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Abstract

Hyperbolic graph convolutional networks (GCNs)

demonstrate powerful representation ability to model

graphs with hierarchical structure. Existing hyperbolic

GCNs resort to tangent spaces to realize graph convolution

on hyperbolic manifolds, which is inferior because tangent

space is only a local approximation of a manifold. In this

paper, we propose a hyperbolic-to-hyperbolic graph con-

volutional network (H2H-GCN) that directly works on hy-

perbolic manifolds. Specifically, we developed a manifold-

preserving graph convolution that consists of a hyperbolic

feature transformation and a hyperbolic neighborhood ag-

gregation. The hyperbolic feature transformation works as

linear transformation on hyperbolic manifolds. It ensures

the transformed node representations still lie on the hy-

perbolic manifold by imposing the orthogonal constraint

on the transformation sub-matrix. The hyperbolic neigh-

borhood aggregation updates each node representation via

the Einstein midpoint. The H2H-GCN avoids the distor-

tion caused by tangent space approximations and keeps the

global hyperbolic structure. Extensive experiments show

that the H2H-GCN achieves substantial improvements on

the link prediction, node classification, and graph classifi-

cation tasks.

1. Introduction

Graph convolutional networks (GCNs) have attracted in-

creasing attention for graph representation learning, where

nodes in a graph are typically embedded into Euclidean

spaces [25, 48, 46, 42, 20, 21]. Several works reveal that

many graphs, such as social networks and citation networks,

exhibit a highly hierarchical structure [11, 26, 32]. Re-

cent studies have shown that hyperbolic spaces can well

capture such hierarchical structure compared to Euclidean

spaces [30, 31, 12]. Different from Euclidean spaces with

zero curvature, hyperbolic spaces possess a constant neg-
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Figure 1. Comparisons of exisiting hyperbolic GCNs and the pro-

posed H2H-GCN. At the ℓ-th layer, (a) existing hyperbolic GCNs

performs Euclidean graph convolutional opeartions, e.g., feature

transformation and neighborhood aggregation, in the tangent space

TxL that is a local approximation of the hyperbolic manifold L;

(b) H2H-GCN directly performs a hyperbolic feature transforma-

tion and a hyperbolic neighborhood aggregation on the hyperbolic

manifold to learn node representations, keeping the global hyper-

bolic structure.

ative curvature, which allows for an exponential growth

of space volume with radius. This property of hyperbolic

spaces pretty meets the requirements of hierarchical data

(e.g., trees) that need an exponential amount of space for

branching, and encourages the development of GCNs in hy-

perbolic spaces to capture the hierarchical structure under-

lying graphs.

Existing hyperbolic GCNs [27, 10, 49] resort to tangent

spaces to realize graph convolution in hyperbolic spaces.

Since the hyperbolic space is a Riemannian manifold rather

than a vector space, basic operations (such as matrix-vector

multiplication and vector addition) well defined in Eu-
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clidean spaces are not applicable in hyperbolic space. To

generalize graph convolution to the hyperbolic space, the

works in [27, 10, 49] first flatten a hyperbolic manifold, and

then apply Euclidean graph convolutional operations in the

tangent space. The results are projected back to the hyper-

bolic manifold. The procedures follow a manifold-tangent-

manifold scheme, as shown in Figure 1(a). These meth-

ods has promoted the development of GCNs in hyperbolic

spaces and achieved good performance. However, the map-

ping between the manifold and the tangent space is only

locally diffeomorphic, which may distort the global struc-

ture of the hyperbolic manifold, especially frequently using

tangent space approximations [23, 39].

In this paper, we propose to design a hyperbolic GCN

that directly works on the hyperbolic manifold to keep

global hyperbolic structure, rather than relying on the tan-

gent space. This requires that each step of graph convolu-

tion, e.g., feature transformation and neighborhood aggre-

gation, satisfies a manifold-to-manifold principle. To this

end, we present a hyperbolic-to-hyperbolic graph convolu-

tional network (H2H-GCN), where graph convolutional op-

erations are directly conducted on the hyperbolic manifold.

Specifically, we developed a manifold-preserving graph

convolution consisting of a hyperbolic feature transfor-

mation and a hyperbolic neighborhood aggregation. The

hyperbolic feature transformation plays the role of linear

transformation on hyperbolic manifolds, which requires

multiplication of node representations by a transformation

matrix. We constrain the transformation matrix to be a

block diagonal matrix composed of a scalar 1 and an or-

thogonal matrix to ensure the transformed node representa-

tions still reside on the hyperbolic manifold. For hyperbolic

neighborhood aggregation, we adopt the Einstein midpoint

as the weighted message of neighbor nodes to update a node

representation. Figure 1(b) depicts that H2H-GCN directly

carries out the two steps on hyperbolic manifolds. In con-

trast to existing hyperbolic GCNs, the proposed H2H-GCN

can avoid the distortion caused by tangent space approxi-

mations and keep the global hyperbolic structure underly-

ing graphs. We summarize the contributions of this paper

as follows.

