their effectiveness over conventional methods. The big

progress is mainly contributed to the representation abil-

ity of transformer and its variant architectures. In this

paper, we study the low-level computer vision task (e.g.,

denoising, super-resolution and deraining) and develop a

new pre-trained model, namely, image processing trans-

former (IPT). To maximally excavate the capability of trans-

former, we present to utilize the well-known ImageNet

benchmark for generating a large amount of corrupted

image pairs. The IPT model is trained on these images

with multi-heads and multi-tails. In addition, the con-

trastive learning is introduced for well adapting to differ-

ent image processing tasks. The pre-trained model can

therefore efficiently employed on desired task after fine-

tuning. With only one pre-trained model, IPT outperforms

the current state-of-the-art methods on various low-level

benchmarks. Code is available at https://github.

com/huawei-noah/Pretrained-IPT and https:

//gitee.com/mindspore/mindspore/tree/

master/model_zoo/research/cv/IPT

1. Introduction

Image processing is one component of the low-level part

of a more global image analysis or computer vision system.

Results from the image processing can largely influence the

subsequent high-level part to perform recognition and un-

derstanding of the image data. Recently, deep learning has

been widely applied to solve low-level vision tasks, such as

image super-resolution, inpainting, deraining and coloriza-

tion. As many image processing tasks are related, it is nat-
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Figure 1. Comparison on the performance of the proposed IPT and

the state-of-the-art image processing models on different tasks.

ural to expect a model pre-trained on one dataset can be

helpful for another. But few studies have generalized pre-

training across image processing tasks.

Pre-training has the potential to provide an attractive so-

lution to image processing tasks by addressing the follow-

ing two challenges: First, task-specific data can be limited.

This problem is exacerbated in image processing task that

involves the paid-for data or data privacy, such as medical

images [8] and satellite images [73]. Various inconsistent

factors (e.g. camera parameter, illumination and weather)

can further perturb the distribution of the captured data for

training. Second, it is unknown which type of image pro-

cessing job will be requested until the test image is pre-

sented. We therefore have to prepare a series of image pro-

cessing modules at hand. They have distinct aims, but some

underlying operations could be shared.

It is now common to have pre-training in natural lan-

guage processing and computer vision [12]. For example,

the backbones of object detection models [86, 85] are of-

ten pre-trained on ImageNet classification [18]. A num-
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ber of well-trained networks can now be easily obtained

from the Internet, including AlexNet [41], VGGNet [56]

and ResNet [33]. The seminal work Transformers [61]

have been widely used in many natural language process-

ing (NLP) tasks, such as translation [64] and question-

answering [58]. The secret of its success is to pre-train

transformer-based models on a large text corpus and fine-

tune them on the task-specific dataset. Variants of Trans-

formers, like BERT [19] and GPT-3 [5], further enriched

the training data and improved the pre-training skills. There

have been interesting attempts on extending the success of

Transformers to the computer vision field. For example,

Wang et al. [62] and Fu et al. [25] applied the self-attention

based models to capture global information on images. Car-

ion et al. [7] proposed DERT to use transformer architec-

tures for an end-to-end object detection. Most recently,

Dosovitskiy et al. [22] introduced Vision Transformer (ViT)

to treat input images as 16×16 words and attained excellent

results on image recognition.

The aforementioned pre-training in computer vision and

natural language mostly investigate a pretest classification

task, but both the input and the output in an image pro-

cessing task are images. A straightforward application of

these existing pre-training strategies might not be feasible.

Further, how to effectively address different target image

processing tasks in the pre-training stage remains a hard

challenge. It is also instructive to note that the pre-training

of image processing models enjoys a convenience of self-

generating training instances based on the original real im-

ages. The synthetically manipulated images are taken for

training, while the original image itself is the ground-truth

to be reconstructed.

In this paper, we develop a pre-trained model for im-

age processing using the transformer architecture, namely,

Image Processing Transformer (IPT). As the pre-trained

model needs to be compatible with different image process-

ing tasks, including super-resolution, denoising, and derain-

ing, the entire network is composed of multiple pairs of

head and tail corresponding to different tasks and a sin-

gle shared body. Since the potential of transformer needs

to be excavated using large-scale dataset, we should pre-

pair a great number of images with considerable diversity

for training the IPT model. To this end, we select the Im-

ageNet benchmark which contains various high-resolution

with 1,000 categories. For each image in the ImageNet,

we generate multiple corrupted counterparts using several

carefully designed operations to serve different tasks. For

example, training samples for the super-resolution task are

generated by downsampling original images. The entired

dataset we used for training IPT contains about over 10 mil-

lions of images.

