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Abstract

The primary goal of knowledge distillation (KD) is to en-

capsulate the information of a model learned from a teacher

network into a student network, with the latter being more

compact than the former. Existing work, e.g., using Kullback-

Leibler divergence for distillation, may fail to capture impor-

tant structural knowledge in the teacher network and often

lacks the ability for feature generalization, particularly in sit-

uations when teacher and student are built to address differ-

ent classification tasks. We propose Wasserstein Contrastive

Representation Distillation (WCoRD), which leverages both

primal and dual forms of Wasserstein distance for KD. The

dual form is used for global knowledge transfer, yielding

a contrastive learning objective that maximizes the lower

bound of mutual information between the teacher and the stu-

dent networks. The primal form is used for local contrastive

knowledge transfer within a mini-batch, effectively matching

the distributions of features between the teacher and the stu-

dent networks. Experiments demonstrate that the proposed

WCoRD method outperforms state-of-the-art approaches on

privileged information distillation, model compression and

cross-modal transfer.

1. Introduction

The recent success of deep learning methods has brought

about myriad efforts to apply them beyond benchmark

datasets, but a number of challenges can emerge in real-

world scenarios. For one, as the scale of deep learning

models continues to grow (e.g., [21, 15]), it has become in-

creasingly difficult to deploy such trained networks on more

computationally-restrictive platforms, such as smart phones,

remote sensors, and edge devices. Additionally, deep net-

works require abundant data for training, but large datasets

are often private [36], classified [29], or institutional [39],

which the custodians may be hesitant to release publicly.

Labeled datasets in specialized domains may also be rare or

expensive to produce. Finally, despite ample datasets from

neighboring modalities, conventional frameworks lack clear

ways to leverage cross-modal data.

*Equal contribution

Knowledge distillation (KD), which has become an in-

creasingly important topic in the deep learning community,

offers a potential solution to these challenges. In KD, the

goal is to improve a student model’s performance by supple-

menting it with additional feedback from a teacher model.

Often the teacher has larger capacity than the student, or

has access to additional data that the student does not. As

such, KD can transfer this additional and valuable knowledge

from the teacher to the student. In early KD methods [23],

this supplemental supervision was imposed by asking the

student to minimize the Kullback-Leibler (KL) divergence

between its output prediction distribution and the teacher’s.

Given that the prediction probability distribution contains

richer and more informative signals than the one-hot labels,

student models have been shown to benefit from this extra

supervision. However, the low dimensionality of prediction

distribution means that the amount of information encoded

(therefore transferred) can be limited. For cross-modal trans-

fer, these predictions may even be irrelevant, making KL

divergence unable to transfer meaningful information.

In contrast, intermediate representations present an oppor-

tunity for more informative learning signals, as a number of

recent works have explored [37, 50, 40, 42, 41]. However, as

observed by [42], these methods often compare poorly with

the basic KD, potentially due to the challenge of defining a

proper distance metric between features of the teacher and

student networks. Furthermore, they heavily rely on strate-

gies to copy teacher’s behavior, i.e., aligning the student’s

outputs to those from the teacher. We argue that such prac-

tice overlooks a key factor: the teacher’s experience may not

necessarily generalize well to the student.

Motivated by this, we present Wasserstein Constrastive

Representation Distillation (WCoRD), a new KD frame-

work that reduces the generalization gap between teacher

and student to approach better knowledge transfer. Specifi-

cally, our approach constitutes distillation and generalization

blocks, realized by solving the dual and primal form of the

Wasserstein distance (WD), respectively. For better distil-

lation, we leverage the dual form of WD to maximize the

mutual information (MI) between student and teacher repre-

sentation distributions, using an objective inspired by Noise
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Contrastive Estimation (NCE) [18]. Unlike previous meth-

ods [42], we propose to impose a 1-Lipschitz constraint to

the critic via spectral normalization [31]. By shifting the

critic to one based on optimal transport, we improve stability

and sidestep some of the pitfalls of KL divergence minimiza-

tion [8, 30]. We term this as global contrastive knowledge

transfer.

For better generalization, we also use the primal form of

WD to indirectly bound generalization error via regulariz-

ing the Wasserstein distance between the feature distribu-

tions of the student and teacher. This results in a relaxation

that allows for coupling student and teacher features across

multiple examples within each mini-batch, as opposed to

the one-to-one matching in previous methods (i.e., strictly

copying the teacher’s behavior). In principle, this serves to

directly match the feature distributions of the student and

teacher networks. We term this local contrastive knowledge

transfer. With the use of both primal and dual forms, we

are able to maximize MI and simultaneously minimize the

feature distribution discrepancy.

The main contributions are summarized as follows. (i)
We present a novel Wasserstein learning framework for rep-

resentation distillation, utilizing the dual and primal forms

of the Wasserstein distance for global constrastive learning

and local feature distribution matching, respectively. (ii)
To demonstrate the superiority of the proposed approach,

we first conduct comprehensive experiments on benchmark

datasets for model compression and cross-modal transfer. To

demonstrate versatility, we further apply our method to a

real-world dataset for privileged information distillation.

