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Abstract

Predicting future trajectories of traffic agents in highly

interactive environments is an essential and challenging

problem for the safe operation of autonomous driving sys-

tems. On the basis of the fact that self-driving vehicles are

equipped with various types of sensors (e.g., LiDAR scan-

ner, RGB camera, radar, etc.), we propose a Cross-Modal

Embedding framework that aims to benefit from the use

of multiple input modalities. At training time, our model

learns to embed a set of complementary features in a shared

latent space by jointly optimizing the objective functions

across different types of input data. At test time, a single

input modality (e.g., LiDAR data) is required to generate

predictions from the input perspective (i.e., in the LiDAR

space), while taking advantages from the model trained with

multiple sensor modalities. An extensive evaluation is con-

ducted to show the efficacy of the proposed framework using

two benchmark driving datasets.

1. Introduction

Future trajectory prediction has become the central chal-

lenge to succeed in the safe operation of autonomous ve-

hicles designed to cooperate with interactive agents (i.e.,

pedestrians, cars, cyclists, etc.). It can benefit to the de-

ployment of applications in autonomous navigation and

driving assistance systems with advanced motion planning

and decision making. Based on the fact that multi-modal

sensors (e.g., LiDAR scanner, RGB cameras, radar, etc.)

are equipped in autonomous vehicles, we propose a cross-

modal embedding framework that demonstrates the efficacy

of the use of multiple sensor data for motion prediction.

Figure 1 illustrates an overview of the proposed ap-

proach. At training time, we embed multiple feature repre-

sentations encoded from individual sensor data into a single
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Figure 1: Given a set of multi-modal data (e.g., LiDAR

data, RGB images, etc.) obtained from an autonomous ve-

hicle, the model is trained to embed complementary repre-

sentations of different input modalities into a shared latent

space. Output predictions are generated from different per-

spectives using a latent variable sampled from the learned

embedding space. At test time, the proposed method takes

a single input modality (e.g., LiDAR data, red-dashed ar-

row) and predicts the future motion in the same space (i.e.,

LiDAR-captured world space, red-solid arrow).

shared latent space. Our model jointly optimizes the ob-

jective functions across different input modalities, so that

the evidence lower bound of multiple input data over the

likelihood can be jointly maximized. We provide a deriva-

tion of the objective of shared cross-modal embedding and

its implementation using a CVAE-based generative model.

At test time, the model takes a single input modality (e.g.,

LiDAR data) and generates a future trajectory from the in-

put perspective (i.e., top-down view) using a latent variable

sampled from the shared embedding space. In this way, we

can benefit to the model training from the use of multiple

input modalities1, while keeping the same computational

time for trajectory generation as if the single modality had

been used. To the best of our knowledge, we are the first to

employ multi-modal sensor data from a single framework

1For example, top-down view LiDAR data and frontal view RGB im-

ages. However, the input modalities are not limited to these two types but

also include stereo images, depth, radar, GPS, and many others equipped in

autonomous vehicles, which can provide visual or locational information.
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for trajectory prediction. Note that existing works solve the

problem either in top-down view [23, 36, 9] with LiDAR

data or in frontal view [46, 4, 30] with RGB images.

The proposed framework is clearly distinguishable to

studies on a multi-modal pipeline for scene understanding

such as detection [6, 22, 27], tracking [12, 50], and semantic

segmentation [17, 41]. They have presented more accurate

models by simply fusing different representations extracted

from several sensor modalities. The generation of such joint

representations, however, would not be desirable in driving

automation systems due to the following issues: (i) during

inference, it inherently increases the computation time pro-

portional to the number of input modalities used; and (ii)

with the anomalous LiDAR data, the model would fail in

finding a solution, which is critical to operate self-driving

vehicles. For the former issue, our proposed cross-modal

embedding takes only a single input data during inference

and thus does not influence the computational time, while

it still benefits from the model trained with multiple input

modalities. In the latter, our model provides alternative pre-

diction solutions in frontal view using the RGB data, which

will activate driving assistance functions (i.e., ADAS) for

safe vehicle operation, even with a sensor failure.

To this end, we generate multiple modes of future trajec-

tories by sampling several latent variables from the learned

latent space. However, such random sampling-based strat-

egy [23, 9] is likely to predict similar trajectories, ignoring

the random variables while generating predictions from the

decoder. This posterior collapse2 problem of VAEs is par-

ticularly critical to future prediction as it mitigates the di-

verse modes of system outputs. Therefore, we introduce a

regularizer (i) that pushes the model to rely on the latent

variables, predicting diverse modes of future motion; and

(ii) that does not weaken the prediction capability of the de-

coder while preventing the performance degradation.

We address the following ideas in the proposed method:

• The objective of shared cross-modal embedding to

jointly approximate a real distribution using multi-

ple input sources is mathematically derived using the

Kullback-Leibler divergence (Sec. 3.2).

