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Abstract

We propose Scale-aware AutoAug to learn data augmen-

tation policies for object detection. We define a new scale-

aware search space, where both image- and box-level aug-

mentations are designed for maintaining scale invariance.

Upon this search space, we propose a new search met-

ric, termed Pareto Scale Balance, to facilitate search with

high efficiency. In experiments, Scale-aware AutoAug yields

significant and consistent improvement on various object

detectors (e.g., RetinaNet, Faster R-CNN, Mask R-CNN,

and FCOS), even compared with strong multi-scale training

baselines. Our searched augmentation policies are trans-

ferable to other datasets and box-level tasks beyond ob-

ject detection (e.g., instance segmentation and keypoint es-

timation) to improve performance. The search cost is much

less than previous automated augmentation approaches for

object detection. It is notable that our searched policies

have meaningful patterns, which intuitively provide valu-

able insight for human data augmentation design. Code and

models are available at https://github.com/Jia-Research-

Lab/SA-AutoAug.

1. Introduction

Object detection, aiming to locate as well as classify var-

ious objects, is one of the core tasks in the computer vision.

Due to the large scale variance of objects in real-world sce-

narios, it raises concerns on how to bring the scale adap-

tation to the network efficiently. Previous work handles

this challenge mainly from two aspects, namely network ar-

chitecture and data augmentation. To make the network

scale invariant, in-network feature pyramids [28, 47, 23]

and adaptive receptive fields [25] are usually employed.

Another crucial technique to enable scale invariance is data

augmentation, which is independent of specific architec-

tures, and can be generalized among multiple tasks.

This paper focuses on data augmentation for object

detection. Current data augmentation strategies can be

*This work was done during an internship at ByteDance AI Lab. Tao

Kong is responsible for correspondence. †Equal contribution.

53 6759 64 74
Inference time (ms/image)

36

37

38

39

40

41

42

43
44
45

A
P 

(%
)

RetinaNet
ResNet-50

   FCOS
ResNet-101

Faster R-CNN
 ResNet-101

 RetinaNet
ResNet-101

Mask R-CNN
 ResNet-101

AutoAug-det

Dropblock

Mixup
PSIS

Stitcher GridMask

InstaBoost

RandAug

Baseline
Scale-aware AutoAug

Figure 1: Comparison with object detection augmentation strate-

gies on MS COCO dataset. Methods in the same vertical line are

based upon the same detector. Scale-aware AutoAug outperforms

both hand-crafted and learned strategies on various detectors.

grouped into color operations (e.g., brightness, contrast, and

whitening) and geometric operations (e.g., re-scaling, flip-

ping). Among them, geometric operations, such as multi-

scale training, improve scale robustness [39, 19]. Sev-

eral hand-crafted data augmentation strategies were devel-

oped to improve performance and robustness of the detec-

tor [41, 42]. Previous work [17, 15] also improves box-level

augmentation by enriching foreground data. Though inspir-

ing performance gain has achieved, these data augmentation

strategies usually rely on heavy expert experience.

Automatic data augmentation policies were widely ex-

plored in image classification [44, 50, 37, 35, 9]. Its poten-

tial for object detection, however, was not thoroughly re-

leased. One attempt to automatically learn data augmen-

tation policies for object detectors is AutoAug-det [51]1,

which performs color or geometric augmentation upon the

context of boxes. It does not fully consider the scale issue

from image- and box-level, which are found, however, es-

sential in object detector design [41, 42, 17]. Moreover, the

heavy computational search cost (i.e., 400 TPU for 2 days)

impedes it from vastly practical. Thus, scale-aware property

and efficiency issue are essential to address for searching

augmentation in box-level tasks.

In this paper, we propose a new way to automatically

1We refer it as AutoAug-det [51] to distinguish from AutoAugment [9].
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learn scale-aware data augmentation strategies for object

detection and relevant box-level tasks. We first introduce

scale-awareness to the search space from two image- and

box-levels. For image-level augmentations, zoom-in and

-out operations are included with their probabilities and

zooming ratios for search. For box-level augmentations,

the augmenting areas are generalized with a new searchable

parameter, i.e., area ratio. This makes box-level augmenta-

tions adaptive to object scales.

Based on our scale-aware search space, we further pro-

pose a new estimation metric to facilitate the search process

with better efficiency. Previously, each candidate policy is

estimated by the validation accuracy on a proxy task [9, 27],

which lacks efficiency and accuracy to an extend. Our met-

ric takes advantage of more specific statistics, that is, vali-

dation accuracy and accumulated loss over different scales,

to measure the scale balance. We empirically show that it

yields a clearly higher correlation coefficient with the actual

accuracy than the previous proxy accuracy metric.

