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Abstract

Neural Networks require large amounts of memory and

compute to process high resolution images, even when only

a small part of the image is actually informative for the task

at hand. We propose a method based on a differentiable

Top-K operator to select the most relevant parts of the input

to efficiently process high resolution images. Our method

may be interfaced with any downstream neural network, is

able to aggregate information from different patches in a

flexible way, and allows the whole model to be trained end-

to-end using backpropagation. We show results for traf-

fic sign recognition, inter-patch relationship reasoning, and

fine-grained recognition without using object/part bound-

ing box annotations during training.

1. Introduction

High-resolution imagery has become ubiquitous nowa-

days: both consumer devices and specialized sensors rou-

tinely capture images and videos with resolution in tens

of megapixels. Processing these high-quality images with

computer vision models remains challenging: analyzing the

images at full resolution can be prohibitively computation-

ally expensive, while simply downsampling them before

processing may remove important fine details and substan-

tially hurt performance. It would be desirable to save com-

pute, while retaining the capability to recognize fine details.

Compute can be saved by exploiting the following prop-

erty of many practical vision tasks: not all parts of the image

are equally important for finding the answer. Figure 1 shows

examples of tasks where only a small fraction of the full im-

age needs to be processed in detail. Being able to quickly

discard uninformative parts of the image would have sev-

eral benefits. It would reduce the overall computational and

memory complexity of the model, and the regions of inter-

est could be processed in more detail and by a more power-

∗Work done during internship at Google Research.† Equal contribution.

Figure 1: Examples of large images where patch extraction

allows (top-left) to focus on details for fine-grained recog-

nition, (bottom-left) to reason across patches, and (right) to

efficiently capture very localized information.

ful model than otherwise.

Determining which parts of the image to retain and

which to discard is usually nontrivial and highly task de-

pendent. In some applications the solution might be as sim-

ple as taking the center crop of the image, but in most cases

relevant regions need to be detected first. For instance, in a

self-driving car setting, it would be permissible to ignore the

sky, but all traffic signs in sight should be correctly identi-

fied and must not be ignored. One may formulate this as fol-

lows: Given a regular grid of equally sized image patches,

decide for each patch whether to process or discard it. This

decision is however discrete, which makes it unsuitable for

end-to-end learning.

To overcome this limitation, inspired by the work of

Katharopoulos & Fleuret [22], we formulate patch selec-

tion as a ranking problem, where per-patch relevance scores

are predicted by a small ConvNet and the Top K scor-

ing patches are selected for downstream processing. We

make this end-to-end trainable with backpropagation using

the perturbed maximum method of Berthet et. al [5]. We

present this as a generic module for patch selection. Our

approach is most effective when the majority of patches in

the image are irrelevant to the target, but the model a priory
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does not know where in the image the important patches are

present. Hence, we do not aim to achieve image coverage

such as in semantic segmentation and object detection.

In the remainder of this paper, we will formulate patch

selection for image recognition as a Top-K selection prob-

lem in section 3, apply the perturbed maximum method to

construct an end-to-end model trainable via backpropaga-

tion in section 4.2, and demonstrate wide applicability of

this method via empirical results in three different domains:

(1) street sign recognition, (2) inter-patch relationship rea-

soning on synthetic data, and (3) fine-grained classification

without using object/part bounding box annotations during

training and evaluation (Section 5).

2. Related Work

Region proposal methods : Several computer vision

methods extract regions of interest from the image. Two

stage object detection approaches, for instance, select re-

gions of interest using region proposal networks [35] or

hand crafted heuristics [38, 15]. Selected regions are later

processed by a separate stage of the model. These methods

use the non-differentiable RoI-Pooling [15] or the differen-

tiable RoI-Align [16]. Such architectures require bounding

box supervision to train large scale object detection mod-

els, whereas our experiments focus on a simpler setting and

aim to train with weak supervision using only a single class

label per image.