Then, the transformer architecture is trained on the huge

dataset as follows. The training images are input to the

specific head, and the generated features are cropped into

patches (i.e., “words”) and flattened to sequences subse-

quently. The transformer body is employed to process the

flattened features in which position and task embedding are

utilized for encoder and decoder, respectively. In addition,

tails are forced to predict the original images with differ-

ent output sizes according to the specific task. Moreover,

a contrastive loss on the relationship between patches of

different inputs is introduced for well adopting to differ-

ent image processing tasks. The proposed image processing

transformer is learned in an end-to-end manner. Experimen-

tal results conducted on several benchmarks show that the

pre-trained IPT model can surpass most of existing meth-

ods on their own tasks by a significant enhancement after

fine-tuning.

2. Related Works

2.1. Image Processing

Image processing consists of the manipulation of im-

ages, including super-resolution, denoising, dehazing, de-

raining, debluring, etc. There are a variety of deep-learning-

based methods proposed to conduct on one or many kinds of

image processing tasks. For the super-resolution, Dong et

al. propose SRCNN [20, 21] which are considered as pio-

neering works introducing end-to-end models that recon-

structs HR images from their LR counterparts. Kim et

al. [39] further explore the capacity of deep neural network

with a more deeper convolutional network. Ahn et al. [2]

and Lim et al. [47] propose introduce residual block into

SR task. Zhang et al. [80] and Anwar and Barnes [3] utilize

the power of attention to enhance the performance on SR

task. A various excellent works are also proposed for the

other tasks, such as denoising [60, 31, 36, 42, 24], dehaz-

ing [6, 43, 74, 71], deraining [35, 69, 55, 29, 65, 44], and

debluring [59, 50, 23, 10]. Different from above methods,

we dig the capacity of both big models and huge volume

of data. Then a pre-training model handling several image

processing tasks is introduced.

2.2. Transformer

Transformer [61] and its variants have proven its suc-

cess being powerful unsupervised or self-supervised pre-

training frameworks in various natural language processing

tasks. For example, GPTs [52, 53, 5] are pre-trained in a

autoregressive way that predicting next word in huge text

datasets. BERT [19] learns from data without explicit su-

pervision and predicts a masking word based on context.

Colin et al. [54] proposes a universal pre-training frame-

work for several downstream tasks. Yinhan et al. [49] pro-

poses a robust variant for original BERT.

Due to the success of Transformer-based models in the

NLP field, there are many attempts to explore the benefits of
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Figure 2. The diagram of the proposed image processing transformer (IPT). The IPT model consists of multi-head and multi-tail for

different tasks and a shared transformer body including encoder and decoder. The input images are first converted to visual features and

then divided into patches as visual words for subsequent processing. The resulting images with high visual quality are reconstructed by

ensembling output patches.

Transformer in computer vision tasks. These attempts can

be roughly divided into two types. The first is to introduce

self-attention into the traditional convolutional neural net-

work. Yuan et al. [72] introduce spatial attention for image

segmentation. Fu et al. [26] proposes DANET utilizing the

context information by combining spatial and channel at-

tention. Wang et al. [66], Chen et al. [15], Jiang et al. [37]

and Zhang et al. [79] also augment features by self-attention

to enhance model performance on several high-level vision

tasks. The other type is to replace convolutional neural net-

work with self-attention block. For instance, Kolesnikov et

al. [40] and Dosovitskiy [22] conduct image classification

with transformer block. Carion et al. [7] and Zhu et al. [88]

implement transformer-based models in detection. Chen et

al. [11] proposes a pre-trained GPT model for generative

and classification tasks. Wu et al. [68] and Zhao et al. [84]

propose pre-training methods for teansformer-based mod-

els for image recognition task. Jiang et al. [38] propose the

TransGAN to generate images using Transformer. How-

ever, few related works focus on low-level vision tasks. In

this paper, we explore a universal pre-training approach for

image processing tasks.

3. Image Processing Transformer

To excavate the potential use of transformer on im-

age processing tasks for achieving better results, here we

present the image processing transformer by pre-training on

large-scale dataset.