The proposed approach is distinguished from previous

work from two aspects. First, different from hand-crafted

policies, the proposed method utilizes automatic algorithms

to search among a large variety of augmentation candidates.

It is hard to be fully explored or achieved by human effort.

Moreover, compared with previous learning-based meth-

ods, our approach fully explores the important scale issue in

both image-level and box-level. With the proposed search

space and evaluation metric, our method attains decent per-

formance with much (i.e., 40×) less search cost.

The overall approach, called Scale-aware AutoAug, can

be easily instantiated for box-level tasks, which will be elab-

orated on in Sec. 3. To validate its effectiveness, we con-

duct extensive experiments on MS COCO and Pascal VOC

dataset [30, 16] with several anchor-based and anchor-free

object detectors, which are reported in Sec. 4.2.

In particular, with ResNet-50 backbone, the searched

augmentation policies contribute non-trivial gains over the

strong MS baseline of RetinaNet [29], Faster R-CNN [39],

and FCOS [43], and achieve 41.3% AP, 41.8% AP, and

42.6% AP, respectively. We further experiment with more

box-level tasks, like instance segmentation and keypoint de-

tection. Without bells-and-whistles, our improved FCOS

model attains 51.4% AP with the search augmentation poli-

cies. Besides, our searched policies present meaningful pat-

terns, which provide intuitive insight for human knowledge.

2. Related Work

Data augmentation has been widely utilized for net-

work optimization and proven to be beneficial in vision

tasks [11, 40, 39, 32, 33, 36]. Traditional approaches could

be roughly divided into color operations (e.g., brightness,

contrast, and whitening) and geometric operations (e.g.,

scaling, flipping, translation, and shearing), which require

hyper-parameter tuning and are usually task-specific [31].

Some commonly used strategies on image classification

include random cropping, image mirroring, color shift-

ing/whitening [24], Cutout [12], and Mixup [49].

Scale-wise augmentations also play a vital role for

the optimization of object detectors [46, 5]. For exam-

ple, SNIPER [42] generates image crops around ground

truth instances with multi-scale training. YOLO-v4 [2]

and Stitcher [8] introduce mosaic inputs that contain re-

scaled sub-images. For box-level augmentation, Dwibedi

et al. [15] improve detection performance with the cut-and-

paste strategy. And the visual context surrounding objects

are modeled in [14]. Furthermore, InstaBoost [17] aug-

ments training images using annotated instance masks with

a location probability map. However, these hand-crafted

designs still highly rely on expert efforts.

Inspired by recent advancements in neural architecture

search (NAS) [52, 53, 38, 7], researchers try to learn aug-

mentation policies from data automatically. An example

is AutoAugment [9], which searches data augmentations

for image classification and achieves promising results.

PBA [22] uses population-based search method for better

efficiency. Fast AutoAugment [27] applies Bayesian opti-

mization to learn data augmentation policies. RandAug [10]

removes the search process at the price of manually tailor-

ing the search space to a very limited volume. AutoAug-

Det [51] extends AutoAugment [9] to object detection by

taking box-level augmentations into consideration.

3. Scale-aware AutoAug

In this section, we first briefly review the auto augmenta-

tion pipeline. Then, the scale-aware search space and esti-

mation metric will be respectively elaborated in Sec. 3.2 and

Sec. 3.3. We finally show the search framework in Sec. 3.4.

3.1. Review of AutoAug

Auto augmentation methods [9, 51, 22, 27, 26] com-

monly formulate the process of finding the best augmenta-

tion policy as a search problem. To this end, three main

components are needed, namely the search space, search

algorithm, and estimation metric. Search space may vary

according to tasks. For example, the search space [9, 22, 27]

is developed to image classification, while it is not the spec-

ified case for box-level tasks. As for search algorithms, re-

inforcement learning [52] and evolutionary algorithm [38]

are usually utilized to explore the search space in iterations.

During this procedure, each child model, which is opti-

mized with the searched policy p, is evaluated on a designed

metric to estimate its effectiveness. This metric serves as

feedback for the search algorithm.
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Figure 2: Scale-aware search space. It contains image-level and box-level augmentation. Image-level augmentation includes zoom-in

and zoom-out functions with probabilities and magnitudes for search. In box-level, we introduce scale-aware area ratios, which make

operations adaptive to objects in different scales. Augmented images are further generalized with the Gaussian map.

3.2. Scale­aware Search Space

The designed scale-aware search space contains both

image-level and box-level augmentations. The image-level

augmentations include zoom-in and zoom-out functions on

the whole image. As for box-level augmentations, color and

geometric operations are searched for objects in images.

