
Transformer Tracking

Xin Chen1 *, Bin Yan1 *, Jiawen Zhu1, Dong Wang1 †, Xiaoyun Yang3 and Huchuan Lu1,2

1School of Information and Communication Engineering, Dalian University of Technology, China
2Peng Cheng Laboratory 3Remark AI

{chenxin3131, yan bin, jiawen}@mail.dlut.edu.cn

wdice@dlut.edu.cn, xyang@remarkholdings.com, lhchuan@dlut.edu.cn

Abstract

Correlation acts as a critical role in the tracking field,

especially in recent popular Siamese-based trackers. The

correlation operation is a simple fusion manner to con-

sider the similarity between the template and the search re-

gion. However, the correlation operation itself is a local

linear matching process, leading to lose semantic informa-

tion and fall into local optimum easily, which may be the

bottleneck of designing high-accuracy tracking algorithms.

Is there any better feature fusion method than correlation?

To address this issue, inspired by Transformer, this work

presents a novel attention-based feature fusion network,

which effectively combines the template and search region

features solely using attention. Specifically, the proposed

method includes an ego-context augment module based on

self-attention and a cross-feature augment module based on

cross-attention. Finally, we present a Transformer track-

ing (named TransT) method based on the Siamese-like fea-

ture extraction backbone, the designed attention-based fu-

sion mechanism, and the classification and regression head.

Experiments show that our TransT achieves very promis-

ing results on six challenging datasets, especially on large-

scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our

tracker runs at approximatively 50 fps on GPU. Code

and models are available at https://github.com/chenxin-

dlut/TransT.

1. Introduction

Visual object tracking is a fundamental task in computer

vision, which aims to predict the position and shape of a

given target in each video frame. It has a wide range of

applications in robot vision, video surveillance, unmanned

driving, and other fields. The main challenges of tracking

are large occlusion, severe deformation, interference from

*Equal contribution
†Corresponding author: Dr. Dong Wang, wdice@dlut.edu.cn

Self-attention Screen Shots Cross-attention

Ground-Truth Ours Ocean-online DiMP50

Figure 1. Tracking results of TransT and two state-of-the-art track-

ers. Our tracker is more robust and accurate in handling various

challenges, such as occlusion, similar object interference, motion

blur.

similar objects, to name a few. Many efforts have been done

in recent years [23, 28], however, designing a high-accuracy

and real-time tracker is still a challenging task.

For most of the popular trackers (such as SiamFC [1],

SiamRPN [22], and ATOM [9]), correlation plays a critical

role in integrating the template or target information into

the regions of interest (ROI). However, the correlation op-

eration itself is a linear matching process and leads to se-

mantic information loss, which limits the tracker to capture

the complicated non-linear interaction between the template

and ROIs. Thus, previous models have to improve the non-

linear representation ability by introducing fashion struc-

tures [21, 44, 48], using additional modules [7, 46, 13], de-

signing effective online updaters [2, 47, 10], to name a few.

This naturally introduces an interesting question: is there

8126



any better feature fusion method than correlation?

In this work, inspired by the core idea of Trans-

former [38], we address the aforementioned problem by

designing an attention-based feature fusion network and

propose a novel Transformer tracking algorithm (named

TransT). The proposed feature fusion network consists of

an ego-context augment module based on self-attention and

a cross-feature augment module based on cross-attention.

This fusion mechanism effectively integrates the template

and ROI features, producing more semantic feature maps

than correlation. Figure 1 provides some representative vi-

sual results, illustrating that our TransT method produces

insightful attention maps regarding the target and performs

better than other competing trackers. Our main contribu-

tions are summarized as follows.

• We propose a novel Transformer tracking framework,

consisting of feature extraction, Transformer-like fu-

sion, and head prediction modules. The Transformer-

like fusion combines the template and search region

features solely using attention, without correlation.

• We develop our feature fusion network based on an

ego-context augment module with self-attention as

well as a cross-feature augment module with cross-

attention. Compared with correlation-based feature fu-

sion, our attention-based method adaptively focuses on

useful information, such as edges and similar targets,

and establishes associations between distant features,

to make the tracker obtain better classification and re-

gression results.

• Numerous experimental results on many benchmarks

show that the proposed tracker performs signifi-

cantly better than the state-of-the-art algorithms, es-

pecially on large-scale LaSOT, TrackingNet, GOT-10k

datasets. Besides, our tracker runs at about 50 fps in

GPU, which meets the real-time requirement.

2. Related Work

Visual Object Tracking. In recent years, Siamese-based

methods have been more popular in the tracking field [37, 1,

22, 42, 21, 44, 48]. SiamFC [1], the pioneering work, com-

bines naive feature correlation with Siamese framework.

After that, SiamRPN [22] combines the Siamese network

with RPN [33] and conducts feature fusion using depthwise

correlation, to obtain more precise tracking results. Some

further improvements have been made, such as adding ad-

ditional branches [42, 45], using deeper architectures [21],

exploiting anchor-free architectures [44, 48], and so on.

These mainstream tracking architectures can be divided

into two parts: a backbone network to extract image fea-

tures, followed by a correlation-based network to compute

the similarity between the template and the search region.

Moreover, some popular online trackers (e.g., ECO [8],

ATOM [9], and DiMP [2]) also heavily rely on the correla-

tion operation. However, two issues have been overlooked.