• We propose a hyperbolic-to-hyperbolic graph convo-

lutional network that directly performs graph convolu-

tion on hyperbolic manifolds, keeping the global hy-

perbolic structure underlying graphs. To the best of

our knowledge, this is the first hyperbolic GCN with-

out relying on tangent spaces.

• We developed a hyperbolic feature transformation that

is a linear transformation on hyperbolic manifolds.

The manifold constraint on the transformed hyperbolic

representations is ensured by imposing the orthogonal

constraint on the transformation sub-matrix.

2. Related Work

GCNs generalize classical convolutional neural net-

works to graph domains. To realize the convolution on

graphs, there are two types of GCNs. Spectral-based GCNs

[7, 13, 25, 22] are based on the convolution theorem to per-

form convolution by transforming graph signals into the

spectral domain via the graph Fourier transform. Spatial-

based GCNs [20, 21, 41, 33, 42, 46] update node represen-

tations by aggregating the message from its neighbor nodes,

just like applying convolutional kernel on a local image

patch. Despite a solid theoretical foundation of spectral-

based GCNs, spatial-based GCNs have shown more superi-

orities due to efficiency, generality and flexibility.

Researchers discovered that many graphs, e.g., social

networks and biological networks, usually exhibit a highly

hierarchical structure [26, 32]. Krioukov et al. [26] pointed

that the properties of strong clustering and power-law de-

gree distribution in such graphs can be explained as a hid-

den hierarchy. Recent works have demonstrated powerful

representation ability of hyperbolic spaces to model hierar-

chies that underlie taxonomies [30, 31], knowledge graphs

[38, 2], images [24], semantic classes [28], actions [29],

etc [37, 9, 44], achieving promising performance. Liu et

al. [27] and Chami et al. [10] proposed hyperbolic GCNs

that extend GCNs to hyperbolic spaces to capture the hierar-

chy underlying graphs. The main difference with our work

is that they perform Euclidean graph convolutional opera-

tions in the tangent space, following a manifold-tangent-

manifold scheme. The proposed H2H-GCN developed a

hyperbolic graph convolution in the hyperbolic space with-

out relying on tangent spaces. We designed a Lorentz lin-

ear transformation for feature transformation on the Lorentz

model, and adopted Einstein midpoint to calculate manifold

statistics [17] as aggregation function. We claim that such a

manifold-to-manifold learning principle can avoid the dis-

tortion caused by tangent space approximations and keep

the global hyperbolic structure, that is beneficial to graph

representation learning.

3. Preliminaries

3.1. Hyperbolic Spaces

A Riemannian manifold (M, g) is a differentiable man-

ifold M equipped with a metric tensor g. It can be lo-

cally approximated to a linear Euclidean space at an arbi-

trary point x ∈ M, and the approximated space is termed

as a tangent space TxM. Hyperbolic spaces are smooth

Riemannian manifolds with a constant negative curvature

[4]. There are five isometric models of hyperbolic spaces:

the Lorentz model (a.k.a the hyperbolid model), the Klein

model, the Jemisphere model, the Poincaré ball model, and

the Poincaré half-space model [8]. In this paper, we choose

the Lorentz model due to its numerical stability [31].
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Formally, the Lorentz model of an n-dimensional hy-
perbolic space is defined by the manifold L = {x =
[x0, x1, · · · , xn] ∈ R

n+1 : 〈x,x〉L = −1,x0 > 0} en-
dowed with the metric tensor g = diag([−1,1⊤

n ]) where
diag(·) function transforms a vector to a diagonal matrix.
The Lorentz inner product induced by g is defined as

〈x,y〉L = x
⊤
gy = −x0y0 +

n∑

i=1

xiyi. (1)

In the following, we describe necessary operations.

Distance. The distance on a manifold is termed as a

geodesic that is commonly a curve representing the short-

est path between two nodes. For ∀x,y ∈ L, the distance

between them is given by

dL(x,y) = arcosh(−〈x,y〉L), (2)

where arcosh(·) is the inverse hyperbolic cosine function.

Exponential and logarithmic maps. An exponential
map expx(v) is the function projecting a tangent vector
v ∈ TxM onto M. A logarithmic map projects vec-
tors on the manifold back to the tangent space satisfying
logx(expx(v)) = v. For x,y ∈ L, and v ∈ TxL the ex-
ponential map expx : TxL → L and the logarithmic map
logx : L → TxL are given by

exp
x
(v) = cosh(‖v‖L)x+ sinh(‖v‖L)

v

‖v‖L
, (3)

log
x
(y) =

arcosh(−〈x,y〉L)√
〈x,y〉2L − 1

(y + 〈x,y〉Lx), (4)

where ‖v‖L =
√
〈v,v〉L is the norm of v.

Isometric isomorphism. The Poincaré ball model B
and the Klein model K are two other models of hy-
perbolic spaces. The bijections between a node x =
[x0, x1, · · · , xn] ∈ L and its unique corresponding node
b = [b0, b1, · · · , bn−1] ∈ B are given by

pL→B(x) =
[x1, · · · , xn]

x0 + 1
, pB→L(b) =

[1 + ‖b‖2, 2b]

1− ‖b‖2
. (5)

The bijections between x = [x0, x1, · · · , xn] ∈ L and its
unique corresponding node k = [k0, k1, · · · , kn−1] ∈ K
are given by

pL→K(x) =
[x1, · · · , xn]

x0
, pK→L(k) =

1√
1− ‖k‖2

[1,k].