Image-level augmentations. To handle scale variations,

object detectors are commonly trained with image pyra-

mids. However, these scale settings highly rely on hand-

crafted selection. In our search space, we alleviate this bur-

den by searchable zoom-in and zoom-out functions. As il-

lustrated in the left part of Fig. 2, zoom-in and zoom-out

functions are specified by probabilities P and magnitudes

M . Specifically, the probabilities Pin and Pout are searched

in the range from 0 to 0.5. With this range, the existence of

original scale could be guaranteed with the probability

Pori = 1− Pout − Pin. (1)

The magnitude M represents the zooming ratio for each

function. For the zoom-out function, we search a zooming

ratio from 0.5 to 1.0. For the zoom-in function, we search

a zooming ratio from 1.0 to 1.5. For example, if a zooming

ratio of 1.5 is selected, it means that the input images might

be increased by 1.5×. In traditional multi-scale training,

large-scale images would introduce an additional computa-

tional burden. To avoid this issue, we reserve the original

shape in the zoom-in function with random cropping.

After the search procedure, input images are randomly

sampled from zoom-in, zoom-out, and original scale im-

ages with the searched P and M in each training iteration.

In other words, we sample from 3 resolutions, a larger one,

a small one and the original with the searched probabilities,

i.e., {Pin, Pout, Pori}. To our best knowledge, no previ-

ous work considers automatic scale-aware transformation

search for object detection. Experiments validate the supe-

riority over traditional multi-scale training in Tab. 2.

Box-level augmentations. The box-level augmentations

are designed to conduct transformation for each object box.

Different from [51], the proposed approach further smooths

the augmentations and relaxes it to contain learnable fac-

tors, i.e., area ratio. In particular, previous box-level aug-

mentation [51] works exactly in the whole bounding box

annotations without attenuation, which generate an obvi-

ous boundary gap between the augmented and original re-

gion. The sudden appearance change could reduce the dif-

ficulty for networks to locate the augmented objects, which

brings the gap between training and inference. To solve this

issue, we extend the original rectangle augmentation to a
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(a) Comparison between square and gaussian transform.

(b) Gaussian-based transform process.

Figure 3: An example of Gaussian-based box-level augmenta-

tion. It removes the original hard boundary and the augmented

areas are adjustable to the Gaussian variance.

gaussian-based manner. A visualization example of a box-

level color brightness operation is given in Fig. 3(a). We

blend the original and the transformed pixels with a spatial-

wise Gaussian map α(x, y) by

A = α(x, y) · I + (1− α(x, y)) · T, (2)

where I , T , and A denotes the input, transformation func-

tion, and augmented region, respectively. This process is

depicted in Fig. 3(b). Actually, the designed gaussian-based

process softens the boundary gap in a more natural manner.

The second issue in previous operations is the lack of

considering receptive fields and object scales. A common

belief is that neural networks largely rely on the context

information to recognize objects [4, 34]. Experimentally,

we find that it may not be correct for objects in all scales,

while the effect varies with objects scales. This is demon-

strated with widely applied two-stage and one-stage detec-

tors, namely the Faster R-CNN [39] and RetinaNet [29]. As

presented in Tab. 1, if we test it on the COCO validation set

with all context (background) pixels removed, its accuracy

on small objects, APs, dramatically declines from 25.2% to

18.0%. In contrast, APl increases from 53.0% to 56.1%.

It is consistent with that in RetinaNet [29]. This motivates

us that augmentations merely inside/outside object boxes

may not deal with objects in all scales appropriately. To

this end, we introduce a searchable parameter, area ratio,

which makes the aug area adaptive to object sizes.

Here, we generalize the Gaussian map with the param-

eter of area ratio. Given an image with size H × W

Table 1: Analysis on the context for scales. On well-trained

ResNet-101 detectors, APs drops and APl increases consistently

if contexts are removed in validation images.

with context AP APs APm APl

Faster R-CNN

✓ 41.4 25.2 44.8 53.0

✗ 40.5 18.0 45.7 56.1

∆ -0.9 -7.2 +0.9 +3.1

RetinaNet

✓ 40.3 23.3 44.0 53.3

✗ 39.8 16.7 44.4 57.7

∆ -0.5 -6.6 +0.4 +4.4

and bounding box annotations, the box (xc, yc, h, w)

could be represented with the central point (xc, yc) and the

height/width h/w. We formulate the Gaussian map by

α(x, y) = exp

(
−

(
(x− xc)

2

2σ2
x

+
(y − yc)

2

2σ2
y

))
. (3)

Then, we define the augmentation area V as the integra-

tion of the Gaussian map, where

V =

∫ H

0

∫ W

0

α(x, y) dxdy. (4)

The area ratio for the box-level augmentation is denoted

as r. Here, r(sbox) = V/sbox is searchable for different

scales, which determines the spatially augmentation area for

each object. Thus, the standard deviation factors, σx and σy ,

could be calculated as in Eq. (5). We provide the detailed

calculation process in the supplementary materials.