First, the correlation-based network does not make full use

of global context, so it is easy to fall into the local opti-

mum. Second, through correlation, the semantic informa-

tion has been lost to some degree, which may lead to an im-

precise prediction regarding the target’s boundaries. There-

fore, in this work, we design a variant structure of Trans-

former based on attention to replace the correlation-based

network for conducting feature fusion.

Transformer and Attention. Transformer [38] was first

introduced by Vaswani et al. and applied in machine trans-

lation. Briefly, Transformer is an architecture for trans-

forming one sequence into another one with the help of

attention-based encoders and decoders. The attention mech-

anism looks at an input sequence and decides at each step

which other parts of the sequence are important, and there-

fore facilitates capturing the global information from the in-

put sequence. Transformer has replaced recurrent neural

networks in many sequential tasks (natural language pro-

cessing [11], speech processing [27, 36], and computer vi-

sion [32]), and gradually extended to handle non-sequential

problems [12, 4]. In [4], Carion et al. considers object de-

tection as a set prediction problem and adopts the encoder-

decoder architecture in [38] as the detection head. Experi-

ments on COCO [24] demonstrate that the DETR approach

achieves comparable results to an optimized Faster R-CNN

baseline [33]. Motivated by the success of DETR as well

as the close relationship between detection and tracking

(like RPN [33] and SiamRPN [22]), we attempt to introduce

Transformer into the tracking field. Different from DETR,

we do not directly follow the encoder-decoder architecture

in the original Transformer as it is not very matched with the

tracking task. We adopt the core idea of Transformer and

exploit the attention mechanism to design the ego-context

augment (ECA) and cross-feature augment (CFA) modules.

The integration of ECA and CFA focuses on feature fusion

between template and search region, rather than extracting

information from only one image in [4]. This design phi-

losophy is more suitable for visual object tracking.

Several efforts have been made to introduce the atten-

tion mechanism in the tracking field. ACF [6] learns an

attention network to do switching among different corre-

lation filters. MLT [7] adopts channel-wise attention to

provide the matching network with target-specific informa-

tion. These two works merely borrow the concept of atten-

tion to conduct model or feature selection. For improving

the tracking performance, different attention layers (such

as channel-wise attention [41, 17], spatial-temporal atten-

tion [50], and residual attention [41]) are utilized to enhance

the template information within the correlation matching

framework. SiamAttn [46] explores both self-attention and

cross branch attention to improve the discriminative ability

8127



1×1 conv

reshape

1×1 conv

reshapeT
em

p
la

te
S

ea
rc

h
 R

eg
io

n

ECA CFA

ECA CFA
q

q

k,v

k,v

CFA

q

k,v

N× Feature Fusion Layer

Feature Fusion Network Regression 

Vectors

Classification

Vectors

Feature Extractor

Prediction Head

3 256 256� �

3 128 128� �

Template Vectors

Search Vectors

Regression

Classification

Fusion Vectors

256

1024

1024

1024

1024

Figure 2. Architecture of our Transformer tracking framework. This framework contains three fundamental components: feature extraction

backbone, feature fusion network, and prediction head. The proposed attention-based feature fusion network is naturally applied on the

Siamese-based feature extraction backbone.

of target features before applying depth-wise cross corre-

lation. CGACD [13] learns attention from the correlation

result of the template and search region, and then adopts the

learned attention to enhance the search region features for

further classification and regression. These works have im-

proved the tracking accuracy with the attention mechanism,

but they still highly rely on the correlation operation in fus-

ing the template and search region features. In this work,

we exploit the core idea of Transformer and design a new

attention-based network to directly fuse template and search

region features without using any correlation operation.

3. Transformer Tracking

This section presents the proposed Transformer Tracking

method, named TransT. As shown in Figure 2, our TransT

is very concise, consisting of three components: backbone

network, feature fusion network and prediction head. The

backbone network separately extracts the features of the

template and the search region. Then, the features are en-

hanced and fused by the proposed feature fusion network.

Finally, the prediction head performs the binary classifica-

tion and bounding box regression on the enhanced features

to generate the tracking results1. We introduce the details

of each component of our TransT, introduce the two impor-

tant modules in the feature fusion network, and then provide

some illustrations and discussions.

3.1. Overall Architecture

Feature Extraction. Like Siamese-based trackers [1, 22],

the proposed TransT method takes a pair of image patches

(i.e., the template image patch z ∈ R
3×Hz0×Wz0 and the

search region image patch x ∈ R
3×Hx0×Wx0 ) as the in-

puts of the backbone network. The template patch is ex-

panded by twice the side length from the center of the tar-

1The tracking results are also post-processed by the window penalty,

which will be introduced in Section 4.

get in the first frame of a video sequence, which includes

the appearance information of the target and its local sur-

rounding scene. The search region patch is expanded four

times the side length from the center coordinate of the target

in the previous frame, and the search region typically cov-

ers the possible moving range of the target. Search region

and template are reshaped to squares, then be processed by

the backbone. We use a modified version of ResNet50 [18]

for feature extraction. Specifically, we remove the last stage

of ResNet50 and take the outputs of the fourth stage as fi-

nal outputs. We also change the convolution stride of the

down-sampling unit of the fourth stage from 2 to 1, to ob-

tain a larger feature resolution. Besides, we modify the 3×3
convolution in the fourth stage to dilation convolution with

stride of 2 to increase the receptive field. The backbone

processes the search region and the template to obtain their

features maps fz ∈ R
C×Hz×Wz and fx ∈ R

C×Hx×Wx .