(6)

Geometric relationships among the Lorentz model L, the

Poincaré ball model B and the Klein model K are presented

in Figure 2.

3.2. Graph Convolutional Networks

Let G = (V, E) be a graph with a vertex set V and an

edge set E , and {xE
i }i∈V be node features where E denotes

Euclidean representations. At the ℓ-th layer of GCNs, the

graph convolution can be formulated into two steps.

Figure 2. Geometric relationships among L, B and K.

Feature Transformation:

h̄
ℓ,E
i = W ℓh

ℓ−1,E
i . (7)

where h
ℓ−1,E
i denotes the i-th node’s representation at the

(ℓ-1)-th layer and h
0,E
i = xE

i . W ℓ is the learnable trans-

formation matrix at the ℓ-th layer. h̄
ℓ,E
i is the intermediate

representation of the i-th node, ready for the next step.

Neighborhood Aggregation:




m
ℓ,E
i = (h̄ℓ,E

i +
∑

j∈N (i)

wijh̄
ℓ,E
j )

h
ℓ,E
i = σ(mℓ,E

i )

, (8)

where N (i) denotes the set of neighbor nodes of the i-th

node, and wij is the aggregation weight. m
ℓ,E
i is the aggre-

gated message, that is sent to a non-linear activation func-

tion σ(·) to output the node representation h
ℓ,E
i at the ℓ-th

layer.

By stacking multiple graph convolutional layers, the fea-

ture transformation enables GCNs to learn desirable node

embeddings for a target task, e.g., more discriminative

for classifications. The neighborhood aggregation enables

GCNs to exploit graph topology structures.

4. Hyperbolic-to-Hyperbolic GCN

We present H2H-GCN that directly performs graph con-

volution on hyperbolic manifolds to keep global hyperbolic

structure. First, we explain how to generate hyperbolic

node representations as input node features are usually Eu-

clidean. Then, we elaborate the developed hyperbolic fea-

ture transformation and hyperbolic neighborhood aggrega-

tion. Next, we construct the H2H-GCN architecture used

for link prediction, node classification and graph classifica-

tion. Finally, we describe how to optimize parameters in the

H2H-GCN.

4.1. Hyperbolic Node Representations

Let {xE
i }i∈V be input Euclidean node features, and

o := [1, 0, · · · , 0] denote the origin on the manifold L of
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the Lorentz model. There is 〈o, [0,xE
i ]〉L = 0, where 〈·, ·〉L

denotes the Lorentz inner product defined in Eq. (1). We can

reasonably regard [0,xE
i ] as a node on the tangent space at

the origin o. H2H-GCN uses the exponential map defined

in Eq. (3) to generate hyperbolic node representations on

the Lorentz model:

xL
i = expo

(
[0,xE

i ]
)

=
[
cosh

(
‖xE

i ‖2
)
, sinh

(
‖xE

i ‖2
) xE

i

‖xE
i ‖2

]
.

(9)

4.2. Hyperbolic Feature Transformation

The feature transformation in (Euclidean) GCNs defined

in Eq. (7) is a linear transformation realized via a matrix-

vector multiplication. Nevertheless, it will break the hy-

perbolic manifold constraint while applying matrix-vector

multiplication to hyperbolic node representations, making

the transformed nodes not lie on hyperbolic manifolds. We

developed a Lorentz linear transformation to tackle this

problem.

Definition 1 (The Lorentz linear transformation). For any

x ∈ L, the Lorentz linear transformation is defined as

y = Wx

s.t. W =

[
1 0

⊤

0 Ŵ

]
, Ŵ⊤Ŵ = I,

(10)

where W is a transformation matrix, and Ŵ is called a

transformation sub-matrix. 0 is a column vector of zeros,

and I is an identity matrix.

Proposition 1 The Lorentz linear transformation defined in

Definition. 1 is manifold-preserving. It ensures that the out-

put y still lies on the manifold L of the Lorentz model.

Proof. For any x = [x0, x1, · · · , xn] ∈ L, we have

−x2
0 + x⊤

1:nx1:n = −1, and x0 > 0,

where x1:n = [x1, x2, · · · , xn]. After applying the Lorentz

linear transformation to x, we have

y = Wx =
[
x0, Ŵx1:n

]
,

satisfying

y0 = x0 > 0,

and

〈y,y〉L = −x2
0 + (Ŵx1:n)

⊤Ŵx1:n

= −x2
0 + x⊤

1:n(Ŵ
⊤Ŵ )x1:n

= −x2
0 + x⊤

1:nx1:n

= −1.

Thus, y lies on the manifold L of the Lorentz model. �

Figure 3. Einstein midpoint on the Klein model K, taking three

nodes u,p, q ∈ K for example.