3.1. IPT architecture

The overall architecture of our IPT consists of four com-

ponents: heads for extracting features from the input cor-

rupted images (e.g., images with noise and low-resolution

images), an encoder-decoder transformer is established for

recovering the missing information in input data, and tails

are used formapping the features into restored images. Here

we briefly introduce our architecture, details can be found

in the supplementary material.

Heads. To adjust different image processing task, we use

a multi-head architecture to deal with each task separately,

where each head consists of three convolutional layers. De-

note the input image as x ∈ R
3×H×W (3 means R, G, and

B), the head generates a feature map fH ∈ R
C×H×W with

C channels and same height and width (typical we use C =
64). The calculation can be formulated as fH = Hi(x),
where Hi (i = {1, . . . , Nt}) denote the head for the ith

task and Nt denotes the number of tasks.

Transformer encoder. Before input features into the

transformer body, we split the given features into patches

and each patch is regarded as a ”word”. Specifically, the

features fH ∈ R
C×H×W are reshaped into a sequence

of patches, i.e., fpi
∈ R

P 2×C , i = {1, . . . , N}, where

N = HW
P 2 is the number of patches (i.e., the length of se-

quence) and P is patch size. To maintain the position in-

formation of each patch, we add learnable position encod-

ings Epi
∈ R

P 2×C for each patch of feature fpi
follow-

ing [22, 7], and Epi
+ fpi

will be directly input into the

transformer encoder. The architecture of encoder layer is
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following the original structure in [61], which has a multi-

head self-attention module and a feed forward network. The

output of encoder fEi
∈ R

P 2×C for each patch has the

same size to that of the input patch fpi
. The calculation can

be formulated as

y0 = [Ep1
+ fp1

, Ep2
+ fp2

, . . . , EpN
+ fpN

] ,

qi = ki = vi = LN(yi−1),

y′i = MSA(qi, ki, vi) + yi−1,

yi = FFN(LN(y′i)) + y′i, i = 1, . . . , l

[fE1
, fE2

, . . . , fEN
] = yl,

(1)

where l denotes the number of layers in the encoder, MSA

denotes the multi-head self-attention module in the conven-

tional transformer model [61], LN denotes the layer nor-

malization [4] and FFN denotes the feed forward network,

which contains two fully connected layers.

Transformer decoder. The decoder also follows the

same architecture and takes the output of decoder as input

in the transformer body, which consists of two multi-head

self-attention (MSA) layers and one feed forward network

(FFN). The difference to that of the original transformer

here is that we utilize a task-specific embedding as an addi-

tional input of the decoder. These task-specific embeddings

Ei
t ∈ R

P 2×C , i = {1, . . . , Nt} are learned to decode fea-

tures for different tasks. The calculation of decoder can be

formulated as:

z0 = [fE1
, fE2

, . . . , fEN
] ,

qi = ki = LN(zi−1) + Et, vi = LN(zi−1),

z′i = MSA(qi, ki, vi) + zi−1,

q′i = LN(z′i) + Et, k
′
i = v′i = LN(z0),

z′′i = MSA(q′i, k
′
i, v

′
i) + z′i,

zi = FFN(LN(z′′i )) + z′′i , i = 1, . . . , l

[fD1
, fD2

, . . . , fDN
] = yl,

(2)

where fDi
∈ R

P 2×C denotes the outputs of decoder. The

decoded N patched features with size P 2 × C are then re-

shaped into the features fD with size C ×H ×W .

Tails. The properties of tails are same as those of heads,

we use multi tails to deal with different tasks. The cal-

culation can be formulated as fT = T i(fD), where T i

(i = {1, . . . , Nt}) denote the head for the ith task and Nt

denotes the number of tasks. The output fT is the resulted

images size of 3 × H ′ × W ′ which is determined by the

specific task. For example, H ′ = 2H,W = 2W for a 2×
super-resolution task.

3.2. Pre­training on ImageNet

Besides the architecture of transformer itself, one of

the key factors for successfully training an excellent trans-

former is that the well use of large-scale datasets. Compared

with image classification, the number of available data used

for image processing task is relatively small (e.g., only 2000

images on DIV2K dataset for the image super-resolution

task), we propose to utilize the well-known ImageNet as

the baseline dataset for pre-training our IPT model, then

we generate the entire dataset for several tasks (e.g., super-

resolution and denosing) as follows.