Hz,Wz = Hz0

8
, Wz0

8
, Hx,Wx = Hx0

8
, Wx0

8
and C = 1024.

Feature Fusion Network. We design a feature fusion

network to effectively fuse the features fz and fx. First,

a 1 × 1 convolution reduces the channel dimension of

fz and fx, obtaining two lower dimension feature maps,

fz0 ∈ R
d×Hz×Wz and fx0 ∈ R

d×Hx×Wx . We employ

d = 256 in our implementation. Since the attention-based

feature fusion network takes a set of feature vectors as in-

put, we flatten fz0 and fx0 in spatial dimension, obtaining

fz1 ∈ R
d×HzWz and fx1 ∈ R

d×HxWx . Both fz1 and

fx1 can be regarded as a set of feature vectors of length

d. As shown in Figure 2, the feature fusion network takes

fz1 and fx1 as the inputs to the template branch and the

search region branch respectively. First, two ego-context

augment (ECA) modules focus on the useful semantic con-

text adaptively by multi-head self-attention, to enhance the

feature representation. Then, two cross-feature augment

(CFA) modules receive the feature maps of their own and

the other branch at the same time and fuse these two feature

maps through multi-head cross-attention. In this way, two

8128



ECAs and two CFAs form a fusion layer, as shown in the

dotted box in Figure 2. The fusion layer repeats N times,

followed by an additional CFA to fuse the feature map of

two branches, decoding a feature map f ∈ R
d×HxWx (we

employ N = 4 in this work). The details of ECA and CFA

modules are introduced in Section 3.2.

Prediction Head Network. The prediction head consists

of a classification branch and a regression branch, where

each branch is a three-layer perceptron with hidden dimen-

sion d and a ReLU activation function. For the feature map

f ∈ R
d×HxWx generated by the feature fusion network, the

head makes predictions on each vector to get HxWx fore-

ground/background classification results, and HxWx nor-

malized coordinates with respect to the search region size.

Our tracker directly predicts the normalized coordinates in-

stead of adjusting the anchor points or anchor boxes, com-

pletely discarding the anchor points or anchor boxes based

on prior knowledge, thereby making the tracking frame-

work more concise.

3.2. Ego-Context Augment and Cross-Feature Aug-
ment Modules

Multi-head Attention. Attention is the fundamental com-

ponent in designing our feature fusion network. Given

queries Q, keys K and values V, the attention function is

the scale dot-product attention, defined in equation (1).

Attention(Q,K,V) = softmax(
QK⊤

√
dk

)V, (1)

where dk is the key dimensionality.

As described in [38], extending the attention mechanism

(1) into multiple heads enable the mechanism to consider

various attention distributions and make the model pay at-

tention to different aspects of information. The mechanism

of multi-head attention is defined in equation (2). We refer

the reader to the literature [38] for more detailed descrip-

tions.

MultiHead(Q,K,V) = Concat(H1, ...,Hnh
)WO, (2)

Hi = Attention(QW
Q
i ,KWK

i ,VWV
i ), (3)

where W
Q
i ∈ R

dm×dk , WK
i ∈ R

dm×dk , WV
i ∈

R
dm×dv , and WO ∈ R

nhdv×dm are parameter matri-

ces. In this work, we employ nh = 8, dm = 256 and

dk = dv = dm/nh = 32 as default values.

Ego-Context Augment (ECA). The structure of ECA is

shown in the left of Figure 3. ECA adaptively integrates

the information from different positions of the feature map,

by using multi-head self-attention in the form of residual.

As shown in equation (1), the attention mechanism has no

ability to distinguish the position information of the input

feature sequence. Thus, we introduce a spatial positional

Add & Norm

Spatial 

positional 

encoding
Input: 

Output: ECA

Input: Input:

Add & Norm

FFN

Add & Norm

Spatial 

positional 

encoding

CFA Output: 

Multi-Head

Self-Attention

Multi-Head 

Cross-Attention

Spatial 

positional 

encoding

Figure 3. Left: ECA module. Right: CFA module. The ECA

module is based on multi-head self-attention in a residual form.

The CFA module is based on multi-head cross-attention and FFN

in a residual form. The input Xq receives the feature from the

branch where CFA is located, and Xkv receives the feature from

the other branch. Spatial positional encodings are used to encode

position information. ECA enhances the contextual information of

the input and CFA adaptively fuses the features from two branches.

encoding process to the input X ∈ R
d×Nx . Following [4],

we use a sine function to generate spatial positional encod-

ing. Finally, the mechanism of ECA can be summarized

as

XEC = X+MultiHead(X+Px,X+Px,X), (4)

where Px ∈ R
d×Nx is the spatial positional encodings and

XEC ∈ R
d×Nx is the output of ECA.

Cross-Feature Augment (CFA). The structure of CFA is

shown in the right of Figure 3 . CFA fuses the feature vec-

tors from two inputs by using multi-head cross-attention in

the form of residual. Similar to ECA, spatial positional en-

coding is also used in CFA. In addition, a FFN module is

used to enhance the fitting ability of the model, which is a

fully connected feed-forward network that consists of two

linear transformation with a ReLU in between, that is,

FFN (x) = max (0,xW1 + b1)W2 + b2, (5)

the symbols W and b stand for weight matrices and basis

vectors, respectively. The subscripts denote different layers.