• Shared cross-modal embedding is implemented based

on our derivation to benefit from the use of multiple in-

put modalities, while keeping the same computational

time as if the single modality had been used (Sec. 3.2).

• The regularizer is designed for future prediction to mit-

igate posterior collapse of VAEs and to predict more

diverse modes of motion behavior (Sec. 3.3).

In addition, we design an interaction graph with a graph-

level target (Sec. 3.1), introduce a new evaluation metric to

measure prediction success (Sec. 4.2), and propose to use

absolute motions in frontal view (Sec. 4.1).

2We do not carry out any study on mode collapse of GANs or related

problems other than posterior collapse of VAEs where our work is built on.

Throughout the paper, we use the word ‘multi-modality’

to denote two different sources. First, multi-modal input

represents input data obtained from different types of sen-

sors. Second, multi-modal prediction depicts predicted tra-

jectory outputs with multiple variations.

2. Related Work

Pedestrian Trajectory Prediction A majority of research

on trajectory prediction [1, 15, 43, 49] has been conducted

toward modeling the interactive behavior between humans.

These works first encode the temporal information of in-

dividual humans and then find their correlation through a

social module. Recently, social interactions have been mod-

eled from the graph structure in [42, 19, 31]. Although these

methods may be successful in interaction modeling, they

overlook the environmental influences that may cause pre-

diction failures in structured environments with stationary

obstacles. Therefore, the subsequent work [7, 21] takes im-

ages as input to constrain their model using scene context.

Vehicle Trajectory Prediction in Top-down View Similar

interaction modules are applied for vehicle trajectory pre-

diction. Some approaches only consider the past motion

of road agents [11, 33, 28, 25], and thus result in large er-

rors with a complex road environment in traffic scenes. To

alleviate such problems, [23, 36, 24, 9, 37, 39] input ad-

ditional visual cues to condition their model on the road

topology. However, they overlook the vehicle interactions

against pedestrians, which is most critical to model the nat-

ural behavior of vehicles on the road for safe driving. We

thus do not limit our scope to ‘vehicle’ trajectories and its

interactions. Instead, we explicitly discover interactions of

heterogeneous entities using the proposed interaction graph.

Vehicle Trajectory Prediction in Frontal View [4, 46,

30, 29] aim to predict the future trajectory of vehicles in

a frontal view image space. They predict a target agent’s

relative trajectory with respect to the potential motion of

ego-vehicle. Therefore, the predictions are valid only if

the accurate ego-future is available. In practice, however,

prediction of ego-motion is an another research topic [18]

in the transportation domain, which makes hard to simply

apply such systems to the real world driving applications.

Therefore, we predict the absolute coordinates of trajecto-

ries with no effect of unknown ego-future in frontal view.

Multi-Modal Learning Learning representations of multi-

ple input modalities have been explored in recent years. As

described in [32], multi-modal learning can be categorized

into three types. Multi-modal fusion takes multiple modali-

ties as input and learns their joint representations. Basically,

the same set of input types should be provided at test time

as in [20, 45]. Cross-modal learning tries to learn more de-

scriptive representations from one modality when auxiliary

modalities are given at training time. During inference, the

245



auxiliary modalities are not necessary as in [16, 8]. Shared

representation learning learns the representation from one

modality and performs the test on the other modality as

shown in [47, 35]. The proposed cross-modal embedding

aligns in between cross-modal learning and shared repre-

sentation learning, similar in spirit to [2]. We aim to benefit

from different modalities that are correlated to each other.

However, rather than learning common representations, we

train the model to embed different representations into the

shared cross-modal latent space.

3. Proposed Method

Given a scenario with the trajectory data T = {T i|∀i ∈
{1, ...,K}} of K traffic agents, we split T i into a past tra-

jectory xi = {xi
t|∀t ∈ {1, ..., τ}} for the first τ obser-

vation time steps and a future trajectory yi = {xi
t|∀t ∈

{τ + 1, ..., τ + δ}} for the next δ time steps, where xi
t rep-

resents a 2D position of an arbitrary agent i at time t. As-

suming that a visual sequence I is available during τ obser-

vation time steps, we compute the optical flow O by run-

ning TV-L1 [48] and segmentation map S from DeepLab-

V2 [5] trained on Cityscapes [10]. Given {O, S} and

{xi|∀i ∈ {1, ...,K}}, our goal is to generate a trajectory

prediction ŷk of the target agent k. To achieve this, we build

a feature extraction module in Sec. 3.1 upon graph neural

networks (GNNs) in order to learn social behaviors ck of

the target k toward all other traffic agents (e.g., pedestrians,

vehicles, etc.) as well as surrounding road structures. Then,

we derive the objective of the proposed shared cross-modal

embedding and show its implementation within CVAE in

Sec. 3.2. The encoder q(z|yk, ck) is learned to embed yk

into the latent space, conditioning on the observed social be-

havior ck. The following decoder p(yk|z, ck) reconstructs

the future locations yk using ck with a latent sample z. Fi-

nally, in Sec. 3.3 we provide a solution for mode diversifi-

cation addressing the posterior collapse issue.