As the images in the ImageNet benchmark are of high

diversity, which contains over 1 million of natural images

from 1,000 different categories. These images have abun-

dant texture and color information. We first remove the

semantic label and manually synthesize a variety of cor-

rupted images from these unlabeled images with a variety

of degradation models for different tasks. Note that synthe-

sized dataset is also usually used in these image processing

tasks and we use the same degeneration methods as sug-

gested in [30, 1]. For example, super-resolution tasks often

take bicubic degradation to generate low-resolution images,

denoising tasks add Gaussian noise in clean images with

different noise level to generate the noisy images. These

synthesized images can significantly improve the perfor-

mance of learned deep networks including both CNN and

transformer architectures, which will be shown in the exper-

iment part. Basically, the corrupted images are synthesized

as:

Icorrupted = f(Iclean), (3)

where f denotes the degradation transformation, which is

depended on the specific task: for the super-resolution task,

fsr is exactly the bicubic interpolation; for image denois-

ing, fnoise(I) = I + η, where η is the additive Gaussian

noise; for deraining, frain(I) = I+r in which r is a hand-

crafted rain streak. The loss function for learning our IPT

in the supervised fashion can be formulated as:

Lsupervised =

Nt∑

i=1

L1(IPT(Iicorrupted), Iclean), (4)

where L1 denote the conventional L1 loss for reconstructing

desired images and Iicorrupted denote the corrupted image

for task i, respectively. In addition, Eq. 4 implies that the

proposed framework is trained with multiple image process

tasks simultaneously. Specifically, for each batch, we ran-

domly select one task from Nt supervised tasks for train-

ing and each task will be processed using the correspond-

ing head, tail and task embedding, simultaneously. After

the pre-training the IPT model, it will capture the intrin-

sic features and transformations for a large variety of image

processing tasks thus can be further fine-tuned to apply on

the desired task using the new provided dataset. Moreover,

other heads and tails will be dropped for saving the compu-

tation costs and parameters in the remained head, tail and

body will be updated according to the back-propagation.

However, due to the variety of degradation models, we

cannot synthesize images for all image processing tasks.
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For example, there is a wide range of possible noise lev-

els in practice. Therefore, the generalization ability of

the resulting IPT should be further enhanced. Similar to

the pre-training natural language processing models, the

relationship between patches of images is also informa-

tive. The patch in image scenario can be considered as a

word in natural language processing. For example, patches

cropped from the same feature map are more likely to ap-

pear together, which should be embedded into similar posi-

tions. Therefore, we introduce contrastive learning [13, 32]

for learning universal features so that the pre-trained IPT

model can be utilized to unseen tasks. In practice, denote

the output patched features generated by IPT decoder for

the given input xj as f
j
Di

∈ R
P 2×C , i = {1, . . . , N},

where xj is selected from a batch of training images X =
{x1, x2, . . . , xB}. We aims to minimize the distance be-

tween patched features from the same images while max-

imize the distance between patches from different images.

The loss function for contrastive learning is formulated as:

l(f j
Di1

, f
j
Di2

) = −log
exp(d(f j

Di1

, f
j
Di2

))
∑B

k=1
Ik 6=jexp(d(f j

Di1

, fk
Di2

))
,

Lconstrastive =
1

BN2

N∑

i1=1

N∑

i2=1

B∑

j=1

l(f j
Di1

, f
j
Di2

),

(5)

where d(a, b) = aT b
‖a‖‖b‖ denotes the cosine similarity.

Moreover, to make fully usage of both supervised and self-

supervised information, we reformulate the loss function as:

LIPT = λ · Lcontrastive + Lsupervised. (6)

Wherein, we combine the λ-balanced contrastive loss with

the supervised loss as the final objective function of IPT.

Thus, the proposed transformer network trained using Eq. 6

can be effectively exploited on various existing image pro-

cessing tasks.

4. Experiments

In this section, we evaluate the performance of the pro-

posed IPT on various image processing tasks including

super-resolution and image denoising. We show that the

pre-trained IPT model can achieve state-of-the-art perfor-

mance on these tasks. Moreover, extensive experiments for

ablation study show that the transformer-based models per-

form better than convolutional neural networks when us-

ing the large-scale dataset for solving the image processing

problem.