2. Background

2.1. Knowledge Distillation

In knowledge distillation, a student network is trained

by leveraging additional supervision from a trained teacher

network. Given an input sample (x, y), where x is the

network input and y is the one-hot label, the distillation

objective encourages the output probability distribution over

predictions from the student and teacher networks to be

similar. Assume zT and zS are the logit representations

(before the softmax layer) of the teacher and student network,

respectively. In standard KD [23], the training of the student

network involves two supervised loss terms:

L =LCE

(

y, softmax(zS)
)

+ α ·KL
(

softmax(zT /ρ)‖softmax(zS/ρ)
)

, (1)

where ρ is the temperature, and α is the balancing weight.

The representation in (1) is optimized with respect to the

student network parameters θS , while the teacher network

(parameterized by θT ) is pre-trained and fixed. The first term

in (1) enforces label supervision, which is conventionally

implemented as a cross-entropy loss for classification tasks.

The second term encourages the student network to pro-

duce distributionally-similar outputs to the teacher network.

However, there are inevitable limitations to this approach.

Deep neural networks learn structured features through the

intermediate hidden layers, capturing spatial or temporal

correlations of the input data. These representations are then

collapsed to a low-dimensional prediction distribution, los-

ing this complex structure. Furthermore, the KL divergence

used here can be unstable numerically due to its asymme-

try [8, 33]. For example, it can overly concentrate on small

details: a small imperfection can put a sample outside the

distribution and explode the KL toward infinity. Despite this,

KD objectives based on KL divergence can still be effective

and remain popular.

We aim to provide a general and principled framework

for distillation based on Wasserstein distance, where both

global contrastive learning and local distribution matching

are introduced to facilitate knowledge transfer to the stu-

dent. By using the Wasserstein metric, we also avoid some

of the drawbacks of KL-based approaches. Note that our

approach utilizes feature representations at the penultimate

layer (before logits), denoted as hS and hT for the student

and teacher networks, respectively.

2.2. Wasserstein Distance

One of the more recently-proposed distance measures in

knowledge distillation is the contrastive loss [42]. The goal is

to move similar samples closer while pushing different ones

apart in the feature space (i.e., zS and zT , or hS and hT ).

We further extend and generalize the idea of contrastive loss

with Wasserstein Distance (a.k.a. Earth Mover’s Distance,

or Optimal Transport Distance). In the following, we give a

brief introduction to the primal and dual forms of the general

Wasserstein Distance (WD). The primal form [46] is defined

as follows.

Definition 2.1. Consider two probability distribution: x1 ∼
p1, and x2 ∼ p2. The Wasserstein-1 distance between p1

and p2 can be formulated as:

W(p1,p2) = inf
π∈Π(p1,p2)

∫

M×M

c(x1,x2)dπ(x1,x2) ,

where c(·) is a point-wise cost function evaluating the dis-

tance between x1 and x2, and Π(p1,p2) is the set of all

possible couplings of p1(x1) and p2(x2); M is the space

of x1 and x2, and π(x1,x2) is a joint distribution satisfy-

ing
∫

M
π(x1,x2)dx2 = p1(x1) and

∫

M
π(x1,x2)dx1 =

p2(x2).

Using the Kantorovich-Rubenstein duality [46], WD can

be written in the dual form:

W(p1,p2) = sup
||g||L≤1

Ex1∼p1
[g(x1)]− Ex2∼p2

[g(x2)] ,
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where g is a function (often parameterized as a neural net-

work) satisfying the 1-Lipschitz constraint (i.e., ||g||L ≤ 1).

3. Method

We present the proposed Wasserstein learning framework

for KD, where (i) the dual form is used for global contrastive

knowledge transfer (Sec. 3.1), and (ii) the primal form is

adopted for local contrastive knowledge transfer (Sec. 3.2).

The full algorithm is summarized in Sec. 3.3.

3.1. Global Contrastive Knowledge Transfer

For global knowledge transfer, we consider maximizing

the mutual information (MI) between feature representations

hS ,hT at the penultimate layer (before logits) from the

teacher and student networks. That is, we seek to match the

joint distribution p(hT ,hS) with the product of marginal

distributions µ(hT ) and ν(hS) via KL divergence:

I(hT ;hS) = KL(p(hT ,hS)‖µ(hT )ν(hS)) . (2)

Since both the joint and marginal distributions are implicit,

(2) cannot be computed directly. To approximate the MI,

Noise Contrastive Estimation (NCE) [18] is used. Specif-

ically, we denote a congruent pair as one drawn from the

joint distribution, and an incongruent pair as one drawn in-

dependently from the product of marginal distributions. In

other words, a congruent pair is one where the same data

input is fed to both the teacher and student networks, while

an incongruent pair consists of different data inputs. We

then define a distribution q conditioned on η that captures

whether the pair is congruent (q(η = 1)) or incongruent

(q(η = 0)), with

q(hT ,hS |η = 1) = p(hT ,hS) , (3)

q(hT ,hS |η = 0) = µ(hT )ν(hS) . (4)