3.1. Social Behavior Encoding

Input Layer for External Features The importance of

external constraints on trajectory prediction is particularly

pronounced for traffic agents in driving scenes. To model

such environmental influences, the system should be able to

recognize each object’s static/dynamic states as well as the

semantic context of the scene.

The image sequence I captured during the past time

steps is used to generate two types of representations: a set

of optical flow images O and a segmentation map S. The

temporal changes of the objects from O are processed using

the 3D convolutional neural network CNN3D by extracting

temporal representations fT along the time axis:

fT = CNN3D(O;WT ), (1)

where WT is the learnable weight parameters.

In addition, a pixel-level segmentation map is obtained

at the first time step of the given scenario. Among the

estimated labels, we only leave the background structures

such as road, sidewalk, vegetation, etc. to extract visual

features from the stationary environment. The 2D convolu-

tional neural network CNN2D is used in this stream to take

advantage of its spatial feature encoding:

fS = CNN2D(S;WS), (2)

where WS is the learnable parameters.

We merge the temporal states fT of static/dynamic ob-

jects with the spatial features fS of the stationary context to

generate spatio-temporal features

fE = fT + fS . (3)

We further convert fE ∈ R
dC×dC×dE to the external feature

matrix F ∈ R
K×dE for the graph. K entities (of size dE)

are taken from one of cells in a dC × dC grid of fE , where

the cell location corresponds to each agent i’s original pixel

location at time τ . For example, an agent shown in the first

32×32 sub-region of an original 256×256 image takes the

feature vector from the (1, 1)-th cell in a 8×8 grid of fE .

Input Layer for Node Features Using the past motion

history of traffic agents, we encode the node features. As-

suming the task is to predict the future motion of the tar-

get agent k, we first discover its own intent by preform-

ing the following procedure. The past states xk is encoded

into high dimensional feature representations Uk through

the multi-layer perceptron (MLP). The encoded features are

then combined with the local perception that contains mid-

level semantic context Ωxk
τ

(nearby areas of xk
τ
) from for-

mer CNN2D. By adding spatial locality, interactions of

the target toward the local environment further constrain its

motion intent. The subsequent LSTM captures the temporal

dependency of motion states on the local environment by

Uk = MLP
(

xk;WU

)

,

hk
t+1 = LSTM

(

Uk
t + Ωxk

τ

,hk
t ;WK

)

, (4)

where WU and WK is the learnable parameters of MLP and

LSTM layer, and hk
t denotes the hidden state of LSTM at

time t. We define the last hidden state as hk
(0) and use it to

initialize the node features of the target in the graph.

We run a different feature encoding procedure for the

rest of the agents j ∈ {1, ...,K}\{k} to model their relative

motion toward the target agent k as follows:

Vj = MLP
(

xk − xj ;WV

)

,

h
j
t+1 = LSTM

(

Vj
t ,h

j
t ;WJ

)

, (5)

where WV and WJ is the learnable parameters of MLP and

LSTM, and h
j
t denotes the hidden state of LSTM at time

t. This process is simple yet effective to infer temporal

changes of interactive behavior of individual agents. We use
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Figure 2: The illustration of the proposed feature encoder. Using the past image sequence, we model spatio-temporal factors

given by external environments. The internal and social factors of the target agent is encoded from its past motion as well as

surrounding local perceptual context. In the following GNN layer, we model agent-specific social behavior.

the last hidden state of each agent j as h
j

(0) for the graph.

GNN Layer The social behavior of the target agent is

modeled from each agent’s features and external environ-

ment features. We define a graph G = (H,F ), where

H ∈ R
K×dV , H = {hi|∀i ∈ {1, ...,K}} is a node fea-

ture matrix representing K node embeddings of size dV .

F ∈ R
K×dE is an external feature matrix F = {f i|∀i ∈

{1, ...,K}}, where each entity represents outside influence

on each node in the graph. Following the general message

passing phases [14], we construct a GNN architecture:

H(l+1) = M(H(l), F ), (6)

where M is the message propagation function that takes the

node feature matrix H(l) updated by l times of the mes-

sage passing phase. We initialize H(0) = {hj

(0)|∀j ∈

{1, ...,K}\{k}} ∪ {hk
(0)} using the hidden states obtained

from the input layer.