Soft attention : In order to attend to specific parts of an

image, an alternative approach is to occlude parts of the in-

put by generating attention masks [45]. While this helps

the model focus on relevant features [37, 50, 42, 26], be-

come more interpretable [26], or include external data such

as image captions [46, 2], the models will typically still pro-

cess the whole image on a fixed input resolution. Thus they

do not lead to any efficiency gains. Another approach [8]

would be to process several image resolutions in parallel

and use an attention mechanism to pick features from them.

It is also possible to employ adhoc losses to extract mean-

ingful patches [32].

Multiple-Instance Learning : A number of works use

attention to solve Multiple-Instance Learning (MIL) prob-

lems, which are especially common in medical imaging,

where images tend to be very large [20, 27]. Here the goal

is to label a set of related input samples, such as slices

of organ scans or large images that are decomposed into

patches. While, for example, the method of Ilse et. al [20]

can be used to identify the most relevant patches, this is not

leveraged to make computation more efficient, as all image

patches are processed in equal detail by this method.

Sequential “glimpses” : There is a long line of work that

sequentially processes a sequence of patches (“glimpses”),

from a network, until they settle on the most relevant

ones [36, 14]. These methods often rely on Reinforce-

ment Learning to train non-differentiable attention mech-

anisms [33, 4, 28, 12], which typically makes them difficult

to train. The Spatial Transformers [21] on the other hand

can be deployed as a differentiable attention mechanism, for

example for fine-grained recognition of bird species. These

have been applied sequentially to extract several regions of

interest [13, 24] as part of recurrent neural networks. Train-

ing spatial transformers on large images can, however, be

difficult because the gradients with respect to the transfor-

mation parameters are an accumulation of gradients of sub-

pixel bilinear interpolation which can be very local. An-

gles et. al [3] overcome these limitations to train a multiple

instance spatial transformers by lifting non-differentiable

Top-K by introducing an auxiliary function that creates a

heat-map given a set of interest points. Our method, on the

other hand, avoids these limitations by computing gradients

with respect to all patches in every backward step.

Attention Sampling : Most related to our current work

are differentiable methods that sample patches, specifically

Attention Sampling (ATS) [22]. ATS requires that the out-

put of the network f(x; θ) be an expected value over em-

beddings of all possible patches P. That is, f(x, θ) =
Ep∼Z(P) [f(p; θ)]. Using a Monte Carlo approximation of

the expectation, f is only applied on a small number of

patches sampled according to the distribution Z(P). That

is, f(x, θ) = 1
K

∑K

i=1 f (pi; θ). Thus ATS is restricted to a

simplistic average pooling scheme for aggregating informa-

tion from the extracted patch embeddings. Our method, on

the other hand, solves the patch sampling problem using a

differentiable Top-K operation, which allows us to combine

the per-patch information in a flexible manner.

Differentiable Top-K : The subset sampling operation

can be implemented by expanding the Gumbel-Softmax

trick [43] or based on optimal-transport formulations for

ranking and sorting [44, 10], the latter of which was recently

made significantly faster by Blondel et. al [6]. Our work

uses perturbed optimizers [5] to make a Top-K differen-

tiable, which we found performed better than the Sinkhorn

operator [44].

3. Model overview

Our model processes high resolution images by scoring,

selecting then processing, some regions of interest. As il-

lustrated in Figure 2, the model consists of a scorer network

sθ, a patch selection module p, a feature network fφ and

an aggregation network aψ , where θ, φ, and ψ are learnable
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Figure 2: The differentiable Top-K layer uses the scores output by sθ to extract patches that can be processed by an arbitrary

downstream network. The whole model is trained end-to-end without any adhoc loss to train the selection module.

parameters. Attention sampling (ATS) [22] is a special case

of this where aggregation is an average pool and patch se-

lection is implemented using discrete sampling. To describe

the model in one sentence: The scorer scores patches, the

patch selection module selects a subset of those, the fea-

ture network computes embeddings for each patch, and the

aggregation network combines these embeddings to make a

final prediction. These modules are described in more detail

below.

