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Figure 1: Result comparison with state-of-the-art methods. (Please zoom in to see the details)

Abstract

Face restoration is important in face image processing,

and has been widely studied in recent years. However, pre-

vious works often fail to generate plausible high quality

(HQ) results for real-world low quality (LQ) face images.

In this paper, we propose a new progressive semantic-aware

style transformation framework, named PSFR-GAN, for

face restoration. Specifically, instead of using an encoder-

decoder framework as previous methods, we formulate the

restoration of LQ face images as a multi-scale progressive

restoration procedure through semantic-aware style trans-

formation. Given a pair of LQ face image and its corre-

sponding parsing map, we first generate a multi-scale pyra-

mid of the inputs, and then progressively modulate different

scale features from coarse-to-fine in a semantic-aware style

transfer way. Compared with previous networks, the pro-

posed PSFR-GAN makes full use of the semantic (parsing

maps) and pixel (LQ images) space information from differ-

ent scales of input pairs. In addition, we further introduce a

semantic aware style loss which calculates the feature style

loss for each semantic region individually to improve the

details of face textures. Finally, we pretrain a face pars-

ing network which can generate decent parsing maps from

∗ This work was done when he was an intern at Alibaba.

real-world LQ face images. Experiment results show that

our model trained with synthetic data can not only produce

more realistic high-resolution results for synthetic LQ in-

puts but also generalize better to natural LQ face images

compared with state-of-the-art methods.

1. Introduction

Blind face restoration refers to recovering the HQ images

from the LQ inputs which suffer from unknown degradation

such as low resolution, noise, blur and lossy compression.

It has drawn more and more interest due to its wide applica-

tions. However, most current restoration methods still focus

on a specific type of restoration, especially super resolution,

and few of them can generalize well to real LQ images.

Unlike general image restoration, face restoration can

exploit strong prior knowledge of the face to recover details

of the face components even when the images are severely

degraded. Therefore, many recent works about face su-

per resolution incorporate face prior knowledge to improve

the performance, such as parsing maps [4], face landmarks

[1, 5, 37] and identity prior [42]. Most of these works are

based on an encoder-decoder like structure, which follow

the practice of general image restoration and aim to learn

a direct black-box mapping from LQ to HQ images. Al-
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though they managed to get better results with extra face

prior knowledge as inputs or supervision, few of them re-

ports satisfactory results for real LQ images. Other methods

[22, 21] try to utilize high quality references to facilitate the

restoration of LQ images. However, their practical applica-

tions are limited when there are no high quality references.

In this work, we propose a new progressive framework,

named PSFR-GAN, which formulates face restoration as

multi-scale semantic-aware style transformation procedure.

Inspired by recent success of style based GAN, i.e., Style-

GAN [15], we use a semantic-aware style transfer approach

to modulate the features of different scales progressively. To

be specific, the proposed PSFR-GAN starts with a learned

constant latent code and then generates features of different

scales through several upsample layers. We modulate the

“styles” of different scale features by generating the cor-

responding style transformation parameters from different

scale inputs. The LQ input provides color information and

the parsing map provides shape and semantic information.

In this way, more details are added to the final features in a

coarse-to-fine manner. In addition, we proposed a seman-

tic aware style loss which calculates the gram matrix loss

for each semantic region separately. Gram matrix loss is

usually applied in neural style transfer [7], recent works [8]

found it also effective in recovering textures. In this work,

we show that the semantic aware style loss can help to im-

prove the restoration of textures and alleviate the occurrence

of artifacts in different face regions.

Finally, to make our framework more practical, we pre-

train a face parsing network (FPN) for LQ face images. In-

tuitively, predicting face parsing maps is easier than face

restoration because we do not need to care the texture de-

tails. Experiments demonstrate that the FPN is pretty robust

on parsing real-world LQ face images. During test time, we

first generate parsing maps for LQ inputs with FPN, and

then produce the HQ outputs with PSFR-GAN.

Our contributions are summarized as follows:

1. We propose a novel multi-scale progressive framework

for practical blind face restoration, i.e. PSFR-GAN.