The proposed GNN structure for social behavior model-

ing can be considered as a family of pair message passing

neural networks [3], where the function M takes a concate-

nation of two nodes as a pair. We design our model on top

of this process with an additional graph-level target:

mk
(l+1) =

∑

i,j

MLP

(

Concat(hi
(l) + f i,

h
j

(l) + f j , hk
(l));WM

)

,

hk
(l+1) = σ

(

mk
(l+1)

)

, (7)

where WM is the learnable parameters of MLP, Concat(,,)

denotes concatenation, k is a target agent, and i and j are

the rest of agents. During the message passing phase, the re-

lation between two nodes i and j is encoded with respect to

the target node k by considering their external influences f i,

f j . A summation operation generates messages invariant to

the permutation of the nodes. Then, the features of the tar-

get node hk
(l+1) in the graph are updated by a non-linearity

function σ such as ReLU using the messages mk
(l+1). After

L updates, the output social behavior features ck are gener-

ated by another MLP during the readout phase:

ck = MLP(hk
(L);WR), (8)

where WR is the learnable parameters. We use cki for a cer-

tain input i. For notational brevity, we drop the target indi-

cator k in the following sections. The input layer and GNN

layer is illustrated in Figure 2, and details of the network

architecture are shown in the supplementary material.

3.2. Shared Cross-Modal Framework

The main contribution of this work is that we propose

a cross-modal embedding framework for future prediction.

It aims to benefit from the use of multiple input modali-

ties, while keeping the same computational complexity as

if the single data type had been used for trajectory predic-

tion. To implement such functionality, we derive our model

within the CVAE framework to embed various types of rep-

resentations into a single shared latent space. Instead of

learning the latent space manifold from a single input, sev-

eral complementary representations extracted from multiple

data sources simultaneously characterize the cross-modal

space at training time. By jointly learning the same sce-

nario from different input perspectives, the generative pro-

cess becomes more descriptive, which results in increasing

the performance. At test time, a single modal input is used

to sample the latent variables from the learned cross-modal

space, taking advantages with other sensor modalities.

In the followings, we mathematically derive the objec-

tive function of shared cross-modal embedding and extend

its derivation toward a generative model conditioned on the

input observation.

Joint Optimization The objective of cross-modal embed-

ding is to jointly approximate a real distribution p(z) using

a posterior qi(z|yi) of multiple input sources i ∈ {LiDAR,

RGB, ...}, where yi is the sample data point of input modal-

ity i, and z is the latent variable. Exploiting the fact that

KL(q(y)||p(y)) = −

∫

q(y) log

(

p(y)

q(y)

)

dy ≥ 0, (9)

the Kullback-Leibler (KL) divergence associated with mul-
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tiple approximates qi is given by:
∑

i

KL(qi(z|yi) || p(z|yi))

=
∑

i

−

∫

qi(z|yi) log

(

p(z|yi)

qi(z|yi)

)

dz ≥ 0. (10)

By applying Baye’s theorem and employing
∫

qi(z|yi)dz =
1, Eqn. (10) can be revised as

∑

i

(

−

∫

qi(z|yi) log

(

pi(yi|z)p(z)

qi(z|yi)

)

dz + log p(yi)

)

≥ 0. (11)

Using the definition of the KL divergence and expected

value and simple math, Eqn. (11) is converted to

log

(

∏

i

p(yi)

)

≥
∑

i

(

−KL (qi(z|yi)||p(z))

+ E∼qi(z|yi)[log pi(yi|z)]

)

. (12)

Therefore, maximizing the evidence lower bound (ELBO)

of multiple input data over the likelihood jointly maximizes

their evidence probability.

Cross-Modal Embedding The proposed cross-modal em-

bedding framework is trained to jointly learn the shared la-

tent space conditioned on multiple input observations such

as ci∈{LiDAR,RGB,etc.}. The variational lower bound of the

log-likelihood can be extended as a conditional form by

log

(

∏

i

p(yi|ci)

)

≥
∑

i

(

−KL(qi(z|yi, ci)||p(z|ci))

+ E∼qi(z|yi,ci)[log pi(yi|z, ci)]

)

, (13)

where qi(z|yi, ci) and pi(yi|z, ci) is implemented as a pair

of an encoder and decoder for i-th input modality following

the reparameterization trick of CVAE. ci is the conditional

observation. The full derivation is provided in the sup-

plementary material. We draw the loss to minimize the

negative ELBO while training the model as follows:

LE =
∑

i

(

KL(qi(z|yi, ci)∥p(z|ci))

− E∼qi(z|yi,ci)[log pi(yi|z, ci)]

)

. (14)

The network parameters of the encoder are learned to min-

imize the KL divergence between the prior distribution

p(z|ci) and the approximates qi(z|yi, ci). The second term

is the log-likelihood of samples, which is considered as the

reconstruction loss of the decoder. The decoder generates

trajectories using the latent variables z sampled from the

prior that is modeled as Gaussian distribution z ∼ N (0, I).