Datasets. To obtain better pre-trained results of the IPT

model, we use the well-known ImageNet dataset, which

consists of over 1M color images of high diversity. The

training images are cropped into 48 × 48 patches with 3

channels for training, i.e., there are over 10M patches for

training the IPT model. We then generate the corrupted im-

ages with 6 types of degradation: 2×, 3×, 4× bicubic inter-

polation, 30, 50 noise level Gaussian noise and adding rain-

streaks, respectively. For the rain-streak generation, we fol-

low the method described in [70]. During the test, we crop

the images in the test set into 48 × 48 patches with a 10

pixels overlap. Note that the same testing strategy is also

adopted for CNN based models for a fair comparison, and

the resulting PSNR values of CNN models are the same as

that of their baselines.

Training & Fine-tuning. We use 32 Nvidia NVIDIA

Tesla V100 cards to train our IPT model using the conven-

tional Adam optimizer with β1 = 0.9, β2 = 0.999 for 300

epochs on the modified ImageNet dataset. The initial learn-

ing rate is set as 5e−5 and decayed to 2e−5 in 200 epoch

with 256 batch size. Since the training set consists of dif-

ferent tasks, we cannot input all of them in a single batch

due to the expensive memory cost. Therefore, we stack a

batch of images from a randomly selected task in each iter-

ation. After pre-training on the entire synthesized dataset,

we fine-tune the IPT model on the desired task (e.g., ×3
single image super-resolution) for 30 epochs with a learn-

ing rate of 2e−5. Note that SRCNN [20] also found that

using ImageNet training can bring up the performance of

the super-resolution task, while we propose a model fitting

general low-level vision tasks.

4.1. Super­resolution

We compare our model with several state-of-the-art

CNN-based SR methods. As shown in Table 1, our pre-

trained IPT outperforms all the other methods and achieves

the best performance in ×2,×3,×4 scale on all datasets.

It is worth to highlight that our model achieves 33.76dB

PSNR on the ×2 scale Urban100 dataset, which surpasses

other methods with more than ∼0.4dB, while previous

SOTA methods can only achieve a <0.2dB improvement

compared with others, which indicates the superiority of the

proposed model by utilizing large scale pre-training.

We further present the visualization results on our model

in 4× scale on Urban100 dataset. As shown in Figure 3,

it is difficult for recover the original high resolution images

since lots of information are lost due to the high scaling

factor. Previous methods generated blurry images, while the

super-resolution images produced by our model can well

recover the details from the low-resolution images.

4.2. Denoising

Since our pre-trained model can be well adapt to many

tasks, we then evaluate the performance of our model on

image denoising task. The training and testing data is gen-

erated by adding Gaussian noise with σ = 30, 50 to the

clean images.

To verify the effectiveness of the proposed method,
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Urban100 (×4): img 004

HR VDSR [39] EDSR [48]

RDN [82] OISR [34] SAN [17]

RNAN [81] IGNN [87] IPT (ours)

Urban100 (4×):img 012

HR Bicubic VDSR [39] EDSR [48] RDN [82]

OISR [34] SAN [17] RNAN [81] IGNN [87] IPT (ours)

Urban100 (4×): img 044

HR Bicubic VDSR [39] EDSR [48] RDN [82]

OISR [34] SAN [17] RNAN [81] IGNN [87] IPT (ours)

Figure 3. Visual results with bicubic downsampling (×4) from Urban100. The proposed method recovers more details. Compared images

are derived from [87].

BSD68: 163085

GT Noisy (σ=50) CBM3D [16] TNRD [14] RDN [82]

DnCNN [75] MemNet [57] IRCNN [76] FFDNet [77] IPT (ours)

Figure 4. Color image denoising results with noise level σ = 50. Compared images are derived from [78].

we compare our results with various state-of-the-art mod-

els. Table 2 reported the color image denoising results

on BSD68 and Urban100 dataset. As a result, our IPT

achieves the best results among all denoising methods on

different Gaussian noise level. Moreover, we surprisingly

found that our model improve the state-of-the-art perfor-

mance by ∼2dB on the Urban100 dataset, which demon-

strate the effectiveness of pre-training and the superiority of

our transformer-based model.

Figure 4 shows the visualization of the resulted images.

As shown in the figure, noisy images are hard to be recog-

nized and it is difficult to recover the clean images. There-

fore, existing methods fail to reconstruct enough details and

generate abnormal pixels. As a result, our pre-trained model

can well recover several details in the hair of this cat and our

visual quality beats all the previous models obviously.