With one congruent and one incongruent pair, the prior on η
is

q(η = 1) = q(η = 0) = 1/(1 + 1) = 1/2 . (5)

By Bayes’ rule, we can obtain the posterior for η = 1:

q(η = 1|hT ,hS) =
p(hT ,hS)

p(hT ,hS) + µ(hT )ν(hS)
, (6)

which can be connected with MI via the following:

log q(η = 1|hT ,hS) ≤ log
p(hT ,hS)

µ(hT )ν(hS)
. (7)

By taking the expectation of both sides w.r.t. the joint distri-

bution p(hT ,hS), we have:

I(hT ,hS) ≥ Eq(hT ,hS |η=1)[log q(η = 1|hT ,hS)] . (8)

Teacher

Student

Mini-batch

Memory

bank

incongruent pairs

congruent pairs

Critic
Contrastive 

Loss

Figure 1: Illustration of Global Contrastive Knowledge Transfer

(GCKT) via the use of the dual form for Wasserstein distance.

We can then maximize the right hand side of (8) to in-

crease the lower bound of the MI. Though there is no closed

form for q(η = 1|hT ,hS), a neural network g (called a

critic with parameters φ) can be used to estimate whether a

pair comes from the joint distribution or the marginals. This

shares a similar role as the discriminator of a Generative Ad-

versarial Network (GAN) [16]. The critic g can be learned

via the following NCE loss:

LNCE =Eq(hT ,hS |η=1)[log g(h
T ,hS)]

+ Eq(hT ,hS |η=0)[log(1− g(hT ,hS))] . (9)

The parameters θS and φ can be optimized jointly by maxi-

mizing (9).

In previous work [42], the critic g is a neural network that

maps (hT ,hS) to [0, 1] without other constraints. This can

suffer from several drawbacks: (i) g could be sensitive to

small numerical changes in the input [42, 33], yielding poor

performance, especially when the network architectures or

training datasets for the student and teacher networks are

different. (ii) It can suffer from mode collapse, as the support

for p(hT ,hS) and µ(hT )ν(hS) may not overlap [2]. To

alleviate these issues, we propose using the dual form of

Wasserstein distance, by reformulating (9) as:

LGCKT(θS ,φ) =Eq(hT ,hS |η=1)[ĝ(h
T ,hS)]

− Eq(hT ,hS |η=0)[ĝ(h
T ,hS)] , (10)

where the new critic function ĝ has to satisfy the 1-Lipschitz

constraint. Equation (10) is otherwise similar to (9), which

not only serves as a lower bound for the mutual informa-

tion between the student and teacher representations, but

also provides a robust critic to better match p(hT ,hS) with

µ(hT )ν(hS).
Instead of enforcing 1-Lipschitz with the gradient penalty

as in [17], we apply spectral normalization [31] to the critic

ĝ. Specifically, spectral normalization on an arbitrary matrix

A is defined as σ(A) = max‖β‖2≤1 ‖Aβ‖2, which is equiv-

alent to the largest singular value of A. By applying this

regularizer to the weights of each layer in ĝ, the 1-Lipschitz

constraint can be enforced.
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Figure 2: Illustration of Local Contrastive Knowledge Transfer

(LCKT) via the use of the primal form for Wasserstein distance.

Note that when multiple incongurent pairs are chosen,

the prior distribution on η will also change, and (10) will be

updated accordingly to:

LGCKT(θS ,φ) =Eq(hT ,hS |η=1)[ĝ(h
T ,hS)] (11)

−MEq(hT ,hS |η=0)[ĝ(h
T ,hS)] ,

where M > 1, and the lower bound for the mutual infor-

mation will be tightened with large M [18, 42]. In practice,

the incongruent samples are drawn from a memory buffer,

that stores pre-computed features of every data sample from

previous mini-batches. In this way, we are able to efficiently

retrieve a large number of negative samples without recal-

culating the features. Due to the use of data samples across

multiple mini-batches for Wasserstein constrastive learning,

we denote this method as global contrastive knowledge trans-

fer (GCKT), as illustrated in Figure 1.

3.2. Local Contrastive Knowledge Transfer

Contrastive learning can also be applied within a mini-

batch to further enhance performance. Specifically, in a

mini-batch, the features {hT
i }

n
i=1 extracted from the teacher

network can be viewed as a fixed set when training the

student network. Ideally, categorical information is encapsu-

lated in the feature space, so each element {hS
j }

n
j=1 from the

student network should be able to find close neighbors in this

set. For instance, nearby samples may share the same class.

Therefore, we encourage the model to push hS
j to several

neighbors {hT
i }

n
i=1 instead of just one from the teacher net-

work for better generalization. As the distribution matching

happens in a mini-batch, we denote this as local contrastive

knowledge transfer (LCKT).

