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Abstract

The complex nature of combining localization and clas-

sification in object detection has resulted in the flourished

development of methods. Previous works tried to improve

the performance in various object detection heads but failed

to present a unified view. In this paper, we present a

novel dynamic head framework to unify object detection

heads with attentions. By coherently combining multiple

self-attention mechanisms between feature levels for scale-

awareness, among spatial locations for spatial-awareness,

and within output channels for task-awareness, the pro-

posed approach significantly improves the representation

ability of object detection heads without any computational

overhead. Further experiments demonstrate that the effec-

tiveness and efficiency of the proposed dynamic head on

the COCO benchmark. With a standard ResNeXt-101-DCN

backbone, we largely improve the performance over pop-

ular object detectors and achieve a new state-of-the-art at

54.0 AP. The code will be released at https://github.

com/microsoft/DynamicHead.

1. Introduction

Object detection is to answer the question “what ob-

jects are located at where” in computer vision applications.

In the deep learning era, nearly all modern object detec-

tors [10, 21, 11, 32, 25, 28, 30] share the same paradigm – a

backbone for feature extraction and a head for localization

and classification tasks. How to improve the performance

of an object detection head has become a critical problem

in existing object detection works.

The challenges in developing a good object detection

head can be summarized into three categories. Firstly, the

head should be scale-aware, since multiple objects with

vastly distinct scales often co-exist in an image. Secondly,

the head should be spatial-aware, since objects usually ap-

pear in vastly different shapes, rotations, and locations un-

der different viewpoints. Thirdly, the head needs to be task-

aware, since objects can have various representations (e.g.,

bounding box [11], center [25], and corner points [30]) that

own totally different objectives and constraints. We find re-

cent studies [11, 32, 25, 28, 30] only focus on solving one

of the aforementioned problems in various ways. It remains

an open problem how to develop a unified head that can ad-

dress all these problems simultaneously.

In this paper, we propose a novel detection head, called

dynamic head, to unify scale-awareness, spatial-awareness,

and task-awareness all together. If we consider the out-

put of a backbone (i.e., the input to a detection head) as

a 3-dimensional tensor with dimensions level × space ×
channel, we discover that such a unified head can be re-

garded as an attention learning problem. An intuitive so-

lution is to build a full self-attention mechanism over this

tensor. However, the optimization problem would be too

difficult to solve and the computational cost is not afford-

able.

Instead, we can deploy attention mechanisms separately

on each particular dimension of features, i.e., level-wise,

spatial-wise, and channel-wise. The scale-aware attention

module is only deployed on the dimension of level. It

learns the relative importance of various semantic levels to

enhance the feature at a proper level for an individual object

based on its scale. The spatial-aware attention module is de-

ployed on the dimension of space (i.e., height × width).

It learns coherently discriminative representations in spatial

locations. The task-aware attention module is deployed on

channels. It directs different feature channels to favor dif-

ferent tasks separately (e.g., classification, box regression,

and center/key-point learning.) based on different convolu-

tional kernel responses from objects.

In this way, we explicitly implement a unified attention

mechanism for the detection head. Although these attention

mechanisms are separately applied on different dimensions

of a feature tensor, their performance can complement each

other. Extensive experiments on the MS-COCO benchmark

demonstrate the effectiveness of our approach. It offers a

great potential for learning a better representation that can
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be utilized to improve all kinds of object detection models

with 1.2% ∼ 3.2% AP gains. With the standard ResNeXt-

101-DCN backbone, the proposed method achieves a new

state of the art 54.0% AP on COCO. Besides, compared

with EffcientDet [24] and SpineNet [8], dynamic head uses

1/20 training time, yet with a better performance.

2. Related Work

Recent studies focus on improving object detectors from

various perspectives: scale-awareness, spatial-awareness

and task-awareness.

Scale-awareness. Many researches have empathized the

importance of scale-awareness in object detection as objects

with vastly different scales often co-exist in natural images.