4.3. Deraining

For the image deraining task, we evaluate our model on

the synthesized Rain100L dataset [70], which consists of

100 rainy images. Quantitative results can be viewed in

Table 3. Compared with the state-of-the-art methods, we

achieve the best performance (41.62dB) with an 1.62dB im-

provement.

Figure 5 shows the visualization results. Previous meth-

ods are failed to reconstruct the original clean images since

they lack of image prior. As a result, our IPT model can

present exactly the same image as the ground-truth and sur-
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Input / Groundtruth
27.37 / 0.8154

DSC
29.34 / 0.8479

GMM
32.38 / 0.9306

JCAS
31.45 / 0.9151

Clear
31.59 / 0.9380

RESCAN
41.26 / 0.9887

PReNet
37.27 / 0.9793

SPANet
35.67 / 0.9700

JORDER_E
41.11 / 0.9894

SIRR
36.99 / 0.9692

RCDNet 
42.15 / 0.9912

IPT (ours)
43.91 / 0.9922

Figure 5. Image deraining results on the Rain100L dataset. Compared images are derived from [63].

Table 1. Quantitative results on image super-resolution. Best and

second best results are highlighted and underlined.
Method Scale Set5 Set14 B100 Urban100

VDSR [39] ×2 37.53 33.05 31.90 30.77

EDSR [48] ×2 38.11 33.92 32.32 32.93

RCAN [80] ×2 38.27 34.12 32.41 33.34

RDN [82] ×2 38.24 34.01 32.34 32.89

OISR-RK3 [34] ×2 38.21 33.94 32.36 33.03

RNAN [81] ×2 38.17 33.87 32.32 32.73

SAN [17] ×2 38.31 34.07 32.42 33.10

HAN [51] ×2 38.27 34.16 32.41 33.35

IGNN [87] ×2 38.24 34.07 32.41 33.23

IPT (ours) ×2 38.37 34.43 32.48 33.76

VDSR [39] ×3 33.67 29.78 28.83 27.14

EDSR [48] ×3 34.65 30.52 29.25 28.80

RCAN [80] ×3 34.74 30.65 29.32 29.09

RDN [82] ×3 34.71 30.57 29.26 28.80

OISR-RK3 [34] ×3 34.72 30.57 29.29 28.95

RNAN [81] ×3 34.66 30.52 29.26 28.75

SAN [17] ×3 34.75 30.59 29.33 28.93

HAN [51] ×3 34.75 30.67 29.32 29.10

IGNN [87] ×3 34.72 30.66 29.31 29.03

IPT (ours) ×3 34.81 30.85 29.38 29.49

VDSR [39] ×4 31.35 28.02 27.29 25.18

EDSR [48] ×4 32.46 28.80 27.71 26.64

RCAN [80] ×4 32.63 28.87 27.77 26.82

SAN [17] ×4 32.64 28.92 27.78 26.79

RDN [82] ×4 32.47 28.81 27.72 26.61

OISR-RK3 [34] ×4 32.53 28.86 27.75 26.79

RNAN [81] ×4 32.49 28.83 27.72 26.61

HAN [51] ×4 32.64 28.90 27.80 26.85

IGNN [87] ×4 32.57 28.85 27.77 26.84

IPT (ours) ×4 32.64 29.01 27.82 27.26

passes all the previous algorithms in visual quality. This

result substantiates the generality of the proposed model.

Table 2. Quantitative results on color image denoising. Best and

second best results are highlighted and underlined.

Method
BSD68 Urban100

30 50 30 50

CBM3D [16] 29.73 27.38 30.36 27.94

TNRD [14] 27.64 25.96 27.40 25.52

DnCNN [75] 30.40 28.01 30.28 28.16

MemNet [57] 28.39 26.33 28.93 26.53

IRCNN [76] 30.22 27.86 30.28 27.69

FFDNet [77] 30.31 27.96 30.53 28.05

SADNet [9] 30.64 28.32 N/A N/A

RDN [83] 30.67 28.31 31.69 29.29

IPT (ours) 32.32 29.88 33.75 31.12

4.4. Generalization Ability

Although we can generate various corrupted images, nat-

ural images are of high complexity and we cannot syn-

thesize all possible images for pre-training the transformer

model. However, a good pre-trained model should have the

capacity for well adapting other tasks as those in the field of

NLP. To this end, we then conduct several experiments to

verify the generalization ability of our model. In practice,

we test corrupted images that did not include in our syn-

thesized ImageNet dataset, i.e., image denoising with noisy

level 10 and 70, respectively. We use the heads and tails for

image denoising tasks as the pre-trained model.