This can be implemented efficiently with the primal form

of Wasserstein distance. Specifically, the primal form can

be interpreted as a less expensive way to transfer probabil-

ity mass from µ(hT ) to ν(hS), when only finite training

samples are used. That is, we have µ(hT ) =
∑n

i=1 uiδhT
i

,

ν(hS) =
∑n

j=1 vjδhS
j

, where δx is the Dirac function cen-

tered on x. Since µ(hT ),ν(hS) are valid probability distri-

butions, u = {ui}
n
i=1,v = {vj}

n
j=1 both lie on a simplex,

i.e.,
∑n

i=1 ui = 1, and
∑n

j=1 vj = 1. Under this setting, the

Algorithm 1 Sinkhorn Algorithm.

1: Input: {hT
i }ni=1,{hS

j }
n
j=1, ǫ, probability vectors µ, ν

2: σ = 1
n
1n, π(1) = 11⊤

3: Cij = c(hT
i ,hS

j ), Aij = e−
Cij
ǫ

4: for t = 1, 2, 3 . . . do

5: Q = A⊙ π(t) // ⊙ is Hadamard product

6: for k = 1, 2, 3, . . .K do

7: δ = µ
nQσ

, σ = ν
nQ⊤δ

8: end for

9: π(t+1) = diag(δ)Qdiag(σ)
10: end for

11: W = 〈π,C〉 // 〈·, ·〉 is the Frobenius dot-product

12: Return W

primal form can be reformulated into:

W(µ,ν) = min
π

n
∑

i=1

n
∑

j=1

πijc(h
T
i ,h

S
j ) = min

π
〈π,C〉

s.t.

n
∑

j=1

πij = ui,

n
∑

i=1

πij = vj , (12)

where π is the discrete joint probability in hT and hS

(i.e., the transport plan), C is the cost matrix given by

Cij = c(hT
i ,h

S
j ), and 〈π,C〉 = Tr(π⊤

C) represents the

Frobenius dot-product. Expression c(·) is a cost function

measuring the dissimilarity between the two feature vectors,

where cosine distance c(x,y) = 1− x⊤y
||x||2||y||2

is a popular

choice. Ideally, the global optimum for (12) may be obtained

using linear programming [46, 35]. However, this method

is not differentiable, making it incompatible with existing

deep learning frameworks. As an alternative, the Sinkhorn

algorithm [13] is applied to solve (12) by adding a convex

regularization term, i.e.,

LLCKT(θS) = min
π

∑

i,j

πijc(h
T
i ,h

S
j ) + ǫH(π) , (13)

where H(π) =
∑

i,j πij logπij , and ǫ is the hyper-

parameter controlling the importance of the entropy loss

on π. Detailed procedures for solving this is summarized in

Algorithm 1. Although Lines 4-10 in Algorithm 1 constitute

an iterative algorithm, its time complexity is small compared

to the other feed-forward modules. Also, thanks to the En-

velop Theorem [7], we can ignore the gradient flow through

π, meaning that there is no need to back-propagate gradi-

ents for Lines 4-10. In practice, we can simply detach/stop-

gradient the for-loop module in Pytorch or Tensorflow, while

the loss can still help refine the feature representations. Fig-

ure 2 illustrates the procedure for calculating the Wasserstein

distance.

3.3. Unifying Global and Local Knowledge Transfer

Global knowledge transfer is designed for matching the

joint distribution p(hT ,hS) with the product of the marginal
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distributions µ(hT )ν(hS) via contrastive learning under a

Wasserstein metric, achieving better distillation. At the same

time, local knowledge transfer incentivizes matching the

marginal distribution µ(hT ) with ν(hS) via optimal trans-

port, aiming for better generalization. Section 3.1 optimizes

the MI by maximizing the lower bound, while Section 3.2

minimizes (13) to match the feature distributions.

Although GCKT and LCKT are designed for different

objectives, they are complementary to each other. By opti-

mizing LCKT, we aim to minimize the discrepancy between

the marginal distributions, which is equivalent to reducing

the difference between the two feature spaces, so that LCKT

can provide a more constrained feature space for GCKT. On

the other hand, by optimizing GCKT, the learned representa-

tion can also form a better feature space, which in turn helps

LCKT match the marginal distributions.

In summary, the training objective for our method is writ-

ten as follows:

LWCoRD(θS ,φ) =LCE(θS)− λ1LGCKT(θS ,φ)

+ λ2LLCKT(θS) , (14)

where besides the parameters θS of the student network, an

additional set of parameters φ for the critic is also learned.