The scorer network sθ predicts a relevance score for

each region of the image with respect to the task at hand.

This network is meant to be shallow and typically oper-

ates on downscaled images for applications where the orig-

inal image size is too big. It outputs relevance scores,

S = sθ(X) ∈ R
h×w, which constitute a h × w grid.

This can be easily generalized to a scorer network that

predicts scores for patches at different scales and aspect

ratios, much like the region proposal network in Faster-

RCNN [35]. Crucially though, our model selects only a

small number of regions of interest (e.g. 10), when com-

pared to the 2000 used in Faster-RCNN as necessitated by

the high recall requirement for object detection. A selec-

tion module p(X,S) uses this information to extract the K
most relevant patches from the image. The output of the

selection module are K patches of dimension Ph × Pw de-

noted by X̃ ∈ R
K×Ph×Pw×C1. To simplify the notation,

we use a single patch size but in practice (see Section 5.3)

one can also consider patches at different resolutions and

aspect ratios. For each individual patch, a feature network

fφ calculates a Dh-dimensional representation, which for

all patches together is a matrix H ∈ R
K×Dh . fφ is typi-

cally a computationally large and expensive network. One

may use different feature networks for different patches but

we did not explore this direction. Finally, an aggregation

network aψ pools this information into the model output

1Patch sizes need not coincide with the scorer network’s receptive field

size. For example, the scorer network might score 32 × 32 pixel patches,

while the selection module may extract patches of size 50× 50 pixels.

y = aψ(H) ∈ R
Do . This network can be a simple mean

pooling operation as in ATS, or an equally simple max pool-

ing operation, or a sophisticated transformer network or

anything in between.

Several prior works can be cast in this manner: Spatial

transformers [21] have localisation networks that are simi-

lar to our scorer network, albeit instead of scoring patches

they predict localization parameters such as an affine trans-

formation. Thus scoring and patch selection are effectively

done together. Their grid sampler can be interpreted as a

patch extraction module. Attention sampling [22] sample

patches (with or without replacement) according to normal-

ized scores output by a scorer network and use a ResNet

for feature extraction fφ. The aggregation network aψ is re-

stricted to taking the average of the patch embeddings to be

able to back propagate through the discrete sampling opera-

tion. Vision transformer [11, 9]: the patch selection module

is exhaustive and extracts all P × P patches in the image

with a stride P . The feature network fφ and the aggrega-

tion network aψ are merged into a large transformer that

process all the flattened patches with self-attention and out-

put the representation of the CLS token or an average of the

tokens’ representations.

4. Patch selection as differentiable Top-K

We aim to train our model end-to-end without introduc-

ing any auxiliary losses for individual components. The

core technical novelty of our method is the patch selection

module. Roughly speaking, we formalize patch selection as

the Top-K problem: Top-K
(

x ∈ R
N
)

= y ∈ N
K where y

contains the indices of the K largest entries in x. We then

apply the perturbed maximum method [5] to construct our

differentiable patch selection module.

4.1. Patch selection as TopK

Given scores from the scorer network, we select the

K highest scores and extract the corresponding patches.
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Specifically, given scores S ∈ R
h×w for N = h × w

patches, Top-K returns the indices of the K most salient

patches in the image. For reasons that will be clear in

the next subsection, we define Top-K such that the indices

are sorted. That is, y1 < y2 < · · · < yK . Without

this constraint Top-K’s output could be permuted arbitrar-

ily breaking the perturbed optimizer method. Furthermore,

we represent yi’s as one-hot N dimensional indicator vec-

tors {Iy1 , Iy2 , · · · , IyK}. The intuition here is that if we had

a large tensor of all patches in the image, we could “extract”

all chosen patches using a single matrix tensor multiplica-

tion. Specifically, given all patches, P ∈ R
N×Ph×Pw×C ,

and Y = [Iy1 , Iy2 , · · · , IyK ] ∈ {0, 1}N×K , patches may

be extracted as X̃ = Y ⊤P 2. This operation is non-

differentiable because both Top-K and one-hot operations

are non-differentiable.