We utilize the Lorentz linear transformation as the hy-

perbolic feature transformation in H2H-GCN. At the ℓ-th
layer, we take the node representation from the previous

layer h
ℓ−1,L
i and the transformation matrix W ℓ as input.

The i-th node’s intermediate representation is calculated by

h̄
ℓ,L
i = W ℓh

ℓ−1,L
i

s.t. W ℓ =

[
1 0

⊤

0 Ŵ ℓ

]
, Ŵ ℓ⊤Ŵ = I,

(11)

where h
0,L
i = xL

i . The intermediate node representation

h̄
ℓ,L
i is ready for hyperbolic neighborhood aggregation in

Section 4.3. We describe an effective way to learn transfor-

mation matrix W ℓ, a constrained parameter, via optimiza-

tion on a Stiefel manifold in Section 4.5.

4.3. Hyperbolic Neighborhood Aggregation

The neighborhood aggregation in GCNs defined in

Eq.(8) updates a node representation by aggregating the

message from its neighbor node set, enabling GCNs to cap-

ture graph topological structure. A generalization of Eu-

clidean mean aggregation in hyperbolic spaces is Fréchet

mean [18]. However, Fréchet mean is difficult to apply be-

cause it does not have a closed-form solution. We adopt the

Einstein midpoint [40] as the hyperbolic neighborhood ag-

gregation in H2H-GCN. In this case, our hyperbolic neigh-

borhood aggregation possesses two desirable properties:

translation invariance and rotation invariance. The aggre-

gated hyperbolic average is invariant to translating the input

node set by a same distance in a common direction, and in-

variant to rotating the input node set by a same angle around

the origin.

The Einstein midpoint takes the form in the Klein model,

illustrated in Figure 3. We first project the intermediate

node representations from the Lorentz model to the Klein

model, and then calculate the hyperbolic average via the

Einstein midpoint. The aggregated hyperbolic average on

the Klein model is projected back to the Lorentz model.

Formally, given the intermediate representation of a node

h̄
ℓ,L
i and the intermediate representations of its neighbor
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nodes {h̄ℓ,L
j }j∈N (i), the hyperbolic neighborhood aggrega-

tion on the Lorentz model is given by





h̄
ℓ,K
j = pL→K(h̄

ℓ,L
j )

m
ℓ,K
i =

∑

j∈N̂ (i)

γjh̄
ℓ,K
j /

∑

j∈N̂ (i)

γj

m
ℓ,L
i = pK→L(m

ℓ,K
i )

, (12)

where h̄
ℓ,K
j is the j-th node’s intermediate representation

on the Klein model. pL→K(·) and pK→L(·) are the isomet-

ric and isomorphic bijections between the Lorentz model

and the Klein model as defined in Eq. (6). N̂ (i) is a

node set consisting of the i-th node and its neighbor nodes.

γj = 1√
1−‖h̄K

j
‖2

denotes the Lorentz factor. m
ℓ,K
i is the

hyperbolic average on the Klein model that aggregates the

message from N̂ (i) via the Einstein midpoint. We get the

hyperbolic average on the Lorentz model m
ℓ,L
i by project-

ing m
ℓ,K
i to L.

The non-linear activation plays an important role in

GCNs, which prevents a multi-layer network from col-

lapsing into a single layer network. However, ap-

plying commonly-used non-linear activation functions

(e.g., ReLU) on the Lorentz representation will break the

manifold constraint of the Lorentz model. We notice that

the non-linear activation on the Poincaré ball model B is

manifold-preserving: for any b ∈ B, we have σ(b) ∈ B.

Inspired by this, we project hyperbolic average m
ℓ,L
i to the

Poincaré ball model to apply non-linear activation, and then

project the result back to the Lorentz model, given by

h
ℓ,L
i = pB→L

(
σ
(
pL→B(m

ℓ,L
i )

))
, (13)

where pB→L(·) and pL→B(·) are the isometric and isomor-

phic bijections between the Lorentz model and the Poincaré
ball model as defined in Eq. (5). After Eq.(13), H2H-GCN

obtains the output of the ℓ-th layer: the i-th node’s repre-

sentation h
ℓ,L
i on the Lorentz model.

4.4. H2H­GCN Architecture

We summarize the H2H-GCN embedding generation al-

gorithm as shown in Algorithm 1. Given a graph G =
(V, E) with a vertex set V and an edge set E , H2H-GCN first

maps input Euclidean node features {xE
i }i∈V to hyperbolic

space via Eq. (9). The obtained hyperbolic node representa-

tions {h0,L
i }i∈V are sent to a multi-layer H2H-GCN. At the

ℓ-th layer, the input node representation h
ℓ−1,L
i from previ-

ous layer is passed through the hyperbolic feature transfor-

mation in Eq. (11), and is updated via the hyperbolic neigh-

borhood aggregation in Eq. (12) and the non-linear activa-

tion in Eq.(13). After L layers, we obtain the H2H-GCN

node embeddings {hL,L
i }i∈V .

Algorithm 1: H2H-GCN embedding generation.

Input: Graph G = (V, E); node features {xE
i }i∈V ;

number of layers L; transformation matrices

{W ℓ}Lℓ=1; non-linearity activation function σ(·).
Output: H2H-GCN node embeddings {hL,L

i }i∈V .