σx = h

√
W/H

2π
r, σy = w

√
H/W

2π
r. (5)

Search space summary. Our search space contains both

image-level and box-level augmentations. For the image-

level augmentation, we search for the parameters of zoom-

in and zoom-out operations. To keep consistent with

the convention [51], our box-level operations have 5 sub-

policies, where sub-policy consists of a color operation as

well as a geometric operation. Each operation contains two

parameters, namely the probability and magnitude. The

probability is sampled from a set of 6 discrete values, from

0 to 1.0 with 0.2 as the interval. The magnitude repre-

sents the strength factor for each operation with custom

range values. We map the magnitude range to a standard-

ized set of 6 discrete values, from 0 to 10 with 2 as the

interval. For box-level operations, there are 3 area ratios

to search for small, middle and large scales. Each area ra-

tio is independently searched in a discrete set of 10 values.

We list the details of these operations in the supplemen-

tary materials. In summary, the total search space provides

(62)2 × (((6 × 62) × (8 × 62))5 × 103) = 1.230 candidate

policies, which is twice large as [51].
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3.3. Scale­aware Estimation Metric

Autoaugment methods commonly employ validation ac-

curacies on a proxy task (a small subset with training im-

ages) as the search metric. However, such a manner is found

to be inaccurate and computationally expensive [10], which

will be further demonstrated in Fig. 4. In contrast, all oper-

ations in our search space, both image-level and box-level,

have explicit relationships with each scale. Thanks for the

convenience, a scale-aware metric can be further proposed

to capture more specific statistics of different scales. Specif-

ically, the evaluation metric is established based on an ob-

servation that balanced optimization over different scales

would be beneficial to training. Thus, a scale-aware metric

can be formulated with the record of the accumulated loss

and accuracy on different scales during fine-tuning.

Given a plain model trained without data augmentation,

we record its validation accuracy AP and accuracies on each

scale APi with i ∈ S. For each candidate policy p, a child

model is further fine-tuned upon it. We record the accumu-

lated loss Lp
i , the validation accuracies on each scale AP p

i ,

and the overall AP to formulate the objective function as

min
p

f({Lp
i∈S}, {AP p

i∈S}). (6)

Balanced optimization over different scales is essential

to the performance and robustness of object detectors. An

intuitive way to measure the balance is the standard devia-

tion σ({Lp
i |i ∈ S}) of losses on various scales. However,

we find it sometimes delves into a sub-optimal where other

scales are sacrificed to achieve the optimization balance.

Here, we adopt the principle of Pareto Optimality [1] to

overcome this obstacle. In particular, we introduce a con-

cept, named Pareto Scale Balance, to describe our objective:

the optimization over scales can not be better without hurt-

ing the accuracy of any other scale. To this end, we intro-

duce a penalization factor Φ to punish the scales Ŝ where

accuracy drops after fine-tuning with the policy p. There-

fore, the metric function can be upgraded to

f({Lp
i∈S}, {AP

p
i∈S}) = σ({Lp

i∈S}) · Φ({AP p

i∈Ŝ
}), (7)

where Φ({AP p

i∈Ŝ
}) =

∏
i∈Ŝ

APi

AP
p

i

and APi

AP
p

i

is the scale-

wise ratio of the original and the fine-tuned accuracy.

Compared with previous proxy-accuracy metrics, ours

is superior in computational efficiency and estimation ac-

curacy. Towards efficient computation, child models are

fine-tuned upon the given plain model, instead of training

from scratch. We record the changes that resulted from the

augmented fine-tuning to compute our metric. For accurate

estimation, more specific statistics, that is, AP and loss over

various scales, is reasonable to receive a higher coefficient

with the actual performance. Experimentally, we carefully

compare the proposed search metric with the original accu-

racy metric to verify the effectiveness in Sec. 4.2.

Algorithm 1: Search Framework

Input : Plain model m, Initialized Population P,

Training set T, Val set V, Iterations #I.
1 f∗, p∗ ← (∞,∅)

2 for k ∈ (1 to #I) do

3 for p ∈ P do

4 mp, {L
p

i∈S} ← finetune(m,T,θp)

5 {AP
p

i∈S} ← evaluate(mp, V)

6 fp ← f({Lp

i∈S}, {AP
p

i∈S}) -- Eq.(7)

7 if fp < f∗ then

8 f∗, p∗ ← (fp, p)

9 P ← select-topk(P)

10 P ← mutate-crossover(P)

Output: The best augmentation policy p∗

Table 2: Improvement details on RetinaNet ResNet-50.