4.2. Differentiable TopK

To learn the parameters of the scorer network using back-

propagation, we need to differentiate through the patch

selection method. We employ the perturbed maximum

method [5] for this purpose. Given a non-differentiable

module, whose forward pass can be represented as a linear

program of the form

argmax
Y ∈C

〈Y , η〉 . (1)

with inputs η, optimization variable Y , and convex poly-

tope constraint set C, the perturbed maximum method de-

fines a differentiable module with forward and backward

operations as below.

Forward: Sample uniform Gaussian noise Z and perturb

the input η, to generate several perturbed inputs. Solve the

linear program for each of these, and then average their re-

sults.

Yσ = EZ

[

argmax
Y ∈C

〈Y , η + σZ〉

]

(2)

where σ is a hyper-parameter. In practice one computes the

expectation using an empirical mean with n independent

samples for Z. We fix n = 500 in all our experiments and

tune σ ∈ {0.01, 0.05, 0.5}. This does not require one to

solve 500 linear programs in every forward pass, instead as

the linear program is chosen to be equivalent to Top-K, we

run the Top-K algorithm 500 times, one for each perturbed

input, which is very fast in practice.

Backward: Following [1], the Jacobian associated with

the above forward pass is

JsY = EZ

[

argmax
Y ∈C

〈Y , η + σZ〉ZT/σ

]

. (3)

2In practice, we use jax.lax.scan as this is memory efficient.

The equations above have been simplified for the special

case of normal distributed Z3.

Patch selection as Top-K with sorted indices is equiva-

lent to the following linear program.

max
Y ∈C

〈Y , s1⊤〉 . (4)

where s are scores output by the scorer network. s1⊤ ∈
R
N×K are scores replicated K times. 〈〉 flattens the matri-

ces before taking a dot product. The constraint set is define

as

C =
{

Y ∈ R
N×K : Yn,k ≥ 0,1⊤Y = 1,Y 1 ≤ 1, (5)

∑

i∈[N ]

iYi,k <
∑

j∈[N ]

jYj,k′ ∀k < k′
}

.

Note how Y has the same shape as the concatenation of

indicator vectors Y in the previous subsection. They serve

the same purpose. The first conditions encourages that Y is

an assignment where each of the columns has a total weight

of one. The last condition results in sorting the indices. This

linear program has infinitely many optimal solutions, one of

which is the required integer solution corresponding to the

index-sorted “Top-K” operator.

Note that in theory, noise should be applied to s1⊤. The

equivalence between this linear program and Top-K cru-

cially relies on all columns of s1⊤ + σZ being identical.

We therefore apply noise directly to s. Our experiments

show that this departure from theory works in practice. We

normalize the scorer output s to lie in [0, 1] with a small

ǫ = 10−5 to avoid any division by zero.

While Top-K for each perturbed input will result in one-

hot indicators Y , their perturbed average may be far from

one-hot. Thus early in training, when the scores are still

non-decisive, extracted patches resemble a weighted aver-

age over all image patches (Figure 3). Mixing images like

this might contribute to model generalization [48]. Another

side benefit is that backpropagated gradients take into ac-

count all image patches and can update their weights from

the very first step. A discrete sampler on the other hand

is solving a combinatorial search over patches and gradi-

ents may be non-informative until the right patches have

been sampled consistently for a few iterations of training.

The average can, however, become meaningless if the Top-

K solver returned a different permutation of the K most

salient patches for each perturbed input. Sorting of indices

overcomes this issue and is an integral part of our “Top-K”

operator.