Early works have demonstrated the significance of leverag-

ing image pyramid methods [6, 22, 23] for multi-scale train-

ing. Instead of image pyramid, feature pyramid [14] was

proposed to improve efficiency by concatenating a pyramid

of down-sampled convolution features and had become a

standard component in modern object detectors. However,

features from different levels are usually extracted from dif-

ferent depth of a network, which causes a noticeable se-

mantics gap. To solve this discrepancy, [17] proposed to

enhance the features in lower layers by bottom-up path aug-

mentation from feature pyramid. Later, [18] improved it by

introducing balanced sampling and balanced feature pyra-

mid. Recently, [28] proposed a pyramid convolution to ex-

tract scale and spatial features simultaneously based on a

modified 3-D convolution.

In this work, we present a scale-aware attention in the

detection head, which makes the importance of various fea-

ture level adaptive to the input.

Spatial-awareness. Previous works have tried to improve

the spatial-awareness in object detection for better seman-

tic learning. Convolution neural networks were known to

be limited in learning spatial transformations existed in im-

ages [36]. Some works mitigate this problem by either in-

creasing the model capability (size) [12, 29] or involving

expensive data augmentations [13], resulting in extremely

high computational cost in inference and training. Later,

new convolution operators were proposed to improve the

learning of spatial transformations. [31] proposed to use di-

lated convolutions to aggregate contextual information from

the exponentially expanded receptive field. [7] proposed a

deformable convolution to sample spatial locations with ad-

ditional self-learned offsets. [33] reformulated the offset

by introducing a learned feature amplitude and further im-

proved its ability.

In this work, we present a spatial-aware attention in the

detection head, which not only applies attention to each spa-

tial location, but also adaptively aggregates multiple feature

levels together for learning a more discriminative represen-

tation.

Task-awareness. Object detection was originated from a

two-stage paradigm [35, 6], which first generates object

proposals and then classifies the proposals into different

classes and background. [21] formalized the modern two-

stage framework by introducing Region Proposal Networks

(RPN) to formulate both stages into a single convolution

network. Later, one-stage object detector [20] became pop-

ular due to its high efficiency. [15] further improved the ar-

chitecture by introducing task-specific branches to surpass

the accuracy of two-stage detectors while maintaining the

speed of previous one-stage detectors.

Recently, more works have discovered that various rep-

resentations of objects could potentially improve the per-

formance. [11] first demonstrated that combining bound-

ing box and segmentation mask of objects can further im-

prove the performance. [25] proposed to use center repre-

sentations to solve object detection in a per-pixel prediction

fashion. [32] further improved the performance of center-

based method by automatically selecting positive and neg-

ative samples according to statistical characteristics of ob-

ject. Later, [30] formulated object detection as representa-

tive key-points to ease the learning. [9] further improved the

performance by detecting each object as a triplet, rather than

a pair of key-points to reduce incorrect predictions. Most

recently, [19] proposed to extract border features from the

extreme points of each border to enhance the point feature

and archived the state-of-the-art performance.

In this work, we present a task-aware attention in the de-

tection head, which allows attention to be deployed on chan-

nels, which can adaptively favor various tasks, for either

single-/two-stage detectors, or box-/center-/keypoint-based

detectors.

More importantly, all the above properties are integrated

into a unified attention mechanism in our head design. To

our best knowledge, it is the first general detection head

framework which takes a step towards understanding what

role attention plays in the success of object detection head.

3. Our Approach

3.1. Motivation

In order to enable scale-awareness, spatial-awareness

and task-awareness simultaneously in a unified object de-

tection head, we need to generally understand previous im-

provements on object detection heads.