1 Orthogonally initialize transformation sub-matrices

{Ŵ ℓ}Lℓ=1;

2 Construct W ℓ =

[
1 0

⊤

0 Ŵ ℓ

]
, ∀ℓ ∈ {1, · · · , L};

3 Generate hyperbolic node representations {xL
i }i∈V via

Eq. (9);

4 h
0,L
i = xL

i , ∀i ∈ V , ;

5 for ℓ = 1 to L do

6 Generate intermediate node representations

{h̄ℓ,L
i }i∈V via the hyperbolic feature transformation

in Eq. (11);

7 for i ∈ V do

8 Generate hyperbolic average m
ℓ,L
i by

aggregating message from {h̄ℓ,L
j }j∈N̂ (i) via the

hyperbolic heighborhood aggregation in

Eq. (12);

9 Generate the node representation h
ℓ,L
i via the

non-linear activation on m
ℓ,L
i in Eq. (13);

10 end

11 end

12 return H2H-GCN node embeddings {hL,L
i }i∈V .

For link prediction, we use the Fermi-Dirac decoder [26,

30] to calculate probability scores for the edge between the

i-th node and the j-th node, given by

p
(
(i, j) ∈ E|hL,L

i ,hL,L
j

)
=

[
e(dL(hL,L

i
,hL,L

j
)2−r)/t+1

]−1
,

(14)

where dL(·, ·) is the hyperbolic distance function defined in

Eq. (2), and r and t are hyper-parameters. Following [10],

we use the negative sampling strategy and the cross entropy

loss for training.

For node classification and graph classification, we

exploit a centroid-based classification method studied in

[27]. Specifically, we introduce a set of centroids C =
{cL1 , cL2 , · · · , cL|C|} lying on the Lorentz model, then cal-

culate a distance matrix D ∈ R
|V|×|C| whose element

Di,j = dL(h
L,L
i , cLj ) represents the distance between the i-

th node embedding h
L,L
i and the j-th centroid cLj . For node

classification, we send Di, the i-th row of distance matrix

that contains the distance information between the i-th node

and all centroids, to a classifier to predict the category of the

i-th node. For graph classification, we apply average pool-

ing to {Di}|V|
i=1 as a readout operation to yield a graph em-

bedding 1
|V|

∑|V|
i=1 Di, followed a classifier for prediction.

On both classification tasks, we use softmax classifiers and
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Datasets DISEASE AIRPORT PUBMED CORA

Methods LP NC LP NC LP NC LP NC

S
h

al
lo

w

EUC 59.8 ± 2.0 32.5 ± 1.1 92.0 ± 0.0 60.9 ± 3.4 83.3 ± 0.1 48.2 ± 0.7 82.5 ± 0.3 23.8 ± 0.7

HYP [30] 63.5 ± 0.6 45.5 ± 3.3 94.5 ± 0.0 70.2 ± 0.1 87.5 ± 0.1 68.5 ± 0.3 87.6 ± 0.2 22.0 ± 1.5

EUC-MIXED 49.6 ± 1.1 35.2 ± 3.4 91.5 ± 0.1 68.3 ± 2.3 86.0 ± 1.3 63.0 ± 0.3 84.4 ± 0.2 46.1 ± 0.4

HYP-MIXED 55.1 ± 1.3 56.9 ± 1.5 93.3 ± 0.0 69.6 ± 0.1 83.8 ± 0.3 73.9 ± 0.2 85.6 ± 0.5 45.9 ± 0.3

N
N

s MLP 72.6 ± 0.6 28.8 ± 2.5 89.8 ± 0.5 68.6 ± 0.6 84.1 ± 0.9 72.4 ± 0.2 83.1 ± 0.5 51.5 ± 1.0

HNN [19] 75.1 ± 0.3 41.0 ± 1.8 90.8 ± 0.2 80.5 ± 0.5 94.9 ± 0.1 69.8 ± 0.4 89.0 ± 0.1 54.6 ± 0.4

G
C

N
s

GCN [25] 64.7 ± 0.5 69.7 ± 0.4 89.3 ± 0.4 81.4 ± 0.6 91.1 ± 0.5 78.1 ± 0.2 90.4 ± 0.2 81.3 ± 0.3

GAT [41] 69.8 ± 0.3 70.4 ± 0.4 90.5 ± 0.3 81.5 ± 0.3 91.2 ± 0.1 79.0 ± 0.3 93.7 ± 0.1 83.0 ± 0.7

GRAPHSAGE [21] 65.9 ± 0.3 69.1 ± 0.6 90.4 ± 0.5 82.1 ± 0.5 86.2 ± 1.0 77.4 ± 2.2 85.5 ± 0.6 77.9 ± 2.4

H
Y

P

G
C

N
s

SGC [45] 65.1 ± 0.2 69.5 ± 0.2 89.8 ± 0.3 80.6 ± 0.1 94.1 ± 0.0 78.9 ± 0.0 91.5 ± 0.1 81.0 ± 0.1

HGCN [10] 90.8 ± 0.3 74.5 ± 0.9 96.4 ± 0.1 90.6 ± 0.2 96.3 ± 0.0 80.3 ± 0.3 92.9 ± 0.1 79.9 ± 0.2

H2H-GCN (Ours) 97.0 ± 0.3 88.6 ± 1.7 96.4 ± 0.1 89.3 ± 0.5 96.9 ± 0.0 79.9 ± 0.5 95.0 ± 0.0 82.8 ± 0.4