For efficiency reasons we use hard top-K during infer-

ence. Hard top-K processes 3-10% more images per second

because only a single Top-K operation has to be performed

(instead of n perturbed repetitions) and patch extraction by

3Other distributions could be used. Please see [5] for details
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slicing the tensor is more efficient than weighted combina-

tion with the indicator vectors. Furthermore, hard Top-K is

deterministic which might be a desirable property at infer-

ence. However, using hard top-K at inference results in a

train-test gap. To bridge this we linearly decay σ to zero

during training. At σ = 0, no noise is added and the dif-

ferentiable top-k operation is numerically identical to hard

top-K. The gradients flowing into the scorer network vanish

at σ = 0.

We also experimented with another differentiable Top-K

formulation based on Sinkhorn operators [44]. We found

the above perturbed-optimizer formulation to give superior

results. Sinkhorn based experiments are therefore deferred

to the appendix (Section D).

5. Experiments and results

Differentiable patch selection is a generic tool that can

benefit a variety of computer vision problems. In this work,

we focus on selecting a small number of patches from high

resolution images for image classification.

5.1. Traffic Signs Recognition

Our first task is to recognize speed limits signs in large

images. This is a key task to enable autonomous driving

and is a natural fit for our method since the relevant pixels

in the image are very localized and the model must rely on

the high resolution images to read speed indications at sig-

nificant distances. We use the Swedish traffic signs dataset

[25], replicating the setup of [22] for their Attention Sam-

pling (ATS) method. ATS uses a subset of the dataset con-

sisting of 747 training images and 684 test images of dimen-

sion 960 × 1280 pixels, and the goal is to classify whether

each image contains a limit sign of 50, 70 or 80 kilometers

per hour or no speed limit. We apply the same data augmen-

tation as [22], specifically a random translation and a ran-

dom affine color scaling per image. For a fair comparison,

we use ATS’s scorer: the scorer is a 4-layers CNN followed

by a stride 8 max-pooling layer. We apply the scorer on a

3× downscaled version of the image. We obtain scores for

39×52 = 2028 candidate patches of dimensions 100×100

Figure 3: Scores computed at initialization (top-right) and

extracted patches (bottom-right) displaying interpolation.

K test acc. [%]

Top-K (Ours) 5 91.7± 2.2
Top-K (Ours) 10 89.3± 1.4

ATS [22] 5 91.1± 0.2
ATS [22] 10 90.5± 0.8

ATS† 5 88.6± 1.1
ATS⋆ 5 87.6± 1.4

CNN - 63.0± 2.6

Table 1: Performance on the traffic signs dataset. ATS re-

sults are reported from [22]. We report the mean and the

standard deviation of 9 runs except for CNN which uses 5

runs. ATS⋆: Our reproduction of ATS following the hyper-

parameters in [22], ATS†: the same but with learning rate

drop at 12000 epochs.

and select K ∈ {5, 10} of them. The feature network fφ
is the modified thin ResNet used by ATS. We use mean-

pooling to aggregate per-patch representations.

Results in Table 1 show that we match the mean per-

formance reported by ATS in their paper [22], albeit with

a larger variance. We tried reproducing ATS results using

their publicly released code, but were unsuccessful. The

rows marked as ATS† and ATS⋆ show the best stable results

we could obtain. These closely follow the hyper-parameters

reported in their paper using an entropy regularization of

0.05 and training for 300k iterations. We compare the per-

formance of our method and these reproduced ATS results

in the box and whiskers plot of fig. 4. ATS can achieve

higher accuracy with shorter training schedules by using a

lower entropy regularization coefficient of 0.01. However,

in this setting, approximately 20 − 25% of runs fail on the

test set with accuracy less than approximately 60%.

We ablate against not having a patch selection procedure

and directly apply the feature network CNN to the full im-

age. Beside wasting computation over constant parts of im-

ages (e.g. the blue sky), this small ResNet completely over-

fits the training set: reaching 100% training accuracy while

not achieving better accuracy than just predicting the major-

ity class on test. It seems that the inductive bias introduced

by patch extraction is crucial in this very low data regime.