Given a concatenation of features Fin = {Fi}
L
i=1 from

L different levels in a feature pyramid, we can resize con-

secutive level features towards the scale of the median level
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Figure 1. An illustration of our Dynamic Head approach. It contains three different attention mechanisms, each focusing on a different

perspective: scale-aware attention, spatial-aware attention, and task-aware attention. We also visualize how the feature maps are improved

after each attention module.

feature using up-sampling or down-sampling. The re-scaled

feature pyramid can be denoted as a 4-dimensional tensor

F ∈ RL×H×W×C , where L represents the number of lev-

els in the pyramid, H , W , and C represent height, width,

and the number of channels of the median level feature re-

spectively. We further define S = H × W to reshape the

tensor into a 3-dimensional tensor F ∈ RL×S×C . Based on

this representation, we will explore the role of each tensor

dimension.

• The discrepancy of object scales is related to fea-

tures at various levels. Improving the representation

learning across different levels of F can benefit scale-

awareness of object detection.

• Various geometric transformations from dissimilar ob-

ject shapes are related to features at various spatial lo-

cations. Improving the representation learning across

different spatial locations of F can benefit spatial-

awareness of object detection.

• Divergent object representations and tasks can be re-

lated to the features at various channels. Improving the

representation learning across different channels of F
can benefit task-awareness of object detection.

In this paper, we discover that all above directions can

be unified in an efficient attention learning problem. Our

work is the first attempt to combine multiple attentions on

all three dimensions to formulate a unified head for maxi-

mizing their improvements.

3.2. Dynamic Head: Unifying with Attentions

Given the feature tensor F ∈ RL×S×C , the general for-

mulation of applying self-attention is:

W (F) = π(F) · F (1)

where π(·) is an attention function. A naı̈ve solution to this

attention function is implemented by fully connected layers.

But directly learning the attention function over all dimen-

sions is computationally costly and practically not afford-

able due to the high dimensions of the tensor.

Instead, we convert the attention function into three se-

quential attentions, each focusing on only one perspective:

W (F) = πC

(

πS

(

πL(F) · F

)

· F

)

· F , (2)

where πL(·), πS(·), and πC(·) are three different attention

functions applying on dimension L, S, and C, respectively.

Scale-aware Attention πL. We first introduce a scale-

aware attention to dynamically fuse features of different

scales based on their semantic importance.

πL(F) · F = σ

(

f

(

1

SC

∑

S,C

F

)

)

· F (3)

where f(·) is a linear function approximated by a 1 × 1
convolutional layer, and σ(x) = max(0,min(1, x+1

2
)) is a

hard-sigmoid function.
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Spatial-aware Attention πS . We apply another spatial-

aware attention module based on the fused feature to focus

on discriminative regions consistently co-existing among

both spatial locations and feature levels. Considering the

high dimensionality in S, we decompose this module into

two steps: first making the attention learning sparse by us-

ing deformable convolution [7] and then aggregating fea-

tures across levels at the same spatial locations:

πS(F)·F =
1

L

L
∑

l=1

K
∑

k=1

wl,k ·F(l; pk+∆pk; c)·∆mk, (4)

where K is the number of sparse sampling locations, pk +
∆pk is a shifted location by the self-learned spatial offset

∆pk to focus on a discriminative region and ∆mk is a self-

learned importance scalar at location pk. Both are learned

from the input feature from the median level of F .

Task-aware Attention πC . To enable joint learning and

generalize different representations of objects, we deploy a

task-aware attention at the end. It dynamically switches ON

and OFF channels of features to favor different tasks:

πC(F)·F = max

(

α1(F)·Fc+β1(F), α2(F)·Fc+β2(F)

)

,

(5)

where Fc is the feature slice at the c-th channel and

[α1, α2, β1, β2]T = θ(·) is a hyper function that learns to

control the activation thresholds. θ(·) is implemented simi-

lar to [3], which first conducts a global average pooling on

L × S dimensions to reduce the dimensionality, then uses

two fully connected layers and a normalization layer, and

finally applies a shifted sigmoid function to normalize the

output to [−1, 1].
Finally, since the above three attention mechanisms are

applied sequentially, we can nest Equation 2 multiple times

to effectively stack multiple πL, πS , and πC blocks together.