Our model can recover high quality face details pro-

gressively through semantic aware style transforma-

tion with multi-scale LQ images and parsing maps as

inputs. Compared with previous works, the proposed

PSFR-GAN can make better use of multi-scale inputs

in both pixel domain and semantic domain.

2. We introduce the semantic aware style loss which

helps to improve the texture restoration of different se-

mantic regions and reduce the occurrence of artifacts.

3. Extensive experiments demonstrate that our model

trained with synthetic dataset generalizes better to nat-

ural LQ images than current state-of-the-arts.

4. By introducing a pretrained LQ face parsing network,

our model can generate HQ images given only LQ in-

puts, making it highly practical and applicable.

2. Related Works

In this section, we briefly review the existing methods

for face super-resolution, blind face restoration and HQ face

generation based on generative adversarial networks.

Face Super-Resolution. Face super resolution is often

studied as a basic task for face restoration. Zhu et al. [45]

proposed a cascaded two-branch network to optimize face

hallucination and dense correspondence field estimation in

a unified framework. Yu et al. [39] exploited generative

adversarial networks (GAN) to directly super-resolve LR

inputs. They further improved their model to handle un-

aligned faces [40], noisy faces [41] and faces with different

attributes [38]. Instead of directly inferring HR face im-

ages, Huang et al. [12] proposed to predict wavelet coeffi-

cients from LR images to reconstruct HR images. More re-

cent works exploited extra face prior information to improve

the SR performance. Chen et al. [4] used face landmark

heatmaps and parsing maps to super-resolve unaligned LR

faces. They first predicted landmark heatmaps and parsing

maps from LR faces, and then concatenated them with fea-

ture maps to fine tune the SR results. Adrian et al. [1] jointly

learned face SR and landmark prediction. Yu et al. [37]

employed face component heatmaps to preserve face struc-

ture while super-resolving LR faces. They used one CNN

branch to predict face component heatmaps and then con-

catenated the heatmaps to the SR CNN branch. Kim et al.

[5] proposed a multi-scale facial attention loss by multiply-

ing the heatmap values to the pixel differences of different

scales to better restore pixels around landmarks. However,

most of these works followed a general encoder-decoder

framework and did not fully utilize the face prior, making

them unsuitable to handle real-world LQ images.

Blind Face Restoration To deal with blind face restora-

tion, recent works either tried to improve the framework or

adopted reference based approach. Adrian et al. [2] pro-

posed a two-stage GAN framework to learn real degrada-

tion. Yang et al. [36] introduced the HiFaceGAN which

progressively replenish face details. As for reference based

methods, Song et al. [31] constructed a high-resolution dic-

tionary to help enhance face components. Li et al. [22]

proposed GRFNet which learns to warp a guidance image

for blind face restoration. They further improve their work

by replacing single reference with multiple reference im-

ages [21] and feature dictionaries [20]. The aforementioned

model based methods fail to make full use of face prior,

and the reference based approaches require HQ references

which limits their practical application.

High Quality Face Generation with GAN. Among all

GAN based image generation methods, the style based

11897



GANs (StyleGAN) proposed by Karras et al. [15, 16] ex-

ceed other works by a large margin and generate HQ faces

which are almost indistinguishable from real photos. In-

stead of directly generating the faces from random latent

vector, they first generate style transform parameters from

latent vector, and modulated the features with adaptive in-

stance normalization (AdaIN) [13]. SEAN [44] and Gau-

GAN [27] extend StyleGAN to generate realistic faces from

parsing maps. PULSE [24] describes a self-supervised face

restoration approach by exploring the latent space of a pre-

trained StyleGAN. mGANprior [10] extended PULSE with

multiple latent codes. Inspired by the above works, we in-

troduce the style transformation approach to face restoration

in this paper. Compared with PULSE, our model does not

need a time consuming optimization process and preserves

the shape and identity better.

3. Proposed Method

In this section, we first describe our formulation and

framework in detail, then introduce the semantic-aware

style loss and the other objectives used to train our networks.