We manually investigated the mistakes made by our

model. Anecdotally the scoring network was able to extract

the most relevant patches in most cases. Its only failure

mode was a tendency to extract false-positive patches that

exhibit the same colors as the traffic signs in question. Most

miss-classifications are likely due to either the feature- or

the aggregation-network. One could potentially further im-

prove our results by pre-training the feature network.
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Figure 4: Performance on the traffic signs dataset across 9

repeats.

Figure 5: Left: Example of a 960×1280 image from the

traffic signs dataset. Top-right: scores predicted for patch

extraction. Right: Patches extracted by perturbed Top-K at

inference.

5.2. Interpatch reasoning

The work most closely related to ours, ATS, requires av-

eraging representations obtained from sampled patches. We

hypothesize that such mean aggregation limits expressiv-

ity required for modelling relationships between extracted

patches. We investigate this using a synthetic dataset in-

spired by MegaMNIST [22], but which goes beyond scat-

tered MNIST numbers on a Megapixel image to instead

consist of billiard balls as presented in Figure 6. Each im-

age contains four to eight randomly colored balls randomly

placed on the table. Ball numbers are sampled uniformly

from {1, . . . , 9} and face the camera. We ensure that balls

do not completely obstruction each other. We define the

following classification task: report the higher of two num-

bers extracted from the leftmost and rightmost balls. All the

other balls can be ignored. This task exhibits three inter-

esting properties: (i) the information on the image is very

localized (around the balls), (ii) downsampling the image

severely degrades the readability of ball numbers, (iii) the

task may be difficult to solve using a simple mean-pooling

approach.

Figure 6: Left: example image from the billiard balls

dataset. Top-right: scorer network output for patch selec-

tion. Right: Patches extracted at inference.

Using the Kubric4 software, we generated 20k images

of size 1000×1000. We split them into 8k samples for

training, 2k for validation, and 10k for test. The generated

dataset is available for download5. Code for our experi-

ments is available on GitHub6.

We apply our model to this task. Architecture details

are as follows. The scorer is a 4-layer CNN and processes

the downscaled image of size 250 × 250 where the balls

are visible but the numbers cannot be read. The feature

network is ResNet18 [17]. We compare different aggre-

gation schemes: mean-pooling, max-pooling, and a small

Transformer [39]. The latter consists of 3 self-attention

layers with 8 heads, taking the sequence of patch repre-

sentations as input augmented with a learned additive posi-

tional encoding. We compare against ATS as well as a sim-

ple ResNet18 baseline. All the methods are trained using

Adam [23] with decoupled weight decay of 10−4 [31] and

tuned learning rate 10−4. We repeated each experiment sev-

eral times, but noted that not all runs were successful. For

ATS, only 1 out of 4 runs were able to meaningfully solve

the problem by reaching an accuracy of 53.25 %, while the

remaining three attempts performed no better than predict-

ing the majority class. We also tried concatenating [0, 1]
normalized fixed positional encodings as two extra chan-

nels in the input (‘concat. position’) as the task requires

the model to consider ball position. This affords a fairer

comparison between our Transformer variant and the ATS

and ResNet baselines. Positional encoding considerably im-

4https://github.com/google-research/kubric
5http://storage.googleapis.com/gresearch/ptokp_

patch_selection/billiard.tar.xz
6https : / / github . com / google - research / google -

research/tree/master/ptopk_patch_selection
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pooling Test Acc. [%]

transformer 93.8± 0.3
Top K = 10 max 90.8± 0.1

mean 66.1± 0.7

ATS-10 [22] mean 20.7± 0.00
+ concat. position 42.44± 10.85

ResNet18 81.6± 0.35
+ concat. position 83.8± 0.30
+ downscale by 4 17.1± 0.81

Majority class 21.0

Table 2: Predicting the highest number between the right-

most and leftmost ball on the billiard balls dataset. Median

and Median Absolute Deviation (MAD) for five runs (ex-

cept for ATS where we have 4 runs and our method where

we have 9 runs) of the Top-1 accuracy is reported.

proved baseline performances but were not as effective as

the transformer. With concatenated position encodings, 3

out of 4 ATS runs meaningfully solved the problem while 1

run always predicted the majority class. This failure mode

of majority class prediction also happened to 2 out of 9 runs

of our model when using max-pooling aggregation. Both

mean-pooling and transformer aggregation were relatively

stable. We report robust estimates of performance (median

and median absolute deviation) in Table 2.