4. Related Work

Knowledge Distillation Recent interest in knowledge dis-

tillation can be traced back to [23], though similar ideas have

been proposed before [51, 6]. These methods use the proba-

bility distribution of the output over the prediction classes

of a large teacher network as additional supervision signals

to train a smaller student network. Recent studies have sug-

gested alternative distillation objectives. Later works such

as FitNet [37] extend the idea by using the intermediate lay-

ers instead of only zT . [50] proposed to use an attention

map transfer in KD. SPKD [44] also utilizes intermediate

features, but tries to mimic the representation space of the

teacher features, rather than preserving pairwise similari-

ties like FitNet. More recently, Contrastive Representation

Distillation (CRD) [42] proposed applying NCE [18] to an

intermediate layer. Another line of KD research explores

alternatives to the teacher-student training paradigm. For

example, [53] proposed an on-the-fly ensemble teacher net-

work, in which the teacher is jointly trained with multiple

students under a multi-branch network architecture, and the

teacher’s prediction is a weighted average of predictions

from all the branches. Most recenlty, [49] shows that KD

can be understood as label smoothing regularization.

Optimal Transport Optimal transport distance, a.k.a.

Wasserstein distance, has a long history in mathematics,

with applications ranging from resource allocation to com-

puter vision [38]. Traditionally, optimal transport problems

are solved by linear/quadratic programming. Within deep

learning, the dual form of the Wasserstein distance is used by

[2, 17] as an alternative metric for distribution matching in

Generative Adversarial Network (GAN) [16], where the dual

form is approximated by imposing a 1-Lipschitz constraint

on the critic. The primal form of Wasserstein distance can

be solved by the Sinkhorn algorithm [13], which has been

applied to a wide range of deep learning tasks, including doc-

ument retrieval and classification [28], sequence-to-sequence

learning [10], adversarial attacks [47], graph matching [48],

and cross-domain alignment [9]. To the authors’ knowledge,

this work is the first to apply optimal transport to KD, and to

utilize both its primal and dual forms to construct a general

Wasserstein learning framework.

Contrastive Learning Contrastive learning [18, 3] is a

popular research area that has been successfully applied to

density estimation and representation learning, especially

in self-supervised setting [19, 11]. It has been shown that

the contrastive objective can be interpreted as maximizing

the lower bound of mutual information between different

views of the data [24, 32, 4, 22], though it remains unclear

whether the success is determined by mutual information or

by the specific form of the contrastive loss [43]. Recently,

contrastive learning has been extended to Wasserstein depen-

dency measure [33]. Our global contrastive transfer shares

similar ideas with it. However, its application to KD has not

been studied before. Further, both the primal and dual forms

are used to form an integral framework.

5. Experiments

We evaluate the proposed WCoRD framework on three

knowledge distillation tasks: (i) model compression of a

large network, (ii) cross-modal transfer, and (iii) privileged

information distillation.

5.1. Model Compression

Experiments on CIFAR-100 CIFAR-100 [27] consists of

50K training images (0.5K images per class) and 10K test

images. For fair comparison, we use the public CRD code-

base [42] in our experiments. Two scenarios are considered:

(i) the student and the teacher share the same network archi-

tecture, and (ii) different network architectures are used.

Table 1 and 3 present the top-1 accuracy from differ-

ent distillation methods. In both tables, models using the

original KD is a strong baseline, which only CRD and our

WCoRD consistently outperform. The strong performance

of the original KD method is manifested because distillation

is performed between low-dimensional probability distribu-

tions from the teacher and student networks, which makes

it relatively easy for the student to learn knowledge from

the teacher. However, if knowledge transfer is applied to

features from intermediate layers, the numerical scale of fea-

tures can be different, even when both teacher and student
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Teacher

Student

WRN-40-2

WRN-16-2

WRN-40-2

WRN-40-1

resnet56

resnet20

resnet110

resnet20

resnet110

resnet32

resnet32x4

resnet8x4

vgg13

vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64

Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98

FitNet 73.58 (↓) 72.24 (↓) 69.21 (↓) 68.99 (↓) 71.06 (↓) 73.50 (↑) 71.02 (↓)

AT 74.08 (↓) 72.77 (↓) 70.55 (↓) 70.22 (↓) 72.31 (↓) 73.44 (↑) 71.43 (↓)

SP 73.83 (↓) 72.43 (↓) 69.67 (↓) 70.04 (↓) 72.69 (↓) 72.94 (↓) 72.68 (↓)

CC 73.56 (↓) 72.21 (↓) 69.63 (↓) 69.48 (↓) 71.48 (↓) 72.97 (↓) 70.71 (↓)

VID 74.11 (↓) 73.30 (↓) 70.38 (↓) 70.16 (↓) 72.61 (↓) 73.09 (↓) 71.23 (↓)

RKD 73.35 (↓) 72.22 (↓) 69.61 (↓) 69.25 (↓) 71.82 (↓) 71.90 (↓) 71.48 (↓)

PKT 74.54 (↓) 73.45 (↓) 70.34 (↓) 70.25 (↓) 72.61 (↓) 73.64 (↑) 72.88 (↓)

AB 72.50 (↓) 72.38 (↓) 69.47 (↓) 69.53 (↓) 70.98 (↓) 73.17 (↓) 70.94 (↓)