AP AP50 AP75 APs APm APl

MS Baseline 38.2 57.3 40.5 23.0 41.6 50.3

Ours image-level 40.1 59.8 43.3 24.0 44.1 53.1

+ box-level 40.6 60.4 43.6 24.1 44.4 53.5

+ scale-aware area 41.3 61.0 44.1 25.2 44.5 54.6

Table 3: Comparison with AutoAug-det on RetinaNet ResNet-50.

search cost AP APs APm APl

AutoAug-det [51] 800 TPU-days 36.7→39.0 - - -

AutoAug-det† [51]2 800 TPU-days 38.2→40.3 23.6 43.9 53.8

Ours 20 GPU-days 38.2→41.3 25.2 44.5 54.6

Table 4: Search on RetinaNet ResNet-50 with different metrics.

AP AP50 AP75 APs APm APl

proxy accuracy in [51] 40.0 59.7 42.5 23.9 44.1 52.6

scale loss std σ 40.7 60.5 43.5 24.1 44.5 53.5

our metric - Eq. (7) 41.3 61.0 44.1 25.2 44.5 54.6

3.4. Search Framework

Given the above search space and search metric, we de-

scribe the search framework in this section. In this work,

the evolutionary algorithm, e.g., tournament selection algo-

rithm [38], is adopted as the search controller. Specifically,

a population of |P | policies are sampled from the search

space in each iteration. After evaluating the sampled poli-

cies, we select the top k policies as parent for the next gen-

eration. Then, child policies are produced by mutation and

crossover among the parent policies. This process is re-

peated for iterations until convergence.

To evaluate augmentation policies, we first train a plain

model with no data augmentation. Then, we fine-tune it

upon each augmentation policy for n iterations and record

the accumulated loss during optimization. We also record

its accuracy before and after fine-tuning. With these statis-

tics, the search metric for each policy could be obtained.

This search framework is illustrated in Alg. 1.

2† means our implementation with the same baseline settings to ours.
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Table 5: Improvements across detection frameworks.

Models policy AP AP50 AP75 APs APm APl

RetinaNet:

ResNet-503

Baseline 36.6 55.7 39.1 20.8 40.2 49.4

MS Baseline 38.2 57.3 40.5 23.0 41.6 50.3

Ours 41.3 61.0 44.1 25.2 44.5 54.6

ResNet-101

Baseline 38.8 59.1 42.3 21.8 42.7 50.2

MS Baseline 40.3 59.8 42.9 23.2 44.0 53.2

Ours 43.1 62.8 46.0 26.2 46.8 56.7

Faster R-CNN:

ResNet-50

Baseline 37.6 57.8 41.0 22.2 39.9 48.4

MS Baseline 39.1 60.8 42.6 24.1 42.3 50.3

Ours 41.8 63.3 45.7 26.2 44.7 54.1

ResNet-101

Baseline 39.8 61.3 43.5 23.1 43.2 52.3

MS Baseline 41.4 60.4 44.8 25.0 45.5 53.1

Ours 44.2 65.6 48.6 29.4 47.9 56.7

FCOS:

ResNet-50
MS Baseline 40.8 59.6 43.9 26.2 44.9 51.9

Ours 42.6 61.2 46.0 28.2 46.4 54.3

ResNet-101
MS Baseline 41.8 60.3 45.3 25.6 47.7 56.1

Ours 44.0 62.7 47.3 28.2 47.8 56.1

Table 6: Improvements across tasks on Mask R-CNN.

Models policy APm/k APm/k
50

APm/k
75

APb APb
50

APb
75

Instance Segmentation:

ResNet-50
MS Baseline 36.4 58.8 38.7 40.4 61.9 44.0

Ours 38.1 60.9 40.8 42.8 64.4 46.9

ResNet-101
MS Baseline 37.9 60.4 40.4 42.3 63.8 46.6

Ours 40.0 63.2 42.9 45.3 66.4 49.8

Keypoint Estimation:

ResNet-50
MS Baseline 64.1 85.9 69.7 53.5 82.7 58.4

Ours 65.7 86.6 71.7 55.5 84.2 60.9

ResNet-101
MS Baseline 65.1 86.5 71.2 54.8 83.2 60.0

Ours 66.4 87.5 72.7 56.5 84.6 62.1

4. Experiments

4.1. Implementation Details

Policy search. In the search phase, we adopt RetinaNet [29]

on ResNet-50 [21] backbone. We split the detection dataset

into a training set for child model training, a validation set

for evaluation during search, and the test set val2017 for

final evaluation. The validation set contains 5k images ran-

domly sampled from the train2017 in MS COCO [30]

and the remains are for child model training. Each child

model is fine-tuned for 1k iterations on the plain model,

which is just an arbitrary partially trained baseline model.