As the results show, a standard CNN is able to solve this

task, but the training time increase by 24 % compared to

differentiable Top-K with a transformer on top. This dif-

ference in running time would be even more pronounced in

higher resolutions (see supplementary material). One may

reduce CNN training time by downsampling the input im-

age. As demonstrated in the results, this does not work,

as the numbers become too small to be readable. ATS is

not able to solve this task reliably, most likely because of

mean pooling per-patch embeddings. Our own method also

performs poorly when using mean-pooling, but when using

transformers and max-pooling aggregation we are able to

solve this task with high accuracy, outperforming all other

methods. We compare the three aggregation schemes using

a box-whiskers plot in fig. 7.

5.3. Finegrained bird classification

Another way to extract salient regions of the image is

to use a teacher-student approach to learn how to rank

patches [47] (NTS-Net). We argue that NTS-Net’s ranking

loss is essential only due to the non-differentiability of their

patch selection method, and show here how their model

can be simplified using our differentiable Top-K module.

We explore this using the Caltech-UCSD Birds (CUB-200)

dataset [40], a common dataset for fine-grained image clas-

transformer maxpool meanpool
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7: The effect of aggregation method in our model

is ablated using 9 repetitions for each setting. Transformer

and mean aggregation are relatively stable and transformer

performs best.

Method acc [%]

ResNet50 84.5

MG-CNN [41] 81.7

Bilinear-CNN [29] 84.1

Spatial Transformer [21] 84.1

FCAN [30] 84.5

PDFR [49] 84.5

RA-CNN [14] 85.3

HIHCA [7] 85.3

Boost-CNN [34] 85.6

DT-RAM [28] 86.0

MA-CNN [50] 86.5

NTS-Net k = 2 [47] 87.3

NTS-Net k = 4 [47] 87.5

NTS-Top-K k = 2 (ours) [Concat] 84.7± 0.8
NTS-Top-K k = 4 (ours) [Concat] 85.9± 0.4
NTS-Top-K k = 2 (ours) [Mean] 85.8± 0.3
NTS-Top-K k = 4 (ours) [Mean] 86.7± 0.4

Table 3: Results on CUB-200 dataset. Error bars are stan-

dard deviation over 5 repeats. ‘Concat’ and ‘mean’ refer to

the aggregation method. NTS-Net uses ‘Concat’. Numbers

for prior work were taken from Table 2 of [47].

sification. This dataset is a bird classification task with

11,788 images from 200 bird species.

We briefly describe the training setup of NTS-Net: The

original image is resized and cropped to (448× 448), from

which ResNet activations RI are computed. A scorer net-
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work processes these activations to score patches at multi-

ple scales and aspect ratios. The scorer is trained using a

ranking loss which we skip here because it is not required

in our formulation. K top scoring (Top-K) patches are

selected post greedy non-maxima suppression, resized to

(224×224), and encoded using the same ResNet backbone.

Call these activationsRP1
, · · · , RPK

. NTS-Net tries to pre-

dict the class label from RI , each of RPj
, and a concate-

nation of all these embeddings [RI , RP1
, · · · , RPK

]. The

model minimize a softmax cross entropy loss on each pre-

diction head.