3.1. Progressive Semantic-Aware Style Transforma-
tion

As illustrated in Fig. 2, the architecture of our PSFR-

GAN is inspired by GauGAN [27] and StyleGANs [15, 16].

It starts with a learned constant of size C ⇥ 16 ⇥ 16, de-

noted as F0, where C is the channel size. Then, F0 goes

through several upsample residual blocks and generates the

final features with the same size as HQ images. Let’s de-

fine the output features of i-th residual block as Fi, then the

features are progressively upsampled in the following way

Fi =

8

<

:

ΦST

⇣

ΦRES(Fi−1)
⌘

, i = 1

ΦST

⇣

ΦUP (Fi−1)
⌘

, 1 < i  6
(1)

where ΦRES(·) denotes the residual convolution block,

ΦUP (·) denotes the upsample residual convolution block

and ΦST (·) denotes the style transformation block. The last

feature F6 goes through a single ToRGB convolution layer

and predicts the final output ÎH .

The ΦST (·) blocks are the key parts of our framework.

Each of them learns the style transformation parameters

yi = (ys,i,yb,i) for Fi from corresponding scale of input

pairs, i.e., LQ images and parsing maps denoted as (IiL, I
i
P ).

(IiL, I
i
P ) are resized to the same size as Fi through bicubic

interpolation. Then, ΦST (·) can be formulated as follows

yi = Ψ(IiL, I
i
P ), (2)

Fi = yi,s

ΦUP (Fi−1)� µ
⇣

ΦUP (Fi−1)
⌘

�
⇣

ΦUP (Fi−1)
⌘ + yi,b, 1 < i  6

(3)

where Ψ(·) is a lightweight network composed of several

convolution layers. µ(·) and �(·) are the mean and stan-

dard variation of features. Compared with StyleGAN which

adpots spatially invariant styles, we follow [9, 33] and com-

pute the spatially adaptive style parameters yi with the same

size as Fi. This helps to make full use of the spatial-wise

color and texture information from IL as well as shape and

semantic guidance from IP . We use the pretrained face

parsing network (FPN) to generate IP from LQ inputs IL.

3.2. Semantic-Aware Style Loss

Recent super-resolution work [8] has demonstrated that

gram matrix loss which is usually used in style transfer

helps a lot in recovering textures. To better synthesize tex-

ture details, we introduce the semantic-aware style loss Lss

which calculates the gram matrix loss for each semantic re-

gion separately. We use VGG19 features of layer relu3 1,

relu4 1 and relu5 1 to calculate Lss. Denote �i as the

i-th layer feature in VGG19 and the parsing mask with label

j as Mj (the background is denoted as M0), the semantic

aware style loss is formulated as

Lss =

5
X

i=3

18
X

j=0

kG
�

�i(ÎH),Mj

�

� G
�

�i(IH),Mj

�

k2, (4)

G(·) computes the gram matrix of feature �i(·) with seman-

tic label mask Mj as below

G(�i,Mj) =

�

�i �Mj)
T
�

�i �Mj)
P

Mj + ✏
, (5)

where � is the element-wise product, and ✏ = 1e�8 is used

to avoid zero division.

3.3. Model Objectives

Following previous image restoration works [4, 34, 32,

21, 20], we apply reconstruction loss and adversarial loss

apart from Lss.

Reconstruction Loss. It is the combination of pixel and

feature space mean square error (MSE) which aims to con-

strain the network output ÎH close to ground truth IH . We

formulate the reconstruction loss as

Lrec = kÎH � IHk2+
X

s

4
X

k=1

kDk
s (Î

s
H)�Dk

s (I
s
H)k2 (6)

The second term in Lrec is the multi-scale feature matching

loss [32] which matches the discriminator features of ÎH
and IH . s 2 {1, 1

2 ,
1
4} is the downscale factors, and Dk

s (·)
denotes the k-th layer features in Ds.