Thus, the mechanism of CFA can be summarized as

XCF = X̃CF + FFN
(
X̃CF

)
,

X̃CF = Xq +MultiHead (Xq +Pq,Xkv +Pkv,Xkv) ,
(6)

where Xq ∈ R
d×Nq is the input of the branch where the

module is applied, Pq ∈ R
d×Nq is the spatial positional en-

coding corresponding to Xq . Xkv ∈ R
d×Nkv is the input

8129



Template

Self-Attention 

Map

Search Region

Self -Attention 

Map

Template

Cross-Attention 

Map

Search Region

Cross -Attention 

Map

Figure 4. Visualization of the attention maps for a representative

pair. From left to right, the feature fusion layer goes deeper. From

top to bottom, they are self-attention maps in the search region,

self-attention maps in the template, cross-attention maps in the

search region, and cross-attention maps in the template, respec-

tively.

from another branch, and Pkv ∈ R
d×Nkv is the spatial en-

coding for the coordinate of Xkv . XCF ∈ R
d×Nq is the

output of CFA. According to equation (6), CFA calculates

the attention map according to multiple scaled products be-

tween Xkv and Xq , then reweighs Xkv according to the at-

tention map, and adds it to Xq to enhance the representation

ability of the feature map.

Differences with the original Transformer. Our method

draws on the core idea of Transformer, i.e., employing the

attention mechanism. But we do not directly adopt the

structure of the Transformer in DETR [4]. Instead, we de-

sign a new structure to make it more suitable for tracking

framework. The cross-attention operation in our method

plays a more important role than that in DETR, since the

tracking task focuses on fusing the template and search re-

gion features. Experimental comparisons of the trackers

with our method and the original Transformer are shown

in Section 4.3.

What does attention want to see? To explore how the

attention module works in our framework, we visualized the

attention maps of all attention modules in a representative

tracking clip, as shown in Figure 4, to see what the attention

wants to see. We use the number n (1≤n≤4) to represent

the current number of the fusion layer. There are four layers

in total, and the fusion layer goes deeper from left to right.

The last single attention map is obtained from the last cross-

attention, which is used for decoding.

The first line shows self-attention maps of the search re-

gion. When n = 1, there is no information from the tem-

plate, the attention module tries to see all objects that are

different from the environment. The same thing happens in

the second line, i.e., self-attention map of template. Inter-

estingly, attention focuses more on key information, such

as the red dot on the tail of the ant. The third and fourth

lines are cross-attention maps applied to the search region

and template respectively. At this point, attention modules

receive features from both template and search region. To

locate the target under the interference of similar targets,

attention modules tend to pay attention to the important in-

formation, i.e., the colored points on the tail of ants. When

n = 2, at this point, the inputs of every attention module

have fused the search region and template information. The

focus of the search region self-attention map on similar dis-

tractors has been reduced, the model appears to have rec-

ognized the target. The cross-attention map to the search

region seems quite sure of its estimation. For the template,

attention modules begin to focus on boundary information.

As the fusion layers go deeper, the search region self-

attention map tends to strengthen the location of the tar-

get, while the cross-attention map to the search region fo-

cuses on the boundary of the identified target. In this way,

the template feature becomes an information bank that con-

tains a large amount of the target’s boundary information,

while the search region feature still keeps its spatial infor-

mation. We notice that the last few attention maps for the

template no longer follow the initial spatial position, but a

puzzling distribution. Perhaps this is because, after the tar-

get has been identified, the features of the template branch

no longer need to keep the information of the template it-

self, but store a lot of the target’s boundary information,

becoming a feature library serving for regression. Through

the visualization of the attention maps, we can see that the

attention modules automatically look for global useful in-

formation, thereby making the tracker achieve good results.

3.3. Training Loss

The prediction head receives Hx × Wx feature vectors,

and outputs Hx × Wx binary classification and regression

results. We select the prediction of feature vectors cor-

responding to pixels in the ground-truth bounding box as

positive samples, the rest are negative samples. All sam-

ples contribute to the classification loss, while only positive

samples contribute to the regression loss. In order to re-

duce the imbalance between positive and negative samples,

we down-weigh the loss produced by negative samples by

a factor 16. We employ the standard binary cross-entropy

loss for classification, which is defined as

Lcls = −
∑

j

[yj log(pj) + (1− yj)log(1− pj)], (7)

where yj denotes the ground-truth label of the j-th sample,

yj = 1 denotes foreground, and pj denotes the probability

belong to the foreground predicted by the learned model.

For regression, we employ a linear combination of ℓ1-norm

loss L1(., .) and the generalized IoU loss LGIoU (., .) [34].

8130



Table 1. State-of-the-art comparison on TrackingNet, LaSOT, and GOT-10k. The best two results are shown in red and blue fonts.