Table 1. ROC AUC for Link Prediction (LP), and F1 score (DISEASE, binary class) and accuracy (the others, multi-class) for Node

Classification (NC) tasks. We set the embedding dimensionality to 16 for fair comparisons. The results of EUC, EUC-MIXED, HYP-

MIXED, and MLP are reported from [10].

cross entropy loss functions.

4.5. Optimization

We explain how to learn parameters in H2H-GCN, es-

pecially the transformation matrix W (omitting the layer

number ℓ for convenience) in the hyperbolic feature trans-

formation Eq. (11), that is an optimization problem with the

orthogonal constraint. Other parameters can be learned by

a standard gradient descent optimizer straightforwardly.

The transformation matrix W =

[
1 0

⊤

0 Ŵ

]
is a block di-

agonal matrix that consists of a scalar 1 and an orthogonal

matrix Ŵ ∈ St(n′, n) which resides on the Stiefel mani-

fold.

Definition 2 (The Stiefel manifold). The set of (n′ × n)-

dimensional matrices, n ≤ n′, with orthonornal columns

forms a compact Riemannian manifold called the Stiefel

manifold St(n′, n) [5].

St(n′, n) , {M ∈ R
n′×n : M⊤M = I}. (15)

While updating W , we keep 1 unchanged and introduce

a Riemannian stochastic gradient descent optimizer to up-

date Ŵ . Formally, let J be the loss function, e.g., cross

entropy loss for classifications. Ŵ is updated by

{
P (t) = ηπ

Ŵ (t)(∇(t)

Ŵ
)

Ŵ (t+1) = r
Ŵ (t)(−P (t))

, (16)

where η is the learning rate. ∇(t)

Ŵ
= dJ/Ŵ (t) denotes the

Euclidean gradient of the loss function J with respect to

Ŵ (t) calculated at time t. π
Ŵ (t)(·) is an orthogonal pro-

jection that transforms the Euclidean gradient to the Rie-

mannian gradient

π
Ŵ (t)

(
∇(t)

Ŵ

)
= ∇(t)

Ŵ
−1

2
Ŵ (t)

(
Ŵ (t)⊤∇(t)

Ŵ
+∇(t)

Ŵ

⊤
Ŵ (t)

)
.

(17)

r
Ŵ (t)(·) is a retraction operation, defined as

r
Ŵ (t)(−P (t)) = qf(Ŵ (t) − P (t)), (18)

where qf(·) extracts the orthogonal factor in the QR de-

composition. The retraction operation prevents the updated

Ŵ (t+1) from falling off the Stiefel manifold.

5. Experiments

We evaluate the proposed H2H-GCN on the link pre-

diction, node classification and graph classification tasks,

and comprehensively compare H2H-GCN with a variety of

state-of-the-art Euclidean GCNs and hyperbolic GCNs.

5.1. Link Prediction and Node Classification

The link prediction (LP) task is to predict the existence

of links among nodes in a graph, and the node classifi-

cation (NC) task is to predict labels of nodes in a graph.

They have many applications such as predicting friendships

among users in a social network and predicting research di-

rections of papers in a citation network. For link prediction,

we report area under the ROC curve (AUC), and for node

classification, we report F1 score for binary-class datasets

and accuracy for multi-class datasets. Following HGCN

[10], a link prediction regularization objective is added in

the node classification task.

Datasets. DISEASE [10] is constructed by simulating the

SIR disease spreading model [1], where the label of a node

indicates whether the node was infected or not, and the fea-

ture of a node indicates the susceptibility of the node to
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Dimensionality

Methods 3 5 10 20 256

Euclidean 77.2 ± 0.12 90.0 ± 0.21 90.6 ± 0.17 94.8 ± 0.25 95.3 ± 0.17

HGNN [27] 94.1 ± 0.03 95.6 ± 0.14 96.4 ± 0.23 96.6 ± 0.22 95.3 ± 0.28

H2H-GCN (Ours) 95.4 ± 0.26 96.7 ± 0.12 96.8 ± 0.04 97.0 ± 0.05 97.2 ± 0.03

Table 2. Results on synthetic graph classification where F1 (macro) score and standard deviation are reported. The results of Euclidean and

HGNN are reported from [27].

the disease. CORA and PUBMED [35] are citation network

datasets where nodes are scientific papers and edges rep-

resent citation links. CORA contains 7 classes of machine

learning papers, and there are 2, 708 nodes, 5, 429 edges

and 1, 433 features per node. PUBMED contains 3 classes of

medicine publications, and there are 19, 717 nodes, 44, 338
edges and 500 features per node. AIRPORT [10] is a flight

network dataset where nodes are airports and edges repre-

sent the airline routes. There are 2, 236 nodes in total and

the label of a node is the population of the country where

the airport (node) belongs to.