The detailed configuration of our dynamic head (i.e., Dy-

Head for simplification) block is shown in Figure 2 (a).

As a summary, the whole paradigm of object detection

with our proposed dynamic head is illustrated in Figure 1.

Any kinds of backbone network can be used to extract fea-

ture pyramid, which is further resized to the same scale,

forming a 3-dimensional tensor F ∈ RL×S×C , and then

used as the input to the dynamic head. Next, several Dy-

Head blocks including scale-aware, spatial-aware, and task-

aware attentions are stacked sequentially. The output of the

dynamic head can be used for different tasks and represen-

tations of object detection, such as classification, center/box

regression, etc..

At the bottom of Figure 1, we show the output of each

type of attention. As we can see, the initial feature maps

from backbones are noisy due to the domain difference from

Figure 2. A detailed design of Dynamic Head. (a) shows the de-

tailed implementation of each attention module. (b) shows how to

apply our dynamic head blocks to one-stage object detector. (c)

shows how to apply our dynamic head blocks to two-stage object

detector.

ImageNet pre-training. After passing through our scale-

aware attention module, the feature maps become more sen-

sitive to the scale differences of foreground objects; After

further passing through our spatial-aware attention module,

the feature maps become more sparse and focused on dis-

criminative spatial locations of foreground objects. Finally,

after passing through our task-aware attention module, the

feature maps re-form into different activations based on the

requirements of different down-stream tasks. These visual-

izations well demonstrate the effectiveness of each attention

module.

3.3. Generalizing to Existing Detectors

In this section, we demonstrate how the proposed dy-

namic head can be integrated into existing detectors to ef-

fectively improve their performances.

One-stage Detector. One-stage detector predicts object

locations by densely sampling locations from feature map,

which simplifies the detector design. Typical one-stage de-

tector (e.g., RetinaNet [15]) is composed of a backbone net-

work to extract dense features and multiple task-specific

sub-network branches to handle different tasks separately.

As shown in previous work [3], object classification sub-

network behaves very differently from bounding box re-
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gression sub-network. Controversial to this conventional

approach, we only attach one unified branch instead of mul-

tiple branches to the backbone. It can handle multiple tasks

simultaneously, thanks to the advantage of our multiple at-

tention mechanisms. In this way, the architecture can be fur-

ther simplified and the efficiency is improved as well. Re-

cently, anchor-free variants of one-stage detectors became

popular, for example, FCOS [25], ATSS [32] and RepPoint

[30] re-formulated objects as centers and key-points to im-

prove performance. Compared to RetinaNet, these meth-

ods require to attach a centerness prediction, or a keypoint

prediction to either the classification branch or the regres-

sion branch, which makes the constructions of task-specific

branches non-trivial. By contrast, deploying our dynamic

head is more flexible since it only appends various types of

predictions to the end of head, shown in Figure 2 (b).

Two-stage Detector. Two-stage detectors utilize region

proposal and ROI-pooling [21] layers to extract interme-

diate representations from feature pyramid of a backbone

network. To cooperate this characteristic, we first apply our

scale-aware attention and spatial-aware attention on feature

pyramid before a ROI-pooling layer and then use our task-

aware attention to replace the original fully connected lay-

ers, as shown in Figure 2 (c).

3.4. Relation to Other Attention Mechanisms

Deformable. Deformable convolution [7, 33] has signif-

icantly improved the transformation learning of traditional

convolutional layers by introducing sparse sampling. It has

been widely used in object detection backbones to enhance

the feature representations. Although it is rarely utilized

in object detection head, we can regard it as solely model-

ing the S sub-dimension in our representation. We find the

deformable module used in the backbone can be comple-

mentary to the proposed dynamic head. In fact, with the de-

formable variant of ResNext-101-64x4d backbone, our dy-

namic head achieves a new state-of-the-art object detection

result.