Method Source
LaSOT [14] TrackingNet [30] GOT-10k [19]

AUC PNorm P AUC PNorm P AO SR0.5 SR0.75

TransT Ours 64.9 73.8 69.0 81.4 86.7 80.3 72.3 82.4 68.2

TransT-GOT Ours - - - - - - 67.1 76.8 60.9

SiamR-CNN [39] CVPR2020 64.8 72.2 - 81.2 85.4 80.0 64.9 72.8 59.7

Ocean [48] ECCV2020 56.0 65.1 56.6 - - - 61.1 72.1 47.3

KYS [3] ECCV2020 55.4 63.3 - 74.0 80.0 68.8 63.6 75.1 51.5

DCFST [49] ECCV2020 - - - 75.2 80.9 70.0 63.8 75.3 49.8

SiamFC++ [44] AAAI2020 54.4 62.3 54.7 75.4 80.0 70.5 59.5 69.5 47.9

PrDiMP [10] CVPR2020 59.8 68.8 60.8 75.8 81.6 70.4 63.4 73.8 54.3

CGACD [13] CVPR2020 51.8 62.6 - 71.1 80.0 69.3 - - -

SiamAttn [46] CVPR2020 56.0 64.8 - 75.2 81.7 - - - -

MAML [40] CVPR2020 52.3 - - 75.7 82.2 72.5 - - -

D3S [26] CVPR2020 - - - 72.8 76.8 66.4 59.7 67.6 46.2

SiamCAR [16] CVPR2020 50.7 60.0 51.0 - - - 56.9 67.0 41.5

SiamBAN [5] CVPR2020 51.4 59.8 52.1 - - - - - -

DiMP [2] ICCV2019 56.9 65.0 56.7 74.0 80.1 68.7 61.1 71.7 49.2

SiamPRN++ [21] CVPR2019 49.6 56.9 49.1 73.3 80.0 69.4 51.7 61.6 32.5

ATOM [9] CVPR2019 51.5 57.6 50.5 70.3 77.1 64.8 55.6 63.4 40.2

ECO [8] ICCV2017 32.4 33.8 30.1 55.4 61.8 49.2 31.6 30.9 11.1

MDNet [31] CVPR2016 39.7 46.0 37.3 60.6 70.5 56.5 29.9 30.3 9.9

SiamFC [1] ECCVW2016 33.6 42.0 33.9 57.1 66.3 53.3 34.8 35.3 9.8

The regression loss can be formulated as

Lreg =
∑

j

✶{yj=1}[λGLGIoU (bj , b̂) + λ1L1(bj , b̂)], (8)

where yj = 1 denotes the positive sample, bj denotes the

j-th predicted bounding box, and b̂ denotes the normalized

ground-truth bounding box. λG = 2 and λ1 = 5 are the

regularization parameters in our experiments.

4. Experiments

4.1. Implementation Details

Offline Training. We train our model on the training splits

of COCO [24], TrackingNet [30], LaSOT [14], and GOT-

10k [19] datasets. For the video datasets (TrackingNet, La-

SOT, and GOT-10k), we directly sample the image pairs

from one video sequence to collect training samples. For

COCO detection datasets, we apply some transformations

on the original image to generate image pairs. The common

data augmentation (such as translation and brightness jitter)

is applied to enlarge the training set. The sizes of search re-

gion patch and template patch are 256×256 and 128×128,

respectively. The backbone parameters are initialized with

ImageNet-pretrained [35] ResNet-50 [18], other parameters

of our model are initialized with Xavier init [15]. We train

the model with AdamW [25], setting backbone’s learning

rate to 1e-5, other parameters’ learning rate to 1e-4, and

weight decay to 1e-4. We train the network on two Nvidia

Titan RTX GPUs with the batch size of 38, for a total of

1000 epochs with 1000 iterations per epoch. The learning

rate decreases by factor 10 after 500 epochs.

Online Tracking. In online tracking, the prediction head

outputs 1024 boxes with their confidence scores, and then

the window penalty is adopted for post-processing these

scores. Specifically, the Hanning window with the shape

of 32× 32 is applied to scores, weighted by a parameter w

(chosen as 0.49 in this work). The final score scorew can

be defined as

scorew = (1− w)× score+ w × scoreh, (9)

where score is the original score of the tracker’s output.

scoreh is the value of the corresponding position on the

Hanning window. Based on the window penalty, the con-

fidence of feature points far from the target in the previous

frames will be punished. Finally, we select the box with the

highest confidence score as the tracking result.

4.2. Evaluation on TrackingNet, LaSOT and GOT-
10k Datasets

In this subsection, we compare our TransT method

with twelve state-of-the-art trackers published in 2020

(SiamR-CNN [39], Ocean [48], KYS [3], DCFST [49],

8131



Ours PrDiMP DiMP Ocean ATOM SiamRPNpp

Figure 5. AUC scores of different attributes on the LaSOT dataset.

SiamFC++ [44], PrDiMP [10], CGACD [13], Sia-

mAttn [46], MAML [40], D3S [26], SiamCAR [16], and

SiamBAN [5]) and six representative trackers presented be-

fore (DiMP [2], SiamPRN++ [21], ATOM [9], ECO [8],

MDNet [31] and SiamFC [1])2. We report the detailed

comparison results on the large-scale LaSOT [14], Track-

ingNet [30], and GOT-10k [19] datasets in Table 1.

LaSOT. LaSOT [14] is a recent large-scale dataset with

high-quality annotations, which contains 1400 challeng-

ing videos: 1120 for training and 280 for testing. We

follow the one-pass evaluation (Success and Precision) to

compare different tracking algorithms on the LaSOT test

set. Then, we report the Success (AUC) and Precision

(P and PNorms) scores in Table 1. This table shows that

the proposed method obtains the best performance, better

than other trackers by a significant margin except SiamR-

CNN [39], but SiamR-CNN merely runs less than 5fps in

our machine, while our tracker runs at 50 fps. Figure 5

reports an attribute-based evaluation of representative state-

of-the-art algorithms, illustrating that the TransT performs

much better than other competing trackers on all attributes.