FT 73.25 (↓) 71.59 (↓) 69.84 (↓) 70.22 (↓) 72.37 (↓) 72.86 (↓) 70.58 (↓)

FSP 72.91 (↓) n/a 69.95 (↓) 70.11 (↓) 71.89 (↓) 72.62 (↓) 70.23 (↓)

NST 73.68 (↓) 72.24 (↓) 69.60 (↓) 69.53 (↓) 71.96 (↓) 73.30 (↓) 71.53 (↓)

CRD 75.48 (↑) 74.14 (↑) 71.16 (↑) 71.46 (↑) 73.48 (↑) 75.51 (↑) 73.94 (↑)

CRD+KD 75.64 (↑) 74.38 (↑) 71.63 (↑) 71.56 (↑) 73.75 (↑) 75.46 (↑) 74.29 (↑)

LCKT 75.22 (↑) 74.11 (↑) 71.14 (↑) 71.23 (↑) 72.32 (↑) 74.65 (↑) 73.50 (↑)

GCKT 75.47 (↑) 74.23 (↑) 71.21 (↑) 71.43 (↑) 73.41 (↑) 75.45 (↑) 74.10 (↑)

WCoRD 75.88 (↑) 74.73 (↑) 71.56 (↑) 71.57 (↑) 73.81 (↑) 75.95 (↑) 74.55 (↑)

WCoRD+KD 76.11 (↑) 74.72 (↑) 71.92 (↑) 71.88 (↑) 74.20 (↑) 76.15 (↑) 74.72 (↑)

Table 1: CIFAR-100 test accuracy (%) of student networks trained with a number of distillation methods, when sharing the same

architecture type as the teacher. See Appendix for citations of the compared methods. ↑ denotes outperformance over KD, and ↓ denotes

underperformance. For all other methods, we used author-provided or author-verified code from the CRD repository. Our reported results

are averaged over 5 runs. Note that λ1 = 0.8 is the same as the weight on CRD, and λ2 = 0.05.

Teacher Student AT KD SP CC CRD CRD+KD LCKT GCKT WCoRD WCoRD+KD

Top-1 26.69 30.25 29.30 29.34 29.38 30.04 28.83 28.62 29.10 28.78 28.51 28.44

Top-5 8.58 10.93 10.00 10.12 10.20 10.83 9.87 9.51 10.05 9.92 9.84 9.45

Table 2: Top-1 and Top-5 error rates (%) of student network ResNet-18 on ImageNet validation set.

share the same network architecture. As shown in Table 3,

directly applying similarity matching to align teacher and

student features even hurts performance.

WCoRD is a unified framework bridging GCKT and

LCKT, which improves the performance of CRD, a current

state-of-the-art model. When the same network architecture

is used for both the teacher and student networks, an average

relative improvement1 of 48.63% is achieved (derived from

Table 1). This performance lift is 43.27% when different

network architectures are used (derived from Table 3).

We can also add the basic KD loss to WCoRD, obtain-

ing an ensemble distillation loss (denoted as WCoRD+KD),

similar to [42]. In most cases, this ensemble loss can fur-

ther improve the performance. However, in ResNet50 →
MobileNetV2 and ResNet50 → VGG8, WCoRD still works

better than WCoRD+KD.

1The relative improvement is defined as WCoRD−CRD
CRD−KD

, where the name

of each method represents the corresponding accuracy of the student model.

Ablation Study We report results using only global or local

contrastive knowledge transfer in Table 1 and 3. LCKT

performs better than KD but slightly worse than CRD and

GCKT, as both CRD and GCKT are NCE-based algorithms,

where negative samples are used to improve performance.

Additionally, GCKT enforces an 1-Lipschitz constraint on

the critic function, which includes an extra hyper-parameter.

Results show that CRD and GCKT have comparable results,

and in some cases, GCKT performs slightly better (e.g., from

VGG13 to VGG8).

We perform an additional ablation study on the weight of

the LLCKT loss term (i.e., λ2 in (14)). We adjust λ2 from 0
to 0.2, and set λ1 = 0.8, which is the same as in CRD for

fair comparison. Results are summarized in Table 4. The

standard deviation (Std) is reported based on 5 runs. We

observe that: (i) when λ2 = 0.05, ResNet-8x4 performs the

best; and (ii) WCoRD can consistently outperform GCKT

and CRD methods, when λ2 ∈ (0, 0.2].
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Teacher

Student

vgg13

MobileNetV2

ResNet50

MobileNetV2

ResNet50

vgg8

resnet32x4

ShuffleNetV1

resnet32x4

ShuffleNetV2

WRN-40-2

ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61

Student 64.6 64.6 70.36 70.5 71.82 70.5

KD 67.37 67.35 73.81 74.07 74.45 74.83

FitNet 64.14 (↓) 63.16 (↓) 70.69 (↓) 73.59 (↓) 73.54 (↓) 73.73 (↓)

AT 59.40 (↓) 58.58 (↓) 71.84 (↓) 71.73 (↓) 72.73 (↓) 73.32 (↓)