3.3. Multi-modal Prediction

In practice, the optimization of VAE and its variants is

challenging itself because of the posterior collapse prob-

lem. The strong autoregressive power of the decoder often

ignores the random variable z sampled from the learned la-

tent space. Thus, the output is dominantly generated using

the conditional input c, still satisfying the minimization of

the KL divergence and maximization of the log-likelihood

in Eqn. (14). Such a problem alleviates the multi-modal

nature of future prediction where multiple plausible trajec-

tories are generated given the same past motion. To address

posterior collapse, we consider the following challenges: (i)

our technique helps to generate diverse responses from the

decoder, which enables multi-modal prediction and (ii) it

does not physically weaken the decoder to alleviate its pre-

diction capability. In this sense, we design an auxiliary reg-

ularizer that makes the decoder to rely on the latent variable.

At training time, we assume that there exist N modes

of trajectories for each query. Then, the latent variables

zn ∼ q(zn|y, c) = N (µ,σ2) are sampled from the nor-

mal distribution with the mean µ and variance σ
2, where

n ∈ {1, ..., N}. We consider the trajectories generated us-

ing these latent variables as N modes of prediction outputs.

To maximize the diversity among predictions, the pair-wise

similarity is evaluated using Gaussian kernel by

K = exp

(

−
D(ŷi, ŷj)

2σ2
G

)

, (15)

where D measures a distance between predictions ŷi and

ŷj with i, j ∈ {1, ..., N} and σ
2
G is the hyper-parameter of

this kernel function. We find a maximum similarity Kmax

and minimize it during training. The regularizer then en-

forces the model to maximize the diversity among N pre-

dicted trajectories through the optimization without losing

the prediction capability of the decoder.

As a result, the total objective function of the proposed

approach is drawn as follows:

LTotal = LE + λ

∑

i

Kmax,i (16)

where i ∈ {LiDAR,RGB,...} is an indicator for input

data modalities and λ balances multi-modality and accuracy

(λ = 10 is used). To optimize the first term in Eqn. (16), we

find ŷn of the mode n that best reconstructs the ground truth

y. In this way, the log-likelihood in Eqn. (14) encourages

the decoder to generate accurate results, while preserving

the mode diversity with the regularizer.

4. Experiments

4.1. Input Modalities

Any set of sensory data can be used as input to the pro-

posed framework. For demonstration, however, we use two
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exemplary data types that are easily accessible from the

existing benchmark datasets: (i) LiDAR data provide 3D

scanning of the surrounding environment. Using 3D point

clouds, we project every single point onto the ground plane

in top-down view and predict trajectories of traffic agents

in the LiDAR-captured world coordinates. (ii) RGB im-

ages captured from a frontal-facing camera provide rich and

dense representations. We predict the trajectories from the

egocentric perspective in the image space. Unlike relative

trajectories in [44, 46], we propose to predict trajectories

using the absolute locations, eliminating the effect of un-

certain ego-future [30]. We provide its details with our data

preparation in the supplementary material.

4.2. Datasets and Evaluation Metrics

Datasets Two benchmark driving datasets (KITTI [13] and

H3D [34]) are used to evaluate the proposed approach com-

paring to self-generated baselines and state-of-the-art meth-

ods. The KITTI dataset was introduced for trajectory fore-

cast in [23] to predict future motions of road agents in top-

down view, and then [46] found their future locations in

frontal view using this dataset. As in [23], we generate a set

of trajectory segments with 6 sec long (2 sec for observa-

tion and 4 sec for prediction) using Road and City scenes in

the Raw subset. We divide all videos into five sets and con-

duct 5-fold cross validation, following the split of [7]. In

addition, the H3D [34] dataset is used to further validate the

proposed approach on heterogeneous agents in highly con-

gested urban environments. For evaluation, we divide 160

scenarios of H3D into the training (75%) and test set (25%)

and use the same observation / prediction time as KITTI.

Metrics For the performance comparison, we mainly follow

the standard evaluation metrics:

• Average Distance Error (ADE) is computed using

L2 distance between the predicted trajectory and the

ground truth for a certain time duration.

• Final Distance Error (FDE) shows L2 distance be-

tween the predicted location and the ground truth at

a certain time step.

Both ADE and FDE are reported with 1 sec interval at fu-

ture time steps. For multi-modal prediction, we sample 20

trajectories and find the best one with a minimum ADE at 4

sec in future. Note that the single- and multi-modal models

are respectively denoted by a different suffix S and M.

In addition, we introduce a new metric that measures the

rate of prediction success:

• Success Rate (SR) finds the fraction of scenarios

where L2 distance between the predicted endpoint and

ground truth is within a certain threshold value ε.