TrackingNet. TrackingNet [30] is a large-scale tracking

dataset, which covers diverse object classes and scenes. Its

test set contains 511 sequences publicly available ground-

truth. We submit our tracker’s outputs to the official online

evaluation server, and report the Success (AUC) and Preci-

sion (P and PNorm) results in Table 1. our TransT obtains

81.4%, 86.7% and 80.3% in terms of AUC, PNorms and P

respectively, surpassing all previous methods.

GOT-10k. The GOT-10k [19] dataset contains 10k se-

quences for training and 180 for testing. We follow the de-

fined protocol presented in [19], and submit the tracking

2Many trackers have different variants, such as DiMP50 and DiMP18,

in the original paper. For fair comparison, We simply select the variant

with highest performance. For example, DiMP means DiMP50 (DiMP

with the ResNet50 backbone) in Table 1.

Table 2. Ablation study on TrackingNet, LaSOT, and GOT-10k.

The best results are shown in the red font.

Method
LaSOT [14] TrackingNet [30] GOT-10k [19]

AUC PNorm P AUC PNorm P AO SR0.5 SR0.75

TransT 64.9 73.8 69.0 81.4 86.7 80.3 72.3 82.4 68.2

TransT-np 62.9 71.5 66.9 81.1 86.4 80.0 71.5 81.5 67.5

TransT(ori) 62.3 71.1 66.2 81.3 86.1 78.9 70.3 80.2 65.8

TransT(ori)-np 60.9 69.4 64.8 80.9 85.6 78.4 68.6 78.2 65.1

outputs to the official evaluation server. Then, we report

the obtained results (i.e., AO and SRT) in Table 1. TransT-

GOT denotes training with only the GOT-10k traning set.

TransT and TransT-GOT method achieve the best perfor-

mance. TransT-GOT method performs 2.2% higher than

SiamR-CNN in the main AO metric.

4.3. Ablation Study and Analysis

Post-processing. In the prior work such as SiamRPN [22],

SiamRPN++ [21] and Ocean [48], the final tracking results

are selected by post-processing schemes including cosine

window penalty, scale change penalty and bounding box

smoothing. However, these post-processing schemes are

parameter-sensitive, since three hyparameters that need to

be adjusted carefully for different test sets. To avoid this

problem, in this work, we merely adopt the window penalty

to conduct post-processing using the default parameter for

all test sets.

To show the effect of post-processing, we compare the

TransT variants with and without the post-processing step

in Table 2. TransT denotes our tracker and TransT-np is

our tracker without post-processing. First, from Table 2,

we can conclude that our TransT without post-processing

still achieves state-of-the-art performance, being attributed

to the Transformer-like fusion method. Second, the post-

processing step further improves the tracking accuracy, pro-

ducing the best record among almost all metrics on these

benchmarks.

Comparison with the original Transformer. To show

the superiority of our feature fusion network, we design a

tracker using the original Transformer. Specifically, we re-

place the feature fusion network in Figure 2 with the orig-

inal Transformer structure and keep the other components

unchanged. Because the size of the output of the Trans-

former is consistent with the size of the decoder input, we

input the template feature to the encoder and the search re-

gion feature to the decoder. The training data and strategy

are the same as our TransT in Section 3. The compari-

son results are shown in Table 2. TransT(ori) denotes the

tracker with the original Transformer and TransT(ori)-np is

the TransT(ori) method without post-processing. First, the

TransT(ori)-np variant achieves an AUC score of 60.9% on

LaSOT, an AUC score of 80.9% on TrackingNet and an AO

score of 68.6% on GOT-10k, which is also better than many

state-of-the-art algorithms. This indicates that the Trans-

former structure works better than the simple correlation

operation in dealing with feature fusion. Second, by observ-

8132



Table 3. Comparison with correlation on TrackingNet, LaSOT, and GOT-10k. The best results are shown in the red font.

Method ECA CFA Correlation
LaSOT [14] TrackingNet [30] GOT-10k [19]

AUC PNorm P AUC PNorm P AO SR0.5 SR0.75

TransT
√ √

64.9 73.8 69.0 81.4 86.7 80.3 72.3 82.4 68.2

TransT
√

62.9 71.9 66.2 81.1 86.2 79.1 70.6 81.2 65.7

TransT
√ √

57.7 65.4 59.5 77.5 82.2 74.0 62.8 72.2 54.8

TransT
√

47.7 48.6 41.7 68.8 71.4 60.9 50.9 58.0 33.3

TransT-np
√ √

62.9 71.5 66.9 81.1 86.4 80.0 71.5 81.5 67.5

TransT-np
√

61.0 69.6 64.5 80.0 85.0 77.9 68.1 78.3 64.0

TransT-np
√ √

57.3 65.2 58.8 76.2 80.8 72.8 61.4 70.7 53.7

TransT-np
√

35.3 17.9 20.1 46.5 40.3 27.4 38.2 36.8 7.0

ing TransT vs TransT(ori) and TransT-np vs TransT(ori)-np,

we can conclude that the proposed Transformer performs

better than the original Transformer structure, by a large

margin. Besides, we also see that the post-processing works

for both TransT and TransT(ori) methods.