Baselines. We consider four types of baseline methods:

shallow methods, neural networks (NNs) methods, GCNs,

and hyperbolic GCNs (HYP GCNS). Shallow methods op-

timize to minimize a reconstruction loss, and the parameters

in models act as an embedding look-up table. We consider

Euclidean embeddings (EUC) and its hyperbolic extension

(HYP) [30]. As the two embeddings fail to leverage node

features, EUC-MIXED and HYP-MIXED concatenate the

shallow embeddings with node features for a fair compar-

ison with other methods using node features. NNs methods

only utilize the node features but does not consider graph

structures. Compared NNs methods include Euclidean

multi-layer perceptron (MLP) and its hyperbolic extension:

hyperbolic neural networks (HNN) [19]. For GCNs, we

compare H2H-GCN with several Euclidean state-of-the-art

GCNs models: GCN [25], GRAPHSAGE [21], graph atten-

tion networks (GAT) [41], and simplified graph convolution

(SGC) [45]. For HYP GCNS, we consider HGCN [10] that

performs graph convolutional operations in tangent spaces.

Results. The comparisons are presented in Table 1. We

notice that HNN, a generalization of MLP to hyperbolic

spaces, outperforms MLP on most tasks. It indicates that

hyperbolic spaces are more suitable for modeling graphs

compared than Euclidean spaces. A similar conclusion can

be drawn while comparing Euclidean GNNs with hyper-

bolic GCNs. HGCN works better than Euclidean GCNs

in most cases. H2H-GCN performs competitively or even

exceeds many graph networks on both tasks. We take the

DISEASE dataset as an example to analyze the effective-

ness of H2H-GCN. The DISEASE dataset is a tree network

that possesses a strong hierarchical structure. As hyper-

bolic spaces can be viewed as smooth versions of trees, hy-

perbolic GCNs should work better than Euclidean GCNs.

The results are in line with expectation that both HGCN

and H2H-GCN show significant improvement on the LP

and NC tasks compared with Euclidean methods. In par-

ticular, H2H-GCN achieves an average of 21.9% (LP) and

18.2% (NC) performance gains than HNN and GAT, and

6.2% (LP) and 14.1% (NC) performance gains than HGCN.

It demonstrates that our H2H-GCN is superior to hyperbolic

GCNs which rely on tangent spaces. We owe it to our devel-

oped hyperbolic graph convolution that directly works on

the hyperbolic manifold. Both the hyperbolic feature trans-

formation and the hyperbolic neighborhood aggregation are

manifold-preserving. It can avoid the distortion caused by

tangent space approximations and keep the global hyper-

bolic geometry underlying graphs. For NC on the AIRPORT

and PUBMED datasets, our method achieve comparable re-

sults with HGCN.

5.2. Graph Classification

5.2.1 Synthetic Graphs

Following [27], we take three graph generation algorithms:

Erdős-Rényi [15], Barabási-Albert [3] and Watts-Strogatz

[43] to construct a synthetic graph dataset. For each graph

generation algorithm, we generate 6, 000 graphs and divide

them into 3 equal parts for the training, validation, and test

(see [27] for more generation details). Typical properties,

such as small-world property of graphs generated by Watts-

Strogatz algorithm and scale-free property of graphs gener-

ated by Barabási-Albert algorithm, can be explained by an

underlying hyperbolic geometry [26], thus it is more suit-

able for modeling such graphs in hyperbolic spaces than in

Euclidean spaces.

We compare the proposed H2H-GCN with Euclidean

embeddings and HGNN [27]. The F1 scores of differ-

ent embedding dimensionalities are presented in Table 2.

The performance of HGNN and our method surpasses Eu-

clidean embeddings by a large margin when embedding di-

mensionality is low. It is because hyperbolic spaces can

well capture the hyperbolic geometry underlying these syn-

thetic graphs. As the embedding dimensionality increases

(e.g., 256), HGNN tends to be comparable with Euclidean

alternative 95.3%, while our method achieves 97.2%, 1.9%
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higher than HGNN. The reason is that the distortion caused

by tangent space approximations in HGNN becomes sig-

nificant with the increase of dimensionality of embedding

spaces, leading to an inferior performance. H2H-GCN tack-

les this problem by directly learning node embeddings in the

hyperbolic space. It shows the best performance from 3-

dimensional embeddings to 256-dimensional embeddings.

5.2.2 Molecular Graphs

We evaluate our method on several chemical datasets to

predict the function of molecular graphs. D&D [14] has

1, 178 graphs in total, and 2 classes indicting the molecular

is an enzyme or not. PROTEINS [6] has 1, 113 graphs, and

3 classes of graphs representing helix, sheet or turn. EN-

ZYMES [34] contains 600 graphs and 6 classes in total.