In the evolutionary search, the evolution process is repeated

for 10 iterations. The evolution population size is 50 and

the top 10 models are selected as subsequent parents.

Final policy evaluation. Models are trained with the

searched augmentation policy in the typical pre-training and

fine-tuning schedule on MS COCO dataset. The training

images are resized such that the shorter size is 800 pixels.

Faster R-CNN and RetinaNet models are trained for 540k it-

erations to fully show its potential, while others are trained

3FPN [28] is used as a default setting, unless -C4 is denoted.

for 270k iterations. Multi-scale training baselines are en-

hanced by randomly selecting a scale between 640 to 800

during training. We train models on 8 GPUs with a total 16

images per batch. The learning rate is initialized as 0.02.

We set weight decay as 0.0001 and momentum as 0.9.

4.2. Verification

In this section, we systematically evaluate our proposed

Scale-aware AutoAug. We first present the improvements

from the search policy on the target task and then show its

transferability to other tasks and datasets. After that, we

analyze the proposed search metric in detail.

Improvements analysis. The top block in Tab. 5 shows the

improvements from our searched augmentation policy on

RetinaNet. On ResNet-50 backbone, our searched augmen-

tation policy enhances the competitive multi-scale training

baseline to 41.3% AP by 3.1%. On ResNet-101, it achieves

a 2.8% gains to 43.1% AP. We also perform experiments

upon the large scale jittering [13] in the supplementary ma-

terials. These improvements come from training data aug-

mentations and introduce no additional cost to inference.

For a better understanding of the improvements, we

show the component-wise improvements in Tab. 2. The

image-level augmentations boost the performance by 1.9%

AP from 38.2% to 40.1%. Upon this, the non-scale-

aware box-level augmentations improve the performance to

40.6%. If it is further upgraded to be scale-aware, the per-

formance gets an additional 0.7% enhancement to 41.3%.

In contrast, in AutoAug-det [51], the box-level augmenta-

tions yield only 0.4% improvements. The improvements

mostly come from small and large objects, which verifies

the effectiveness of scale-aware box-level augmentations.

In addition, we compare with the previous state-of-the-

art auto augmentation method in Tab. 3. On RetinaNet [29]

with ResNet-50 [21] backbone, AutoAug-det [51] im-

proves the baseline from 36.7% to 39.0% by 2.3% AP. For

better comparison, we implement the searched policy in

AutoAug-det [51] on our baseline. It is trained on the exact

same settings, except for the data augmentation policy. It

improves the baseline from 38.2% to 40.3% by 2.1% AP.

It is inferior to our +3.1% improvement. For small objects,

our searched policy gets a more balanced performance (i.e.,

+1.6 APs) thanks to the scale-aware search space and met-

ric. In terms of search cost, the data augmentation policy

in AutoAug-det [51] costs 800 TPU-days (400 TPUs on 2

days) for search, while our search costs only 8 GPUs (Tesla-

V100) on 2.5 days. It is a 40× computational saving, with-

out considering the machine type difference.

Transferability. Although our data augmentation policy is

searched in object detection on RetinaNet, we make com-

prehensive experiments to show its effectiveness to work on

other object detectors, datasets and relevant tasks.
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Table 7: Improvements on PASCAL VOC with Faster R-CNN on ResNet-50 backbone.

mAP plane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

baseline 78.6 80.9 80.8 79.3 72.3 67.2 87.4 88.5 88.6 62.6 86.0 71.2 88.0 88.9 80.6 79.9 52.6 78.7 74.0 86.2 78.3

+ ours 81.6 88.7 88.2 80.1 74.1 73.6 88.3 89.1 88.9 68.1 87.2 73.8 88.4 88.9 87.5 87.1 56.2 79.0 79.7 87.2 78.6

Table 8: Comparison with state-of-the-art data augmentation methods for object detection.

Method Detector Backbone AP AP50 AP75 APs APm APl

Hand-crafted:

Dropblock [18] RetinaNet ResNet-50 38.4 56.4 41.2 - - -

Mix-up [49] Faster R-CNN ResNet-101 41.1 - - - - -

PSIS∗ [45] Faster R-CNN ResNet-101 40.2 61.1 44.2 22.3 45.7 51.6

Stitcher [8] Faster R-CNN ResNet-101 42.1 - - 26.9 45.5 54.1

GridMask [6] Faster R-CNN ResNeXt-101 42.6 65.0 46.5 - - -

InstaBoost∗ [17] Mask R-CNN ResNet-101 43.0 64.3 47.2 24.8 45.9 54.6

SNIP (MS test)∗ [41] Faster R-CNN ResNet-101-DCN-C4 44.4 66.2 49.9 27.3 47.4 56.9