Comparison with correlation. Prior Siamese trackers

use cross correlation to compute similarity between tem-

plate and search region. However, correlation is a linear

local comparison, outputting a similarity map. This sim-

ple method leads to semantic loss and lacks global infor-

mation. Compared with correlation-based methods, first,

our attention-based method can establish long-distance fea-

ture associations, which effectively aggregates the global

information of the template and search region. Second,

our method outputs features with rich semantic informa-

tion, not just a similarity map. We conduct experiments

to compare CFA with correlation and explore the impact of

ECA. To make a fair comparison, for the TransT without

CFA, we keep the FFN in CFA unchanged, only remove the

cross-attention layers, and replace the last CFA module with

depth-wise correlation. The comparison results are shown

in Table 3. The comparison results show that after replacing

CFA with correlation layer, the performance significantly

decreases. Without ECA, the performance of tracker drops.

Without both ECA and CFA, the performance further drops,

and the impact of post-processing becomes greater. These

results show that without attention modules, the localization

ability of the tracker significantly decreases, and it needs to

rely more on the prior information in post-processing.

4.4. Evaluation on Other Datasets

We evaluate our tracker on some commonly used small-

scale datasets, including NFS [20], OTB2015 [43], and

UAV123 [29]. We also collect some state-of-the-art and

baseline trackers for comparison. The results are shown in

Table 4.

NFS. We evaluate the proposed tracker on the 30 fps ver-

sion of the NFS [20] dataset, which contains challenging

videos with fast-moving objects. The previous best method,

Table 4. Comparison with state-of-the-art on the OTB100, NFS

and UAV123 datasets in terms of overall AUC score. The best two

results are shown in red and blue fonts.

Ours PrDiMP [10] DiMP [2] SiamRPN++ [21] ATOM [9] ECO [8] MDNet [31]

NFS [20] 65.7 63.5 62.0 50.2 58.4 46.6 42.2

OTB [43] 69.4 69.6 68.4 69.6 66.9 69.1 67.8

UAV123 [29] 69.1 68.0 65.3 61.3 64.2 53.2 52.8

PrDiMP, achieves an AUC score of 63.5%. Our method per-

forms better than PrDiMP with a gain of 2.2%.

OTB2015. OTB2015 [43] contains 100 sequences in total

and 11 challenge attributes. Table 4 shows that our method

achieves comparable results with state-of-the-art algorithms

(such as PrDiMP and SiamRPN++).

UAV123. UAV123 [29] includes 123 low altitude aerial

videos captured from a UAV and adopts success and pre-

cision metrics for evaluation. As shown in Table 4, the pro-

posed method performs the best.

5. Conclusions

In this work, we propose a novel, simple, and high-

performance tracking framework based on the Transformer-

like feature fusion network. The proposed network con-

ducts feature fusion solely using the attention mechanism,

which includes an ego-context augment module based on

self-attention and a cross-feature augment module based on

cross-attention. The attention mechanism establishes long-

distance feature associations, making the tracker adaptively

focus on useful information and extract abundant seman-

tic information. The proposed fusion network could replace

correlation to composite the template and search region fea-

tures, thereby facilitating object localization and bounding

box regression. Numerous experimental results on many

benchmarks show that the proposed tracker performs sig-

nificantly better than the state-of-the-art algorithms while

running at a real-time speed.

Acknowledgement. This work was supported in part by the

National Natural Science Foundation of China under Grant

nos. 62022021, 61806037, 61872056, and 61725202, and

in part by the Science and Technology Innovation Founda-

tion of Dalian under Grant no. 2020JJ26GX036.

8133



References

[1] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea

Vedaldi, and Philip H S Torr. Fully-convolutional siamese

networks for object tracking. In ECCVW, 2016. 1, 2, 3, 6, 7

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-

ing. In ICCV, 2019. 1, 2, 6, 7, 8

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Know Your Surroundings: Exploiting scene infor-

mation for object tracking. In ECCV, 2020. 6

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In ECCV, 2020. 2,

4, 5

[5] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang,

and Rongrong Ji. Siamese box adaptive network for visual

tracking. In CVPR, 2020. 6, 7

[6] Jongwon Choi, Hyung Jin Chang, Sangdoo Yun, Tobias Fis-

cher, Yiannis Demiris, and Jin Young Choi. Attentional cor-

relation filter network for adaptive visual tracking. In CVPR,

2017. 2

[7] Janghoon Choi, Junseok Kwon, and Kyoung Mu Lee. Deep

meta learning for real-time target-aware visual tracking. In

ICCV, 2019. 1, 2

[8] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ECO: Efficient convolution operators for

tracking. In CVPR, 2017. 2, 6, 7, 8

[9] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ATOM: Accurate tracking by overlap

maximization. In CVPR, 2019. 1, 2, 6, 7, 8

[10] Martin Danelljan, Luc Van Gool, and Radu Timofte. Proba-

bilistic regression for visual tracking. In CVPR, 2020. 1, 6,

7, 8

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. In NAACL-HLT, 2019.

2

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale. CoRR, abs/2010.11929, 2020. 2

[13] Fei Du, Peng Liu, Wei Zhao, and Xianglong Tang.