Non-local. Non-Local Networks [27] is a pioneer work of

utilizing attention modules to enhance the performance of

object detection. However, it uses a simple formulation of

dot-product to enhance a pixel feature by fusing other pix-

els’ features from different spatial locations. This behavior

can be regarded as modeling only the L×S sub-dimensions

in our representation.

Transformer. Recently, there is a trend to introduce the

Transformer module [26] from natural language processing

into computer vision tasks. Preliminary works [2, 34, 5]

have demonstrated promising results in improving object

detection. Transformer provides a simple solution to learn

cross-attention correspondence and fuse features from dif-

ferent modalities by applying multi-head fully connected

layers. This behavior can be viewed as modeling only the

S × C sub-dimensions in our representation.

The aforementioned three types of attention works only

partially model sub-dimensions in the feature tensor. As a

unified design, our dynamic head combines attentions on

different dimensions into one coherent and efficient imple-

mentation. The following experiments show such a dedi-

cated design can help existing object detectors achieve re-

markable gains. Besides, our attention mechanisms explic-

itly address the challenges of object detection, in contrast to

implicit working principles in existing solutions.

4. Experiment

We evaluate our approach on the MS-COCO dataset [16]

following the commonly used settings. MS-COCO con-

tains 80 categories of around 160K images collected from

the web. The dataset is split into the train2017, val2017,

and test2017 subsets with 118K, 5K, 41K images respec-

tively. The standard mean average precision (AP ) metric

is used to report results under different IoU thresholds and

object scales. In all our experiments, we only train on the

train2017 images without using any extra data. For exper-

iments of ablation studies, we evaluate the performances

on the val2017 subset. When comparing to state-of-the-art

methods, we report the official result returned from the test

server on test-dev subset.

4.1. Implementation Details

We implement our dynamic head block as a plugin,

based on the popular implementation of Mask R-CNN

benchmark [11]. If it is not specifically mentioned, our

dynamic head is trained with the ATSS framework [32] .

All models are trained using one compute node of 8 V100

GPUs each with 32GB memory.

Training. We use ResNet-50 as the model backbone in all

ablation studies and train it with the standard 1x configura-

tion. Other models are trained with the standard 2x training

configurations as introduced in [11]. We use an initial learn-

ing rate of 0.02 with weight decay of 1e−4 and momentum

of 0.9 . The learning rate is stepped down by a factor of 0.1
at the 67% and 89% of training epochs. Standard augmen-

tation with random horizontal flipping is used. To compare

with previous methods trained with multi-scale inputs, we

also conduct multi-scale training for selective models.

Inference. To compare with state-of-the-art methods re-

ported using test time augmentation, we also evaluate our
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best model with multi-scale testing. Other tricks, such as

model EMA, mosaic, mix-up, label smoothing, soft-NMS

or adaptive multi-scale testing [23], are not used.

4.2. Ablation Study

We conduct a series of ablation studies to demonstrate

the effectiveness and efficiency of our dynamic head.

L. S. C. AP AP50 AP75 APS APM APL

× × × 39.0 57.2 42.4 22.1 43.1 50.2

X × × 39.9 57.8 43.5 25.4 44.0 52.4

× X × 41.4 58.5 45.2 26.8 45.2 54.3

× × X 40.3 58.3 43.9 24.2 44.6 53.7

× X X 42.0 59.5 45.5 25.5 46.1 55.2

X × X 40.6 58.6 44.4 24.6 44.8 53.3

X X × 41.9 59.2 45.6 24.8 46.1 54.5

X X X 42.6 60.1 46.4 26.1 46.8 56.0

Table 1. Ablation study on the effectiveness of each attention mod-

ule in our dynamic head block.