SP 66.30 (↓) 68.08 (↑) 73.34 (↓) 73.48 (↓) 74.56 (↑) 74.52 (↓)

CC 64.86 (↓) 65.43 (↓) 70.25 (↓) 71.14 (↓) 71.29 (↓) 71.38 (↓)

VID 65.56 (↓) 67.57 (↑) 70.30 (↓) 73.38 (↓) 73.40 (↓) 73.61 (↓)

RKD 64.52 (↓) 64.43 (↓) 71.50 (↓) 72.28 (↓) 73.21 (↓) 72.21 (↓)

PKT 67.13 (↓) 66.52 (↓) 73.01 (↓) 74.10 (↑) 74.69 (↑) 73.89 (↓)

AB 66.06 (↓) 67.20 (↓) 70.65 (↓) 73.55 (↓) 74.31 (↓) 73.34 (↓)

FT 61.78 (↓) 60.99 (↓) 70.29 (↓) 71.75 (↓) 72.50 (↓) 72.03 (↓)

NST 58.16 (↓) 64.96 (↓) 71.28 (↓) 74.12 (↑) 74.68 (↑) 74.89 (↑)

CRD 69.73 (↑) 69.11 (↑) 74.30 (↑) 75.11 (↑) 75.65 (↑) 76.05 (↑)

CRD+KD 69.94 (↑) 69.54 (↑) 74.58 (↑) 75.12 (↑) 76.05 (↑) 76.27 (↑)

LCKT 68.21 (↑) 68.81 (↑) 73.21 (↑) 74.62 (↑) 74.70 (↑) 75.08 (↑)

GCKT 68.78 (↑) 69.20 (↑) 74.29 (↑) 75.18 (↑) 75.78 (↑) 76.13 (↑)

WCoRD 69.47 (↑) 70.45 (↑) 74.86 (↑) 75.40 (↑) 75.96 (↑) 76.32 (↑)

WCoRD+KD 70.02 (↑) 70.12 (↑) 74.68 (↑) 75.77 (↑) 76.48 (↑) 76.68 (↑)

Table 3: CIFAR-100 test accuracy (%) of a student network trained with a number of distillation methods, when the teacher network

architecture is significantly different. We use the same codebase from the CRD repository. Our reported results are averaged over 5 runs.

Note that λ1 = 0.8 is the same as the weight on CRD, and λ2 = 0.05.

λ2 0 0.01 0.03 0.05 0.08 0.1 0.2

Mean 75.45 75.66 75.75 75.95 75.83 75.66 75.62

Std 0.31 0.46 0.44 0.40 0.34 0.29 0.47

Table 4: CIFAR-100 test accuracy (%) of student network ResNet-

8x4 with different weights on the local knowledge transfer term.

The teacher network is ResNet-32x4.

Layer 1 2 3 4

CRD 55.0 63.64 73.76 74.75

WCoRD 54.6 63.70 74.23 75.43

Table 5: Top-1 Accuracy (%) on chrominance view of STL-10

testing set with ResNet-18. The modal is distilled on the network

trained with the luminance view of Tiny-ImageNet.

Experiments on ImageNet We also evaluate the proposed

method on a larger dataset, ImageNet [14], which contains

1.2M images for training and 50K for validation. In this ex-

periment, we use ResNet-34 [20] as the teacher and ResNet-

18 as the student, and use the same training setup as in

CRD [42] for fair comparison. Top-1 and Top-5 error rates

(lower is better) are reported in Table 2, showing that the

WCoRD+KD method achieves the best student performance

on the ImageNet dataset. The relative improvement of

WCoRD over CRD on Top-1 error is 44.4%, and the rel-

ative improvement on Top-5 error is 23.08%, which further

demonstrates the scalability of our method.

5.2. Cross­Modal Transfer

We consider a setting where one modality X contains a

large amount of labeled data, while the other modality Y has

only a small labeled dataset. Transferring knowledge from

X to Y should help improve the performance of the model

trained on Y . We use linear probing to evaluate the quality

of the learned representation, a common practice proposed

in [1, 52]. Following [42], the same architecture is applied

to both teacher and student networks. We first map images

in the RGB space to the Lab color space (L: Luminance, ab:

Chrominance), then train a ResNet18 (teacher) on the Lu-

minance dimension of Labeled Tiny-ImageNet [14], which

we call L-Net. The accuracy of L-Net on Tiny-ImageNet

is 47.76%. The student network, denoted as ab-Net, is

trained on the Chrominance dimension of unlabeled STL-10

dataset [12].

In experiments, we distill general knowledge from L-Net

to ab-Net with different objective functions such as CRD

and WCoRD. Linear probing is performed by fixing the

ab-Net. We then train a linear classification module on top

of features extracted from different layers in the ResNet18

for 10-category classification. Results are summarized in

Table 5. For reference, training student model from scratch

with ResNet18 on STL-10 can reach an accuracy of 64.7%.