Under the assumption that the prediction would be success-

ful if the error at the endpoint is within a certain threshold,

Component
1.0 sec 2.0 sec 3.0 sec 4.0 sec

Env Soc Mul

- - - 0.37 / 0.64 0.69 / 1.47 1.20 / 3.01 1.94 / 5.32

+ - - 0.38 / 0.65 0.68 / 1.39 1.16 / 2.96 1.87 / 4.97

- + - 0.33 / 0.55 0.61 / 1.31 1.09 / 2.80 1.79 / 4.92

+ + - 0.31 / 0.51 0.53 / 1.07 0.92 / 2.36 1.53 / 4.35

+ + + Fus 0.20 / 0.35 0.42 / 1.00 0.82 / 2.31 1.45 / 4.38

+ + + Emb 0.20 / 0.36 0.42 / 1.00 0.82 / 2.29 1.44 / 4.33

Table 1: Ablation study on the KITTI [13] dataset. ADE /

FDE is reported in meters. Refer to Sec. 4.3 for description.

this metric plots how many scenarios can be considered as

‘success prediction’. SR thus is a more practical evaluation

metric that tests the overall robustness of the algorithm.

4.3. Ablative Study

We first demonstrate our design choices through ablative

studies conducted in top-down view using KITTI. We eval-

uate the baseline models on the following components:

• Env: External features (fS and fT );

• Soc: Social influences of other agents;

• Mul: Multi-modal learning. Fus: multi-modal fu-

sion with feature aggregation, Emb: proposed shared

cross-modal embedding.

Table 1 compares ADE and FDE of six baseline models

that are designed by adding (+) or dropping (-) these com-

ponents. When one or more of information is missing, a

significant performance drop is observed. The error of the

model without any components is particularly larger than

others by a huge margin. By considering environmental

influences (Env), the performance improves toward long-

term prediction (4sec). It clearly demonstrates the effective-

ness of the environmental constraints on more distant areas.

We observe that adding Soc outperforms previous baselines,

which implies the role of social behavior encoding for tra-

jectory prediction with the significant improvement at the

short-term time steps. The impressive error drop is found

by taking both Env and Soc into account. It demonstrates

the validity of the proposed feature extractor. We highlight

the efficacy of the use of multiple sensor modalities from

Mul, where both Fus and Emb further improve the perfor-

mance. Interestingly, the proposed cross-modal embedding

(Emb) achieves even lower error than fusion-based counter-

part (Fus). It indicates that our model benefits from com-

plementary input modalities with cross-modal embedding,

even though a single input data is used during inference.

Additionally, we show the efficacy of the proposed regu-

larizer for multi-modal prediction in the bottom of Table 2.

Without the proposed regularizer (S-CM 10 w/o reg), the

performance improvement of the model with 10 samples is

minimal against single-modal prediction (S-CM 1), which

is interpreted as a posterior collapse problem. However, the

model with the regularizer (S-CM 10) highly improves the
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Method N 1.0 sec 2.0 sec 3.0 sec 4.0 sec

State-of-the-art

Const-Vel [40] 1 0.34 / 0.56 0.85 / 1.79 1.60 / 3.72 2.55 / 6.24

S-LSTM [1] 1 0.53 / 1.07 1.05 / 2.10 1.93 / 3.26 2.91 / 5.47

Gated-RN [7] 1 0.34 / 0.62 0.70 / 1.72 1.30 / 3.34 2.09 / 5.55

DESIRE [23] 1 - / 0.51 - / 1.44 - / 2.76 - / 4.45

DESIRE [23] 20 - / 0.28 - / 0.67 - / 1.22 - / 2.06

S-GAN [15] 20 0.29 / 0.43 0.67 / 1.34 1.26 / 2.94 2.07 / 5.22

S-STGCNN [31] 20 0.21 / 0.36 0.38 / 0.70 0.59 / 1.31 0.82 / 2.14

Trajectron++ [39] 20 0.19 / 0.33 0.34 / 0.65 0.53 / 1.18 0.78 / 1.96

Ours

S-CM 1 1 0.20 / 0.36 0.42 / 1.00 0.82 / 2.29 1.44 / 4.33

S-CM 10 w/o reg 10 0.20 / 0.35 0.40 / 0.96 0.77/ 2.06 1.33 / 4.04

S-CM 10 10 0.18 / 0.31 0.32 / 0.61 0.49/ 1.09 0.75 / 1.99

S-CM 20 20 0.17 / 0.29 0.29 / 0.53 0.42/ 0.83 0.61 / 1.57

Table 2: Quantitative comparison (ADE / FDE in meters) of

our approach with the state-of-the-art methods. The KITTI

dataset [38] is used to predict trajectories in top-down view.

N denotes the number of samples used.