Effectiveness of Attention Modules. We first conduct a

controlled study on the effectiveness of different compo-

nents in our dynamic head block by gradually adding them

to the baseline. As shown in Table 1, “L.”, “S.”, “C.” rep-

resent our scale-aware attention module, spatial-aware at-

tention module, and task-aware module, respectively. We

can observe that individually adding each component to the

baseline implementation improves its performance by 0.9
AP , 2.4 AP and 1.3 AP . It is expected to see the spatial-

aware attention module archives the biggest gain because of

its dominant dimensionality among three modules. When

we add both “L.” and “S” to the baseline, it continuously

improves the performance by 2.9 AP . Finally, our full dy-

namic head block significantly improves the baseline by 3.6
AP . This experiment demonstrates that different compo-

nents work as a coherent module.

Effectiveness on Attention Learning. We then demon-

strate the effectiveness of attention learning in our dynamic

head module. Figure 3 shows the trend of the learned scale

ratios (calculated by dividing the learned weight of higher

resolution by the learned weight of lower resolution) on dif-

ferent level of features in our scale-aware attention mod-

ule. The histogram is calculated using all images from the

COCO val2017 subset. It is clear to see that our scale-aware

attention module tends to regulate higher resolution feature

maps (”level 5” purple histogram in the figure) toward lower

resolution and lower resolution feature maps (”level 1” blue

histogram in the figure) toward higher resolution to smooth

Figure 3. Ablation study on the effectiveness of our scale-aware

attention module.

Figure 4. A visualization on the effectiveness of our spatial-aware

attention module.

the scale discrepancy form different feature levels. This

proves the effectiveness of scale-aware attention learning.

Figure 4 visualizes the feature map output before and af-

ter applying different number (i.e. 2,4,6) of blocks of atten-

tion modules. Before applying our attention modules, the

feature maps extracted from the backbone are very noisy

and fail to focus on the foreground objects. As the fea-

ture maps pass through more attention modules (from block

2 to block 6 as shown in the figure), it is obvious to see

the feature maps cover more foreground objects and focus

more accurately on their discriminative spatial locations.

This visualization well demonstrates the effectiveness of the

spatial-aware attention learning
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#Block GFLOPs AP AP50 AP75

Baseline 254.39 39.0 57.2 42.4

1 -84.69 36.7 55.5 40.0

2 -63.45 39.5 57.8 43.1

4 -20.97 42.0 59.9 45.9

6 +21.50 42.6 60.1 46.4

8 +63.98 42.5 59.6 46.1

10 +106.46 42.3 59.4 45.9

Table 2. Ablation study on the efficiency and effectiveness of

stacking different number of dynamic head blocks.

Efficiency on the Depth of Head. We evaluate the effi-

ciency of our dynamic head by controlling the depth (num-

ber of blocks). As shown in Table 2, we vary the number of

used DyHead blocks (e.g., 1, 2, 4, 8, 10 blocks) and com-

pare their performances and computational costs (GFLOPs)

with the baseline. Our dynamic head can benefit from the

increase of depth by stacking more blocks until 8. It is worth

noting that our method with 2 blocks has already outper-

formed the baseline at even lower computation cost. Mean-

while, even with 6 blocks, the increment of computational

cost is negligible compared to the computation cost of the

backbone, while largely improving the accuracy. It demon-

strates the efficiency of our method.

Generalization on Existing Object Detectors. We eval-

uate the generalization ability of the dynamic head by

plugging it to popular object detectors, such as Faster-

RCNN [21], RetinaNet [15], ATSS [32], FCOS [25], and

RepPoints [30]. These methods represent a wide variety of

object detection frameworks (e.g., two-stage vs. one-stage,

anchor-based vs. anchor-free, box-based vs. point-based).

As shown in Table 3, our dynamic head significantly boosts

all popular object detectors by 1.2 ∼ 3.2 AP . It demon-

strates the generality of our method.

4.3. Comparison with the State of the Art

We compare the performance of the dynamic head with

several standard backbones and state-of-the-art object de-

tectors.