SNIPER (MS test)∗ [42] Faster R-CNN ResNet-101-DCN-C4 46.1 67.0 51.6 29.6 48.9 58.1

Automatic:

AutoAug-det [51] RetinaNet ResNet-50 39.0 - - - - -

AutoAug-det [51] RetinaNet ResNet-101 40.4 - - - - -

AutoAug-det† [51] RetinaNet ResNet-50 40.3 60.0 43.0 23.6 43.9 53.8

AutoAug-det† [51] RetinaNet ResNet-101 41.8 61.5 44.8 24.4 45.9 55.9

RandAug [10] RetinaNet ResNet-101 40.1 - - - - -

RandAug† [10] RetinaNet ResNet-101 41.4 61.4 44.5 25.0 45.4 54.2

Ours:

Scale-aware AutoAug RetinaNet ResNet-50 41.3 61.0 44.1 25.2 44.5 54.6

Scale-aware AutoAug RetinaNet ResNet-101 43.1 62.8 46.0 26.2 46.8 56.7

Scale-aware AutoAug Faster R-CNN ResNet-101 44.2 65.6 48.6 29.4 47.9 56.7

Scale-aware AutoAug (MS test) Faster R-CNN ResNet-101-DCN-C4 47.0 68.6 52.1 32.3 49.3 60.4

Scale-aware AutoAug FCOS ResNet-101 44.0 62.7 47.3 28.2 47.8 56.1

Scale-aware AutoAug FCOS‡ ResNeXt-32x8d-101-DCN 48.5 67.2 52.8 31.5 51.9 63.0

Scale-aware AutoAug (1200 size) FCOS‡ ResNeXt-32x8d-101-DCN 49.6 68.5 54.1 35.7 52.5 62.4

Scale-aware AutoAug (MS test) FCOS‡ ResNeXt-32x8d-101-DCN 51.4 69.6 57.0 37.4 54.2 65.1

In object detection, we verify our policy on mainframe

anchor-based one-stage, two-stage, and anchor-free detec-

tors. In addition to the previous RetinaNet experiments, we

show our results on Faster R-CNN and FCOS in Tab. 5. The

improvements on Faster R-CNN are remarkable, i.e., +2.7%

and +2.8% on ResNet-50 and ResNet-101, respectively. On

the anchor-free detector FCOS, it achieves 44.0% AP on

ResNet-101 with similar improvements.

Our augmentation policy is feasible in any box-level

tasks. We validate its performance using Mask R-CNN [20]

on instance segmentation and keypoint estimation. Simi-

lar improvements are consistently present in Tab. 6. For

instance segmentation, our Mask R-CNN model achieves

40.0% mask AP on ResNet-101 backbone. In addition,

we also transfer our augmentation policy to PASCAL VOC

dataset. We train a Faster R-CNN model on ResNet-50 for

48k iterations and divide the learning rate at 36k iterations.

It improves the baseline by 3% mAP as in Tab. 7.

‡ For FCOS ResNeXt-32x8d-101-DCN models, it is an improved ver-

sion with ATSS [48] for performance boosting. ∗ results on test-dev.

Our comparisons on test-dev are in the supplementary materials.

Table 9: Searched augmentation policy.

Image-level (Zoom-in, 0.2, 4) (Zoom-out, 0.4, 10)

Box-level Color operations Geometric operations

Sub-policy 1. (Color, 0.4, 2) (TranslateX, 0.4, 4)

Sub-policy 2. (Brightness, 0.2, 4) (Rotate, 0.4, 2)

Sub-policy 3. (Sharpness, 0.4, 2) (ShearX, 0.2, 6)

Sub-policy 4. (SolarizeAdd, 0.2, 2) (Hflip, 0.3, 0)

Sub-policy 5. Original (TranslateY, 0.2, 8)

Area ratio Small - 6 Middle - 2 Large - 0.4

Search metric analysis. We compare our search metric

with the proxy accuracy metric. For the proxy accuracy

metric in [51], each model is trained on a subset training set,

5k images. For each search metric, we train 50 models with

policies randomly sampled in the search space. Each model

is trained for 90k iterations and evaluated on val2017 to

obtain the actual accuracy. Meanwhile, the proxy accu-

racy metric and our std-based metric are computed for each

model. We illustrate the Pearson coefficients in Fig. 4. Our

std-based metric is horizontally flipped in [0, 1] for better il-

lustration. It shows that our metric has a clearly higher coef-

ficient to actual accuracies than the proxy accuracy metric.