Adversarial Loss. It has been proved to be effective and

critical in generating realistic textures in image restoration
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Figure 2: Visulization of the proposed progressive semantic-aware style transformation network for face restoration.

tasks. In this work, we use multi-scale discriminators and

hinge loss as the objective function, defined as

LGAN G =
X

s

�E(ÎsH), (7)

LGAN D =
X

s

n

E
⇥

max(0, 1�Ds(I
s
H))

⇤

+

E
⇥

max(0, 1 +Ds(Î
s
H))

⇤

o

,

(8)

For training stability, we incorporate spectral normalization

[26] in both generator and discriminators. In summary, the

final loss function for our generator network is defined as

LG = �ssLss + �recLrec + �advLGAN G, (9)

where � are the weights for different terms. PSFR-GAN is

trained by minimizing LG and LGAN D alternatively.

4. Implementation Details

4.1. Degradation Model

According to previous works [22, 35] and common prac-

tice in SISR framework, we generate the LR image IrL with

the following degradation model:

IrL = ((IH ⌦ k%) #r +n�)JPEGq
, (10)

where ⌦ represents the convolution operation between the

HQ image IH and a blur kernel k% with parameter %. #r
is the downsampling operation with a scale factor r. n�

denotes the additive white Gaussian noise (AWGN) with a

noise level �. (·)JPEGq
indicates the JPEG compression op-

eration with quality factor q. The hyper parameters %, r, �, q

are randomly selected for each HR image IH , and IrL is gen-

erated online. More details are described in the appendix.

After we get IrL, IL = (IrL) "r is used for the parsing map

prediction and face restoration.

4.2. Datasets

Training Data. We adopt the FFHQ [15] as the training

dataset. This dataset consists of 70, 000 high-quality im-

ages at a size of 1024⇥ 1024. All images are automatically

cropped and aligned. We resize the images to 512 ⇥ 512
with bilinear downsampling as the ground-truth HR images,

and synthesize the LQ inputs online with Eq. 12 where the

parameters are randomly selected.

Testing Data. We construct two testing datasets, a syn-

thetic one and a real one. For the synthetic test dataset,

we randomly choose 2, 800 HQ images from CelebAHQ

[14] which has no identity intersection with FFHQ, and then

generate the corresponding LQ images in the same way as

training dataset. We denote this synthetic test dataset as

CelebAHQ-Test. For the real LQ test dataset, we collect

1, 020 faces smaller than 48 ⇥ 48 from CelebA [23] and

106 images provided by GFRNet [22]. The GFRNet-Test

contains LR images from VGGFace2 [3] and IMDB-WIKI

[30]. We also collect some old photos from the internet for

testing. All images are cropped and aligned in the same

manner as FFHQ, and then resized to 512⇥512 using bicu-

bic upsampling. We merge all these images together and

create a new dataset containing 1, 157 real LQ faces, de-

noted as PSFR-RealTest.

4.3. Training Details

We use Adam optimizer [17] to train our networks. We

choose �1 = 0.5,�2 = 0.999, and set the learning rate of

the generator and discriminator to 0.0001 and 0.0004 re-

spectively. The trade-off parameters of different losses are

set as �rec = 10, �ss = 100 and �adv = 1. The train-

ing batch size is set to 4. All models were implemented by

PyTorch [28] and trained on a Tesla V100 GPU.

5. Experiments

In this section, we conduct experiments to compare our

framework with other methods on both synthetic and real

LQ test datasets, and carry out extensive ablation studies

to evaluate the effectiveness of the multi-scale parsing map

guidance and semantic aware style loss.
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LQ Input ESRGAN Super-FAN HiFaceGAN DFDNet PSFR-GAN GT

Figure 3: Visual comparisons on CelebAHQ-Test dataset. The proposed PSFR-GAN shows the best results for LQ inputs

with light degradation, severe degradation, large pose and different skin colors. The predicted parsing maps of LQ inputs

through pretrained FPN are overlapped at the corner of GT images. For better visualization experience, we only show results

with top-5 FID scores in Table 1. Please zoom in to see the details.