Method N 1.0 sec 2.0 sec 3.0 sec 4.0 sec

State-of-the-art

Conv1D∗ [44] 1 24.38 / 44.13 - / - - / - - / -

FVL∗ [46] 1 17.88 / 37.11 - / - - / - - / -

Const-vel [40] 1 5.88 / 9.42 13.23 / 26.03 22.13 / 45.99 31.90 / 68.03

S-GAN [15] 1 7.54 / 10.51 13.39 / 23.74 21.37 / 43.82 31.76 / 71.55

S-GAN [15] 20 6.96 / 9.58 12.25 / 21.42 19.48 / 39.66 28.89 / 65.02

Ours

S-CM 1 w/o Emb 1 4.17 / 7.85 8.22 / 17.68 13.63 / 30.48 19.63 / 44.97

S-CM 1 1 4.17 / 7.35 8.21 / 17.64 13.59 / 30.41 19.59 / 44.92

S-CM 10 10 3.25 / 5.57 5.71 / 10.74 8.25 / 15.74 11.22 / 24.85

S-CM 20 20 3.19 / 5.42 5.52 / 10.02 7.51 / 12.26 9.59 / 19.76

Table 3: ADE / FDE is evaluated in pixels. The KITTI [13]

dataset is used to predict trajectories in frontal view. ∗ de-

notes the evaluation on relative motion from ego-vehicle. N

denotes the number of samples used.

accuracy generating diverse output responses. We conclude

that the proposed regularizer can ease posterior collapse for

future prediction.

4.4. Quantitative Results

We first compare the performance of the proposed ap-

proach with the state-of-the-art methods using KITTI. In

Table 2, we observe from single-modal prediction (N=1)

that our S-CM 1 outperforms all compared single-modal

approaches including social interaction oriented meth-

ods [1] as well as scene context oriented methods [23, 7].

For multi-modal prediction, the proposed approach (S-

CM 10) with N=10 already achieves overall lower ADE

and FDE than other competitors in top-down view trajec-

tory forecast. By sampling N=20 modes, we improve FDE

at 4.0 sec over 19% against [39].

Using the same cross-modal model, we examine the

frontal view prediction capability in Table 3. Note that

Conv1D [44] and FVL [46] predicts relative motion with

respect to the future ego-motion. Their poor performance

might be caused by the prediction difficulties with unknown

ego-future. Although the proposed method (S CM 1) fur-

ther improved the accuracy without affecting the inference

time, the effect seems less significant compared to that

Method N 1.0 sec 2.0 sec 3.0 sec 4.0 sec

State-of-the-art

Const-Vel [40] 1 0.18 / 0.26 0.34 / 0.60 0.52 / 1.03 0.74 / 1.54

S-LSTM [1] 1 0.26 / 0.41 0.49 / 0.92 0.72 / 1.53 1.01 / 2.32

S-GAN [15] 1 0.27 / 0.37 0.45 / 0.77 0.68 / 1.29 0.94 / 1.91

S-GAN [15] 20 0.26 / 0.35 0.44 / 0.72 0.65 / 1.24 0.90 / 1.84

Gated-RN [7] 20 0.18 / 0.32 0.32 / 0.64 0.49 / 1.03 0.69 / 1.56

STGAT [19] 20 0.24 / 0.33 0.34 / 0.48 0.46 / 0.77 0.60 / 1.18

S-STGCNN [31] 20 0.23 / 0.32 0.36 / 0.52 0.49 / 0.89 0.73 / 1.49

Trajectron++ [39] 20 0.21 / 0.34 0.33 / 0.62 0.46 / 0.93 0.71 / 1.63

EvolveGraph [26] 20 0.19 / 0.25 0.31 / 0.44 0.39 / 0.58 0.48 / 0.86

Ours

S-CM 1 1 0.14 / 0.25 0.27 / 0.54 0.43 / 0.95 0.62 / 1.45

S-CM 10 10 0.12 / 0.21 0.21 / 0.37 0.30 / 0.61 0.42 / 0.96

S-CM 20 20 0.11 / 0.19 0.18 / 0.30 0.25 / 0.46 0.34 / 0.77

Table 4: Quantitative results (ADE / FDE) are reported in

meters. We use H3D [34] to evaluate the proposed method

in top-down view. N denotes the number of samples used.

Method N 1.0 sec 2.0 sec 3.0 sec 4.0 sec

State-of-the-art

Const-vel [40] 1 13.15 / 19.22 24.64 / 44.13 38.18 / 74.75 53.38 / 110.07

S-GAN [15] 1 12.91 / 17.05 20.57 / 33.53 29.70 / 54.41 40.71 / 84.51

S-GAN [15] 20 12.38 / 16.26 19.67 / 31.86 28.30 / 51.55 38.88 / 80.55

Ours

S-CM 1 1 8.69 / 16.06 16.52 / 33.25 25.68 / 54.91 36.29 / 82.05

S-CM 10 10 6.62 / 11.36 10.69 / 18.12 14.25 / 24.51 18.22 / 36.92

S-CM 20 20 6.25 / 10.51 9.61 / 15.26 12.07 / 18.66 15.05 / 30.56

Table 5: Our approach is evaluated on ADE / FDE (in pix-

els) using the H3D [34] dataset. The proposed absolute mo-

tions (with ego-future elimination) are used to compute er-

rors in frontal view. N denotes the number of samples used.

shown in top-down view (Table 1). Our insight is as fol-

lows: (i) the use of complementary features obtained from

different input modality is not as impactful as it was for

top-down prediction; and (ii) the performance improvement

achieved by other aspects (e.g., social behavior, semantic

context, etc.) is already exceptional in frontal view, which

makes the improvement with embedding less compelling.