In addition, we use different metrics for search in Tab. 4.
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Figure 4: Coefficients between actual accuracy and metrics. Our

metric presents a higher coefficient than the proxy accuracy [51].

The search metric in Eq.(7) is slightly better than the purely

std metric, thanks to the penalty factor.

4.3. Comparison

We compare our final models on the MS COCO dataset

with other data augmentation methods in object detection.

The training settings are consistent with the implementation

details mentioned before. As shown in Tab. 8, our augmen-

tation method on Faster R-CNN with ResNet-101 backbone

achieves 44.2% AP, without any testing techniques. It is

better than the augmentation methods with the same back-

bone, including InstaBoost [17] on Mask R-CNN (43.0%

AP). To compare with the state-of-the-art hand-crafted aug-

mentations, SNIP [41] and SNIPER [42] on Faster R-CNN,

we use the exactly the same settings, which includes multi-

scale testing on [480, 800, 1400] sizes, valid ranges, and

Soft-NMS [3]. No flipping or other enhancements are used.

Our model on the same backbone achieves 47.0% AP. It is

better than the 46.1% SNIPER. We also compare with au-

tomatic augmentation methods, AutoAug-det [51] and Ran-

dAug [10]. For a fair comparison, we train them with the

same training settings to our methods on various backbones,

denoted as †. They are inferior to ours.

In addition to these common comparisons, we conduct

experiments on large-scale models to push the envelope of

Scale-aware AutoAug. The baseline is the improved ver-

sion of FCOS [48] on ResNeXt-32x8d-101-DCN backbone

with multi-scale training. It has 47.5% AP in the standard

single scale testing. Without any bells and whistles, Scale-

aware AutoAug enhances this strong baseline to 48.5% AP

by + 1.0% increase. It is further improved to 49.6% AP on

larger training images with 1200 size. When it is equipped

with multi-scale testing, it is promoted to 51.4% AP.

4.4. Discussion

Understanding the searched policy. Tab. 9 illustrates our

learned augmentation policy in details. We present each in-

dividual augmentation in the format of {type, probability,

magnitude}. Probabilities are in the range of [0, 1.0]. The

magnitude ranges for augmentations are listed in the sup-

plementary materials. We measure it with 0 to 10 during

search. This searched policy presents meaningful patterns.

Table 10: Scale variation issue on a clean Faster R-CNN.

AP AP50 AP75 APs APm APl

ResNet-50-C4 34.7 55.7 37.1 18.2 38.8 48.3

with MS train 34.8 55.6 37.3 18.9 39.2 47.6

with FPN 36.7 58.4 39.6 21.1 39.8 48.1

with Ours 36.8 58.0 39.5 21.0 41.2 49.1

• Zoom-out has higher probability and magnitude than

zoom-int. This matches the fact that object detectors

usually have unsatisfied performance in small objects,

while zoom-out benefits detecting small objects.

• The area ratio decreases dramatically from small scale

to large scale. Note that the area ratio is searched inde-

pendently in various scales from a set of discrete num-

bers. This phenomenon shows that augmentation in-

volving the context (area ratio larger than 1.0) would

be beneficial to small and middle object recognition.

• In box-level augmentations, geometric operations gen-

erally have higher probability and magnitude than

color operations. It intuitively reveals that geometric

operations, e.g., rotation, translation, shearing, might

have more effect than color ones in object detection.

The above patterns accord with our intuition and could pro-

vide valuable insights to human knowledge.

Image/Feature pyramids v.s. Scale-aware AutoAug. Fea-

ture pyramid network [28] is proposed for solving the scale

variance issue in Faster R-CNN and has been widely used

in this area. Here we show that our Scale-aware AutoAug

could be a substitute for FPN on Faster R-CNN detector

as in Tab. 10. Multi-scale training is commonly known to

be scale-invariant. However, on a clean baseline of Faster

R-CNN [39] without FPN in 90k training iterations, it pro-

vides almost no benefits. In contrast, our augmentation pol-

icy improves the baseline to the performance that requires

training with FPN. Note that our augmentation policy is

cost-free and requires no network modification.

5. Conclusion

In this work, we present Scale-aware AutoAug for object

detection. It aims at the common scale variation issue with

our search space and search metric. Scale-aware AutoAug

spends 20 GPU-days searching augmentation policies, 40

× saving compared to previous work. Our method shows

significant improvements over several strong baselines. Al-

though the augmentation policy is searched in object detec-

tion on the COCO dataset, it is transferable to other tasks

and dataset. Thus, it provides a practical solution for re-

search and applications of augmentations in object detec-

tion. Finally, the searched augmentation policy have mean-

ingful patterns, which might, in return, provide valuable in-

sights for the hand-crafted data augmentation design.
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