The detailed results are shown in Table 4, we compare

the performance of using the pre-trained IPT model and the

state-of-the-art methods for image denoising. Obviously,

IPT model outperforms other conventional methods, which
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Table 3. Quantitative results of image deraining on the Rain100L dataset. Best and second best results are highlighted and underlined.

Method Input DSC [28] GMM [46] JCAS [30] Clear [27] DDN [28]

PSNR 26.90 27.34 29.05 28.54 30.24 32.38

SSIM 0.8384 0.8494 0.8717 0.8524 0.9344 0.9258

RESCAN [45] PReNet [55] JORDER E [70] SPANet [65] SSIR [67] RCDNet [63] IPT (ours)

38.52 37.45 38.59 35.33 32.37 40.00 41.62

0.9812 0.9790 0.9834 0.9694 0.9258 0.9860 0.9880

Table 4. Generation ability of our IPT model on color image de-

noising with different noise levels. Best and second best results

are highlighted and underlined.

Method
BSD68 Urban100

10 70 10 70

CBM3D [16] 35.91 26.00 36.00 26.31

TNRD [14] 33.36 23.83 33.60 22.63

DnCNN [75] 36.31 26.56 36.21 26.17

MemNet [57] N/A 25.08 N/A 24.96

IRCNN [76] 36.06 N/A 35.81 N/A

FFDNet [77] 36.14 26.53 35.77 26.39

RDN [83] 36.47 26.85 36.69 27.63

IPT (ours) 38.30 28.21 39.07 28.80

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Usage of ImageNet (1.1M Images)

32.8

33.0

33.2

33.4

33.6

33.8
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R
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B
)

IPT
EDSR

IGNN
RDN

Figure 6. The performance of CNN and IPT models using different

percentages of data.

demonstrates that the pre-trained model can capture more

useful information and features from the large-scale dataset.

4.5. Ablation Study

Impact of data percentage. To evaluate the effective-

ness of the transformer architecture, we conduct experi-

ments to analyse the improvement of pre-training on CNN-

based model and transformer-based model. We use 20%,

40%, 60%, 80% and 100% percentages of the synthesized

ImageNet dataset to analyse the impact on the number of

used data for resulting performance. Figure 6 shows the

results of different pre-trained models. When the models

are not pre-trained or pre-trained with small amount (<

60%) of the entire dataset, the CNN models achieve bet-

ter performance. In contrast, when using large-scale data,

the transformer-based models overwhelming CNN models,

which demonstrates that the effectiveness of our IPT model

for pre-training.

Table 5. Impact of λ for contrastive learning.

λ 0 0.05 0.1 0.2 0.5

PSNR 38.27 38.32 38.37 38.33 38.26

Impact of contrastive learning. As discussed above, to

improve the representation ability of our pre-trained model,

we embed the contrastive learning loss (Eq. 6) into the train-

ing procedure. We then evaluate its effectiveness on the ×2

scale super-resolution task using the Set4 dataset. Table 5

shows the impact of the hyper-parameter λ for balancing

the two terms in Eq. 6. When λ=0, the IPT model is trained

using only a supervised learning approach, the resulting

PSNR value is 38.27dB. When employing the contrastive

loss for self-supervised learning, the model can achieve a

38.37dB PSNR value (λ = 0.1), which is about 0.1dB higher

than that of the model trained with λ = 0. These results fur-

ther demonstrate the effectiveness of the contrastive learn-

ing for learning better pre-trained IPT model.

5. Conclusions and Discussions

This paper aims to address the image processing prob-

lems using a pre-trained transformer model (IPT). The IPT

model is designed with multi-heads,multi-tails a shared

transformer body for serving different image processing

task such as image super-resolution and denoising. To max-

imally excavate the performance of the transformer archi-

tecture on various tasks, we explore a synthesized ImageNet

datesets. Wherein, each original image will be degraded to

a series of counterparts as paired training data. The IPT

model is then trained using supervised and self-supervised

approaches which shows strong ability for capturing intrin-

sic features for low-level image processing. Experimental

results demonstrate that our IPT can outperform the state-

of-the-art methods using only one pre-trained model after a

quickly fine-tuning. In the future work, we will extend our

IPT model to more tasks such as inpainting, dehazing, etc.
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