We compare our method with several state-of-the-art Eu-

clidean GCNs, including DGCNN [48], DIFFPOOL [47],

ECC [36], GIN [46] and GRAPHSAGE [21], and a hyper-

bolic GCN, i.e., HGNN [27] that performs Euclidean graph

convolutional operations in tangent spaces. In general, re-

searchers adopt tenfold cross validation for model evalu-

ation. However, as pointed out by [16], the data splits are

different and the experimental procedures are often ambigu-

ous of different works, which results in unfair comparisons.

To solve this problem, the work in [16] provides a uniform

and rigorous benchmarking of state-of-the-art models. In

this part, we follow the same experimental procedures and

use the same data splits as [16] for fair comparisons.

Methods D&D PROTEINS ENZYMES

DGCNN [48] 76.6 ± 4.3 72.9 ± 3.5 38.9 ± 5.7

DIFFPOOL [47] 75.0 ± 3.5 73.7 ± 3.5 59.5 ± 5.6

ECC [36] 72.6 ± 4.1 72.3 ± 3.4 29.5 ± 8.2

GIN [46] 75.3 ± 2.9 73.3 ± 4.0 59.6 ± 4.5

GRAPHSAGE [21] 72.9 ± 2.0 73.0 ± 4.5 58.2 ± 6.0

HGNN [27] 75.8 ± 3.3 73.7 ± 2.3 51.3± 6.1
H2H-GCN (Ours) 78.2 ± 3.3 74.4 ± 3.0 61.3 ± 4.9

Table 3. Results on chemical graph classification where mean ac-

curacy and standard deviation are reported.

The mean accuracy and standard deviation are reported

in Table 3. We observe that HGNN are comparable with Eu-

clidean methods, which illustrates two possible reasons: ei-

ther hyperbolic GCNs are not suitable for the three datasets,

or some factors in HGNN limit representation ability of hy-

perbolic GCNs. The performance of H2H-GCN may give

the answer. It achieves the best performance on all datasets:

1.6% higher than DGCNN on D&D, 0.7% higher than

DIFFPOOL on PROTEINS, and 1.7% higher than GIN on

ENZYMES. Compared with HGNN that does graph convo-

lutional operations in the tangent space, the key difference

is that the proposed H2H-GCN performs a hyperbolic graph

convolution in the hyperbolic space. In this way, H2H-GCN

Dimensionality

Methods 3 5 10 20 128

Euclidean 64.2 ± 4.9 71.2 ± 3.4 76.2 ± 1.5 78.1 ± 2.1 80.4 ± 0.9

HGNN [27] 65.3 ± 3.6 71.0 ± 3.4 76.1 ± 1.5 79.2 ± 1.6 80.1 ± 0.9

HGCN [10] 70.8 ± 1.6 75.4 ± 1.7 78.1 ± 0.8 79.7 ± 1.4 81.7 ± 0.7

H2H-GCN (Ours) 73.1 ± 2.5 77.8 ± 0.6 79.9 ± 0.9 81.2 ± 0.9 83.6 ± 0.8

Table 4. Comparisons of embedding dimensionality for node clas-

sification on CORA where accuracy and standard deviation are re-

ported. The results of Euclidean and HGNN are based on the offi-

cial code of HGNN. The results of HGCN are based on its official

code.

preserves the global hyperbolic geometry, leading to a su-

perior performance.

5.3. Dimensionality Comparisons

We test the effect of embedding dimensionality from 3 to

128 for node classification on CORA, and report the perfor-

mance of Euclidean embedding, HGNN [27], HGCN [10]

and the proposed H2H-GCN in Table 4. HGNN gets com-

parable results with Euclidean embeddings, while H2H-

GCN shows pretty improvements. H2H-GCN outperforms

HGCN, 2.3% and 1.9% higher than HGCN when embed-

ding dimensionalities are 3 and 256, respectively. We claim

that the distortion caused by tangent space approximations

exists in both low and high embedding dimensionalities.

Although increasing dimensionality can improve perfor-

mance, it cannot solve this problem. H2H-GCN tackles

it by proposing a hyperbolic graph convolution to directly

work on the hyperbolic manifold. Such a manifold-to-

manifold method achieves remarkable improvements.

6. Conclusion

In this paper, we have presented a hyperbolic-to-

hyperbolic graph convolutional network (H2H-GCN) for

embedding graph with hierarchical structure into hyperbolic

spaces. The developed hyperbolic graph convolution which

consists of a hyperbolic feature transformation and a hyper-

bolic neighborhood aggregation, can be directly conducted

on hyperbolic manifolds. The both operations can ensure

that the output still lies on the hyperbolic manifold. In

constrast to existing hyperbolic GCNs relying on tangent

spaces, H2H-GCN can avoid the distortion caused by tan-

gent space approximations and keep the global hyperbolic

geometry underlying graphs. Extensive experiments on link

prediction, node classification and graph classification have

showed that H2H-GCN achieves competitive results com-

pared with state-of-the-art Euclidean GCNs and existing hy-

perbolic GCNs.
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[13] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Advances in Neural In-

formation Processing Systems (NeurIPS), pages 3844–3852,

2016. 2

[14] Paul D Dobson and Andrew J Doig. Distinguishing enzyme

structures from non-enzymes without alignments. Journal of

molecular biology, 330(4):771–783, 2003. 8
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