Table 1: Quantitative comparison on different restoration tasks with state-of-the-art methods. The test datasets are generated

with FFHQ-Test using random parameters of each specific degradation type.

Task Methods
CelebAHQ-Test PSFR-RealTest

PSNR" SSIM" MSSIM" LPIPS# FID# FID#

JPEG artifacts removal ARCNN 22.78 0.6538 0.7462 0.5862 133.38 124.46

Deblur DeblurGANv2 22.66 0.6587 0.7493 0.5546 113.85 97.42

Super-Resolution

ESRGAN 21.95 0.6096 0.7293 0.5515 97.02 57.51

Super-FAN 22.71 0.6527 0.7459 0.4908 94.95 65.45

WaveletSRNet 23.50 0.6595 0.7542 0.5409 111.60 108.21

Blind-Restoration

HiFaceGAN 21.50 0.5495 0.6900 0.4569 57.81 56.48

DFDNet 22.28 0.6589 0.7650 0.3791 37.34 37.63

PSFR-GAN (ours) 23.64 0.6557 0.7740 0.3042 23.20 30.39

5.1. Evaluation Metrics

For CelebAHQ-Test with ground truth, we take the

widely used PSNR, SSIM and MSSIM metrics. However,

these pixel space metrics prefer smooth results and are not

consistent with human perception, therefore we also adopt

LPIPS score [43] to evaluate the perceptual realism of gen-

erated faces. For natural LQ images without ground truth,

we use FID score [11] to measure the statistic distance

between the restoration results and a reference HQ face

dataset. Compared with other no reference metrics such

as NIQE [25] and IS (Inception Score) [29] which focus on

natural images, FID utilizes a reference HQ face dataset and

gives better measurement. We use the ground truth images

from CelebAHQ-Test as the reference dataset to evaluate

results of PSFR-RealTest. We also provide FID scores for
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LQ Input ESRGAN Super-FAN HiFaceGAN DFDNet PSFR-GAN

Figure 4: Visual comparisons on PSFR-RealTest dataset. Results of the proposed PSFR-GAN are clearer and more realistic.

We show results with top-5 FID scores in Table 1. More results are provided in appendix.

results of CelebAHQ-Test for reference.

5.2. Comparison on Synthetic Datasets

We first evaluate the performance of different methods

on the synthetic CelebAHQ-Test dataset. Following Hi-

FaceGAN [36], we compare the proposed PSFR-GAN with

architectures designed for different restoration tasks: AR-

CNN [6] for JPEG artifacts removal; DeblurGANv2 [18]

for image deblurring; ESRGAN [34] for natural image

super-resolution; Super-FAN [1] and WaveletSRNet [12]

for face super-resolution; and recent methods HiFaceGAN

[36] and DFDNet [20] for blind face restoration. Table 1

shows the performance of both statistical metrics (PSNR,

SSIM, MSSIM) and perceptual metrics (LPIPS, FID). We

can observe that methods designed for specific tasks gener-

ally show low perceptual scores than blind face restoration

methods. Both DFDNet and PSFR-GAN utilize extra face

prior, and their performance is much better than HiFace-

GAN. Compared with DFDNet, the proposed PSFR-GAN

outperforms by a large margin in terms of most evaluation

metrics, especially in FID score (50% improvement), which

indicates the superiority of our proposed PSFR-GAN.