From Table 5, WCoRD outperforms CRD when using fea-
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Parameter Size Teacher Student AT SP CC CRD LCKT WCoRD

ResNet-8x4 4.61 Mb - 82.16 82.43 82.45 80.97 83.43 81.30 84.50

Inception-v3 84.61 Mb - 79.12 80.75 80.81 79.01 79.68 80.74 80.85

Table 6: AUC (%) of the ResNet-8x4 and Inception-v3 student networks on the OCT-GA dataset.

tures extracted from the 2nd-4th residual blocks, indicating

features extracted from these layers via WCoRD is more

informative than those from CRD.

5.3. Privileged Information Distillation

In many real-world scenarios, large datasets required to

train deep network models cannot be released publicly, due

to privacy or security concerns. One solution is privileged

information distillation [45]: instead of releasing the origi-

nal data, a model trained on the data is made public, which

can serve as a teacher model. Other researchers can train a

student model on a smaller public dataset, leveraging this

teacher model as additional supervision to enhance the per-

formance of the student model.

For example, Geographic Atrophy (GA) is an advanced,

vision-threatening form of age-related macular degeneration

(AMD), currently affecting a significantly large number of

individuals. Optical coherence tomography (OCT) imaging

is a popular method for diagnosing and treating many eye

diseases, including GA [5]. To automatically detect GA in

OCT images, a binary classifier can be trained with labeled

data such as OCT-GA, an institutional dataset consisting of

44,520 optical coherence tomography (OCT) images of the

retina of 1088 patients; 9640 of these images exhibit GA,

and each image contains 512 by 1000 pixels.

The resolution of images in OCT-GA is relatively low, and

the small size of the dataset puts limitations on the learned

model. One way to improve model performance is by lever-

aging additional larger high-resolution datasets [39]. Two

challenges prevent us from doing this in real-life scenarios:

(i) additional datasets may be private, and only a pre-trained

model is publicly available; and (ii) the disease of interest

may not be among those labeled categories in the additional

datasets (e.g., GA may not be the focus of interest in other

imaging datasets).

One example is the OCT dataset introduced by [25], con-

sisting of 108,312 images from 4,686 patients for 4-way

classification: choroidal neovascularization (CNV), diabetic

macular edema (DME), Drusen, and Normal. To test our

proposed framework in privileged distillation setting, we

treat this larger dataset as inaccessible and only use a pre-

trained model as the teacher, as is the case in many real-life

scenarios. Then we train a model on the smaller OCT-GA

dataset as the student network, and use privileged distillation

to transfer knowledge from the teacher to the student.

We test both Inception-v3 and ResNet8x4 models as stu-

λ2 0 0.05 0.06 0.07 0.08 0.09 0.1 0.2

Mean 83.43 83.80 84.15 84.50 83.83 83.70 83.65 82.28

Std 0.48 0.71 0.69 0.91 0.91 0.66 0.49 0.50

Table 7: AUC (%) of student network ResNet-8x4 with different

weights on the local knowledge transfer term.

dent networks for GA disease identification. KL divergence

cannot be used here, as both the learning goal and the train-

ing datasets for teacher and student networks are different.

This is designed to test the knowledge generalization abil-

ity of a model. As shown in Table 6, WCoRD achieves an

improvement of 2.34% and 0.96% compared to the basic

student and CRD methods, respectively. The relative im-

provement with ResNet8x4 is WCoRD−CRD
CRD−AT

= 107.0%. Since

the goal of the teacher and student models are different, fea-

tures from the teacher are biased. When the student uses

the same architecture as the teacher (Inception-v3), CRD

performs worse than both AT and SPKD in Table 6, which

can be interpreted as low generalizability. With the help

from LCKT, WCoRD is still able to obtain a comparable ac-

curacy. These results serve as strong evidence that WCoRD

possesses better knowledge generalization ability than CRD.

Ablation Study We investigate the importance of the local

knowledge transfer term LLCKT(·) in WCoRD. As shown

in Tables 1 and 3, without it, WCoRD cannot consistently

outperform CRD in different student-teacher architecture

settings. By fixing λ1 for the LGCKT(·) loss with λ1 = 1,

we adjust the hyper-parameter λ2 from 0.01 to 0.2. Table 7

reports the results, where it is evident that with λ2 = 0.07
WCoRD performs the best. Also, we observe that when

choosing λ2 from (0, 0.1], it is consistently better than the

model variant with λ2 = 0. This indicates that our model is

relatively robust given different hyper-parameter choices.

6. Conclusions

We present Wasserstein Contrastive Representation Dis-

tillation (WCoRD), a new framework for knowledge distilla-

tion. WCoRD generalizes the concept of contrastive learning

via the use of Wasserstein metric, and introduces an addi-

tional feature distribution matching term to further enhance

the performance. Experiments on a variety of tasks show that

our new framework consistently improves the student model

performance. For future work, we plan to further extend our

framework to other applications, such as federated learning

[26] and adversarial robustness [34].
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