Correlation-guided attention for corner detection based vi-

sual tracking. In CVPR, 2020. 1, 3, 6, 7

[14] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

LaSOT: A high-quality benchmark for large-scale single ob-

ject tracking. In CVPR, 2019. 6, 7, 8

[15] Xavier Glorot and Yoshua Bengio. Understanding the dif-

ficulty of training deep feedforward neural networks. In

ICAIS, 2010. 6

[16] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and

Shengyong Chen. SiamCAR: Siamese fully convolutional

classification and regression for visual tracking. In CVPR,

2020. 6, 7

[17] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A

twofold siamese network for real-time object tracking. In

CVPR, 2018. 2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 3, 6

[19] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A

large high-diversity benchmark for generic object tracking in

the wild. TPAMI, 2019. 6, 7, 8

[20] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva

Ramanan, and Simon Lucey. Need for speed: A benchmark

for higher frame rate object tracking. In ICCV, 2017. 8

[21] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. SiamRPN++: Evolution of siamese visual

tracking with very deep networks. In CVPR, 2019. 1, 2, 6,

7, 8

[22] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In CVPR, 2018. 1, 2, 3, 7

[23] Peixia Li, Dong Wang, Lijun Wang, and Huchuan Lu. Deep

visual tracking: Review and experimental comparison. PR,

2018. 1

[24] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

COCO: Common objects in context. In ECCV, 2014. 2, 6

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. In ICLR, 2018. 6

[26] Alan Lukezic, Jiri Matas, and Matej Kristan. D3S - A dis-

criminative single shot segmentation tracker. In CVPR, 2020.

6, 7

[27] Christoph Lüscher, Eugen Beck, Kazuki Irie, Markus Kitza,

Wilfried Michel, Albert Zeyer, Ralf Schlüter, and Hermann

Ney. RWTH ASR Systems for LibriSpeech: hybrid vs atten-

tion. In INTERSPEECH, 2019. 2

[28] Seyed Mojtaba Marvasti-Zadeh, Li Cheng, Hossein Ghanei-

Yakhdan, and Shohreh Kasaei. Deep learning for visual

tracking: A comprehensive survey. CoRR, abs/1912.00535,

2019. 1

[29] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

benchmark and simulator for UAV tracking. In ECCV, 2016.

8

[30] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-

subaihi, and Bernard Ghanem. TrackingNet: A large-scale

dataset and benchmark for object tracking in the wild. In

ECCV, 2018. 6, 7, 8

[31] Hyeonseob Nam and Bohyung Han. Learning multi–domain

convolutional neural networks for visual tracking. In CVPR,

2016. 6, 7, 8

[32] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz

Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-

age transformer. In ICML, 2018. 2

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R–CNN: Towards real-time object detection with re-

gion proposal networks. In NIPS, 2015. 2

[34] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir

Sadeghian, Ian D. Reid, and Silvio Savarese. Generalized

8134



intersection over union: A metric and a loss for bounding

box regression. In CVPR, 2019. 5

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, and Michael Bernstein. ImageNet Large

scale visual recognition challenge. IJCV, 2015. 6

[36] Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Edouard

Grave, Tatiana Likhomanenko, Vineel Pratap, Anuroop Sri-

ram, Vitaliy Liptchinsky, and Ronan Collobert. End-to-

end ASR: from supervised to semi-supervised learning with

modern architectures. CoRR, abs/1911.08460, 2019. 2

[37] Ran Tao, Efstratios Gavves, and Arnold W. M. Smeulders.

Siamese instance search for tracking. In CVPR, 2016. 2

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NIPS, 2017. 2, 4

[39] Paul Voigtlaender, Jonathon Luiten, Philip H. S. Torr, and

Bastian Leibe. Siam R-CNN: Visual tracking by re-

detection. In CVPR, 2020. 6, 7

[40] Guangting Wang, Chong Luo, Xiaoyan Sun, Zhiwei Xiong,

and Wenjun Zeng. Tracking by Instance Detection: A meta-

learning approach. In CVPR, 2020. 6, 7

[41] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming

Hu, and Stephen J. Maybank. Learning Attentions: Resid-

ual attentional siamese network for high performance online

visual tracking. In CVPR, 2018. 2

[42] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip H. S. Torr. Fast online object tracking and segmenta-

tion: A unifying approach. In CVPR, 2019. 2

[43] Yi Wu, Jongwoo Lim, and Ming Hsuan Yang. Object track-

ing benchmark. TPAMI, 2015. 8

[44] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu.

SiamFC++: Towards robust and accurate visual tracking

with target estimation guidelines. In AAAI, 2020. 1, 2, 6,

7

[45] Bin Yan, Xinyu Zhang, Dong Wang, Huchuan Lu, and Xi-

aoyun Yang. Alpha-refine: Boosting tracking performance

by precise bounding box estimation. In CVPR, 2021. 2

[46] Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R.

Scott. Deformable siamese attention networks for visual ob-

ject tracking. In CVPR, 2020. 1, 2, 6, 7

[47] Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer,

Martin Danelljan, and Fahad Shahbaz Khan. Learning the

model update for siamese trackers. In ICCV, 2019. 1

[48] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and

Weiming Hu. Ocean: Object-aware anchor-free tracking. In

ECCV, 2020. 1, 2, 6, 7

[49] Linyu Zheng, Ming Tang, Yingying Chen, Jinqiao Wang, and

Hanqing Lu. Learning feature embeddings for discriminant

model based tracking. In ECCV, 2020. 6

[50] Zheng Zhu, Wei Wu, Wei Zou, and Junjie Yan. End-to-end

flow correlation tracking with spatial-temporal attention. In

CVPR, 2018. 2

8135