The visualization examples in Fig. 3 help us understand

the quantitative results better. We show three kinds of LQ

inputs in each row of Fig. 3: LQ with light degradation,

LQ with severe degradation, LQ with large pose and differ-

ent skin color. It can be observed that results of both ESR-

GAN and Super-FAN are over smoothed and fail to recover

clear face components and textures compared with blind

face restoration methods, see 2-nd and 3-rd rows. This indi-

cates that methods designed for specific task cannot handle

LQ inputs with complicated blind degradation. The results

of HiFaceGAN are clearer and sharper but contain too much

artifacts in the mouth, eyes and backgrounds. This is most

likely because of the unstable training of GAN without face

prior guidance. Different from PSFR-GAN which utilizes

parsing map, DFDNet needs to first detect the LQ face com-

ponents and then matches them to a HQ dictionary. It may

fail to find the correct reference when the LQ are too blurry

or with large pose. For example, the results of DFDNet in

the 3-rd row seems to have two eyeballs which do not ex-

ist in the other methods. Meanwhile, PSFR-GAN incorpo-

rates the semantic information through parsing map which

is more generic than explicit HQ reference. Therefore, the

results of PSFR-GAN are more realistic and robust with all

kinds of LQ inputs. Moreover, our results are generated us-

ing the predicted parsing maps of the pretrained FPN, see

last column in Fig. 3. This means PSFR-GAN does not

need extra information such as HQ dictionaries during the

test time, making PSFR-GAN available in most situations.

5.3. Comparison on Real World LQ Images

The final target of all methods is to restore real world

LQ face images. To evaluate the generalization ability of
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Figure 5: Visual comparison between PULSE and PSFR-

GAN. Complete results are provided in the appendix.

Please zoom in to see the details.

different methods, we also compare the performance of

PSFR-GAN on PSFR-RealTest dataset with methods in Ta-

ble 1. The same as previous results on CelebAHQ-Test,

methods designed for blind face restoration still outperform

the others. FID score of PSFR-GAN surpasses other meth-

ods by a large margin, and is 20% higher than the second

best result of DFDNet. Fig. 4 gives some examples from

PSFR-RealTest dataset. We can observe that there are many

artifacts in the results of HiFaceGAN. DFDNet seems to

have difficulties finding the correct component references

for real LQ inputs, for example, teeth in the first row and

right eye in the second row. In contrast, the results of our

method is much more natural with few conspicuous arti-

facts. This is because PSFR-GAN generates the results in

a progressive way, and the multi-scale parsing maps pro-

vide multi-scale style guidance which makes PSFR-GAN

able to synthesis realistic textures for each semantic regions,

e.g., teeth textures and eyes. The parsing map results in the

last column illustrate that the pretrained FPN works well

for real LQ inputs. We show more results of PSFR-GAN

on PSFR-RealTest datasets in appendix, which demonstrate

that PSFR-GAN is practical for real world scenarios.

5.4. Comparison with PULSE

PULSE [24] is a recent popular method for face restora-

tion. Different from other methods, PULSE is an optimiza-

tion based method which needs carefully finetune for each

LQ input. Therefore, it is unfair to compare the quantitative

result of PULSE with others on PSFR-RealTest. Instead,

we follow HiFaceGAN and use the historic group photo-

graph of famous physicists taken at the 5th Solvay Con-

ference 1927 for visual comparison. We carefully finetune

PULSE on these photos and get the best results as much

as we can. Even so, we still observe several typical fail-

16 32 64 128 256 512

(a) Multi-scale LQ and parsing map input pairs (IiL, I
i

P ).

(I1

L, I1

P ) +(I2

L, I2

P ) +(I3

L, I3

P ) +(I4

L, I4

P ) +(I5

L, I5

P ) +(I6

L, I6

P )

(b) Results of adding multi-scale inputs (IiL, I
i

P ) progressively.

(c) Keep all scales of LQ inputs IiL, and add different scales of

parsing maps IiP progressively.

(d) Keep all scales of parsing map inputs IiP , and add different

scales of LQ inputs IiL progressively.

Figure 6: Analysis of PSFR-GAN. Zoom in to see details.

ure cases of PULSE shown in Fig. 5: (1) age mismatch

and shape deformation in the first column; (2) large pose

in the second column; (3) background interference in the

third column. The final column shows the best result of

the test photos, but there are many slight shape changes in

the eyes, nose and mouth which make it look like another

person. To conclude, although PULSE can generate better

details, for example hair textures, the results of our PSFR-

GAN are still much better than PULSE in face restoration.

Besides, PSFR-GAN is 40 times faster than PULSE (0.1s

vs. 4s) to process the same image on GPU. Complete re-

sults of Solvay conference are in the appendix.