Nevertheless, the proposed method with cross-modal em-

bedding generally shows higher accuracy against others.

We further evaluate our work using the H3D dataset in

its highly congested environments. In top-down view as

in Table 4, we found that the proposed model with a sin-

gle sample (S-CM 1) already achieves the lower error than

most of methods including very recent graph-based models

([31] w/o scene and [39] w/ scene). Our explicit model-

ing of relational interactions together with cross-modal em-

bedding enables us to explore more discriminative behav-

ior representations over these graph-based methods. The

performance is further improved by sampling multiple pre-

dictions with the regularizer (S-CM 20). Compared to the

best state-of-the-art method [26] that finds the dynamic evo-

lution of interactions, our work improves the performance

over 10% on FDE at 4.0 sec. Such lower errors demon-

strates the generation of highly diverse yet acceptable future

motions using our model, considering the road topology.

Subsequently, we evaluate our trajectory prediction

framework for the task of frontal view forecast. In Table 5,
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past observation future prediction

Figure 3: We visualize the top-1 prediction from highly interactive scenarios among heterogeneous traffic agents, such as

human-human, human-vehicle, and vehicle-vehicle interactions.

(a) (b)

Figure 4: The success rate (SR) is plotted as a fraction of

success prediction scenarios with respect to maximum al-

lowed distance error, which is indicative of overall robust-

ness of algorithms. SR is evaluated in top-down view on

FDE at 4.0 sec. (a) KITTI and (b) H3D.

we observe that the performance of our single-modal pre-

diction model (S-CM 1) is on par with multi-modal predic-

tion model of Social-GAN (S-GAN with N=20). It implies

that the prediction capability of the proposed framework is

being at the level of the state-of-the-art. The significant im-

provement of error from our multi-modal prediction model

S-CM 20 further demonstrates the effectiveness of our ob-

jective function for optimization.

4.5. Evaluation with Success Rate

The standard evaluation metrics such as ADE and FDE

do not capture the success or failure of predictions. We thus

introduce SR that plots the proportion of scenarios that can

be considered as ‘successful prediction’ with respect to the

definition of success. We use the error threshold ε on the x-

axis and measure the rate of success scenarios by FDE at 4.0

sec. Figure 4 compares our approach with two state-of-the-

art methods [31, 39]. We observe from 4a that our approach

performs better than others in terms of the correctness of

predictions. Assuming that the real driving application is

designed with a small prediction tolerance (ε = 1.5m),

our model is more reliable and credible with considerably

higher success rate (63% compared to [39] of 33% or [31]

of 29%). We also plot SR using the H3D dataset in 4b,

which indicates that our prediction model can achieve much

smaller errors in the majority of scenarios. Our method

shows consistently higher success rate, validating the ro-

bustness of our prediction capability.

4.6. Qualitative Results in Top-down View

Figure 3 visualizes the top-1 prediction result of the pro-

posed approach. Each scenario contains the heterogeneous

agents (i.e., cars, bus, pedestrians, cyclist, etc.) interactive

one to another. We robustly forecast their future motions

by taking advantages of the proposed social behavior mod-

eling and cross-modal embedding. In between pedestrians,

our approach models their motion behaviors and generates

socially acceptable trajectories (dotted oval in the second

column). In the last column, our model predicts that the car

would turn left, which influences the behavior of on-coming

vehicle that slows its speed (i.e., yielding; dotted arrow).

We conclude that the proposed graph accordingly considers

relational interactions while predicting future motions. We

provide the results of 20 prediction samples as well as qual-

itative results in frontal view in the supplementary material.

5. Conclusion

We proposed a solution to future trajectory forecast in

driving scenarios. Assuming that the multiple sensory data

is available for autonomous driving, our approach can ben-

efit from the model trained using multiple input modalities.

First, the GNN-based feature encoder extracts social behav-

iors of the target agent, considering its interactions toward

all other traffic agents as well as surrounding road struc-

tures. Then, the relational behaviors obtained from multiple

perspectives are embedded into a shared cross-modal latent

space. We provided its derivation that jointly optimizes ob-

jective functions using the generative variational models.

Finally, we designed an auxiliary regularizer to ease the

posterior collapse problem for future prediction. We ana-

lyzed the significance of the proposed approach through the

extensive evaluation, showing the improvement of the per-

formance against the state-of-the-art methods.
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