In this section, the emphasis is not on efficiently pro-

cessing high resolution input but rather on being able to

process salient parts of the object at a level of detail that

is computationally infeasible when processing the entire in-

put. We adapt out architecture to closely match NTS-Net,

modulo four differences. First, NTS-Net uses greedy non-

maximum suppression (NMS) in its patch selection mod-

ule. Hard greedy NMS cannot be made differentiable us-

ing the perturbed maximum method as it does not corre-

spond to the optimum of any linear program. Non-greedy-

NMS, on the other hand, can be easily incorporated into

the constraint set (eq. (5)). It would be computationally

infeasible to solve the resulting linear program n = 500
times in each forward pass. One could learn a network to

do NMS [18] to overcome this problem. We instead re-

sort to making our scorer network more expressive using

Squeeze-Excitation layers [19], so that it may learn to se-

lect non-overlapping patches if necessary. This way of do-

ing feature modulation enables global communication be-

tween all spatial locations, allowing us to model a crude

form of global context. Second, we use entropy regular-

ization with a coefficient of 0.05 as in other experiments

above 7. Third, we do not need and therefore eschew the

ranking loss. Instead gradients can flow from the per-patch

ResNet into the region proposal head through our differ-

entiable patch selection module. Lastly, two aggregation

methods are explored: (a) ‘concat’ matching that in NTS-

Net and (b) ‘mean’ RI +
(RP1

+···+RPK )
K

where per-patch

embeddings are averaged and added to the whole image em-

bedding. ‘Concat’ results in a massive linear classifier over

excessively high dimensional embeddings. ‘Mean’ ensures

that aggregated embeddings are 2048 dimensional.

We tuned optimization hyper-parameters and regulariza-

tion strength by splitting the training set into 5000 training

images and 994 validation images. This was to avoid meta-

overfitting on test data. We took the best hyper-parameter

combination from this train-val split and then trained the

model on the entire 5994 training images and tested on the

official test set. Test results are reported in Table 3.

7Regularization is applied on the softmax of concatenated unnormal-

ized scores. The final RPN outputs are normalized to lie between [0, 1] as

in the other experiments.

We note that our method performs slightly worse than

the NTS-Net baseline. This may be due to the following: (a)

Our model may be more prone to overfitting. It can select

patches that directly optimize the training loss. We combat

this using ‘mean’ aggregation which improves performance

as shown in the last two rows in Table 3. (b) We report

average performance across 5 seeds. Our best performing

‘mean’-aggregation model achieves 87.3%. (c) Despite us-

ing SE modules in the scorer network, our model still selects

overlapping patches around the bird head. This likely also

makes overfitting worse. Please see supplementary material

for qualitative results.

6. Discussion and future work

We introduced a differentiable Top-K module for patch

selection in large images. This enabled end-to-end learn-

ing of the patch selection module in a task dependent man-

ner. We observed competitive performance on a task where

information relevant for classification was very localized

within the image. We significantly advanced the state-of-

the-art in a problem requiring inter-patch relationship rea-

soning, as evidence by our use of a Transformer module

on patch embeddings in the billiard balls dataset. Our

method allows for arbitrary downstream neural processing

of patches without using auxiliary losses for training the

scorer network.

We are delighted by the above progress but note that

there is still significant room for improvement and identify

the following areas for future work. The patch selection

problem is a chicken-and-egg problem. One can pick op-

timal patches by first knowing the contents of the image,

but to efficiently know the contents of the image one should

pick the right patches. This makes it inherently difficult to

properly account for global context. Training patch selec-

tion models remains difficult. Some failure modes include

predicting the majority class, or the scorer becoming very

confident of the wrong patches either early in training or

diverging to this behavior in the middle of training. More

adaptive optimization might help improve learning stabil-

ity. Patch selection lead to less overfitting on the Traf-

fic street signs dataset. However, the same model overfits

on the CUB-200 dataset. The scorer was able to identify

patches associated with watermarks and background in or-

der to memorize the training set. Fortunately when com-

bined with the NTS-Net framework, overfitting was consid-

erably reduced. Future work could address this by training

on larger dataset or using self-supervised learning.
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