6. Discussions and Ablation Study

6.1. Analysis of PSFR-GAN

Why PSFR-GAN works ? There are two key designs in

PSFR-GAN: (1) the features are modulated progressively

from coarse-to-fine; (2) the multi-scale input pairs IL and

IP work together to provide sufficient color, shape and se-

mantic information. In Fig. 6(b), we show how details are

progressively added to the final outputs by first zeroing all

inputs and then adding them back from coarse to fine. We

can observe that the restoration process is consistent with
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other degradation parameters.

our hypothesis, and happens in the following order: high

level semantic information comes first, then the mid-level

shape and edges, and finally low-level color and details.

Similarly, we analyze the effect of IiP and IiL separately in

Fig. 6(c) and Fig. 6(d). The first column of Fig. 6(c) and

Fig. 6(d) show the result of using IiL and IiP as inputs sep-

arately. We can see that in the first image of Fig. 6(c), the

nose and mouth borders are not clear and there are many ar-

tifacts in the cheek region. This indicates that network with-

out parsing map as inputs only makes the bicubic results

(first row and last column in Fig. 6(b)) sharper and has dif-

ficulties in understanding the semantic meaning of each re-

gion. When we add IiP progressively, the artifacts are grad-

ually removed and the edges are clearer. As for Fig. 6(d),

we can observe that the semantic regions are clear in all

stages, for example the nose and teeth part. Then, color and

texture details are added with the entry of IiL. In summary,

PSFR-GAN restores the LQ images in a progressive way

by modulating the features with multi-scale inputs, where

IiL provides the low level color and texture informaiton and

IiP contributes the semantic and shape information.

Robustness to different degrees of degradation As an ex-

ample, we verify the effectiveness of the PSFR-GAN for

different upscale factors in Eq. 12 and fix other parameters.

We can observe from Fig. 7 that our network works well for

upscale factors  12 and can produce reasonable result for

⇥16, which demonstrates the robustness of PSFR-GAN.

6.2. Ablation Study

To explore the effectiveness of parsing map guidance and

semantic-aware style loss Lss, we evaluate four variants of

our framework in Table 2: A, baseline model with only IL
as inputs; B, baseline model with (IL, IP ) as inputs but

without Lss; C, baseline model with IL as inputs and Lss;

D, the proposed PSFR-GAN. We can observe that parsing

map plays an important role in face image restoration and

achieves the most improvements, and the Lss can also ben-

efit the restoration results. With the combination of them,

our PSFR-GAN can achieve the best performance. Figure 8

shows some example results on PSFR-RealTest. We can ob-

LQ Baseline + IP + Lss + IP + Lss

Figure 8: Visual comparison between different variations of

our model. Please zoom in to see the details.

Table 2: Ablation study of the proposed method.

ID Model Variations FID#

A Baseline with IL 47.48

B + IP 32.37

C + Lss 34.22

D + IP + Lss 30.39

serve from the bottom row that models without parsing map

(i.e., model A and C) fail to generate clear shapes when the

face border in LQ image is not clear. On the other hand,

models without Lss (i.e., model A and B) produce apparent

artifacts especially in the eyes. In contrast, model D with

parsing map and Lss has none of the above flaws. It can

be inferred from the above observation that 1) parsing map

helps to regularize face structure, and 2) Lss helps to syn-

thesize realistic textures for each semantic region.

7. Conclusion

This paper proposes a multi-scale progressive face

restoration network, named PSFR-GAN, which restores LQ

face inputs in a coarse to fine manner through semantic-

aware style transformation. We also proposed the semantic-

aware style loss based on original gram matrix loss. Exper-

iments on both synthetic and real LQ test datasets demon-

strate the superority and robustness of our PSFR-GAN. By

pretraining the face parsing network (FPN) for LQ inputs,

our framework can generate high-resolution and realistic

HQ outputs without requiring extra inputs. In summary,

PSFR-GAN provides a robust and easy-to-use solution for

face restoration in real-world scenarios.
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