Cooperate with Different Backbones. We first demon-

strate the compatibility of dynamic head with different

backbones. As shown in Table 4, we evaluate the perfor-

mances of object detector by integrating dynamic head with

the ResNet-50, ResNet-101 and ResNeXt-101 backbones,

and compare with recent methods with similar configura-

tions, including Mask R-CNN [11], Cascade-RCNN [1],

FCOS [25], ATSS [32] and BorderDet [19]. Our method

consistently outperforms previous methods with a big mar-

gin. When compared to the best detector BorderDet [19]

Method AP AP50 AP75

anchor-based two-stage:

Faster R-CNN [21] 36.4 57.9 39.4

+ DyHead 38.9 57.6 42.0

anchor-based one-stage:

RetinaNet [15] 35.7 54.3 37.9

+ DyHead 38.4 57.5 41.3

anchor-free box-based:

ATSS [32] 39.4 57.5 42.9

+ DyHead 42.6 60.1 46.4

anchor-free center-based:

FCOS [25] 38.8 57.3 41.9

+ DyHead 40.0 58.2 43.4

anchor-free keypoint-based:

RepPoints [30] 38.2 59.7 40.7

+ DyHead 39.6 59.8 42.8

Table 3. Ablation study on the generalization of our dynamic head

when applying to popular object detection methods.

with same settings, our method outperforms it by 1.1 AP
with the ResNet-101 backbone and by 1.2 AP with the

ResNeXt-64x4d-101 backbone, where the improvement is

significant due to the challenges in the COCO benchmark.

Compared to State-of-the-Art Detectors. We compare

our methods with state-of-the-art detectors [32, 28, 19, 4, 2,

24, 8], including some concurrent works [34, 5]. As shown

in Table 5, we summarize these existing work into two cat-

egories: one using multi-scale training, and the other using

both multi-scale training and multi-scale testing.

Compared with methods with only multi-scale training,

our method achieves a new state of the art at 52.3 AP with

only 2x training schedule. Our method is competitive and

more efficient to learn compared with EffcientDet [24] and

SpineNet [8], with a significantly less 1/20 training time.

Compared with the latest work [2, 34, 5], which utilize

Transformer modules as attention, our dynamic head is su-

perior to these methods with more than 2.0 AP gain, while

using less training time than theirs. It demonstrates that our

dynamic head can coherently combine multiple modalities

of attentions from different perspectives into a unified head,

resulting in better efficiency and effectiveness.

We further compare our method with state-of-the-art re-

sults [32, 19, 4, 34, 5] with test time augmentation (TTA)

using both multi-scale training and multi-scale testing. Our

dynamic head helps achieve a new state-of-the-art result at

54.0 AP , which significantly outperforms concurrent best

methods by 1.3 AP .
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Method Backbone Iteration AP AP50 AP75 APS APM APL

two-stage detector:

Mask R-CNN[11] ResNet-101 2x 38.2 60.3 41.7 20.1 41.1 50.2

Cascade-RCNN[1] ResNet-50 3x 40.6 59.9 44.0 22.6 42.7 52.1

Cascade-RCNN[1] ResNet-101 3x 42.8 62.1 46.3 23.7 45.5 55.2

one-stage detector:

FCOS[25] ResNet-101 2x 41.5 60.7 45.0 24.4 44.8 51.6

FCOS[25] ResNeXt-64x4d-101 2x 43.2 62.8 46.6 26.5 46.2 53.3

ATSS[32] ResNet-101 2x 43.6 62.1 47.4 26.1 47.0 53.6

ATSS[32] ResNeXt-64x4d-101 2x 45.6 64.6 49.7 28.5 48.9 55.6

BorderDet[19] ResNet-101 1x 43.2 62.1 46.7 24.4 46.3 54.9

BorderDet[19] ResNet-101 2x 45.4 64.1 48.8 26.7 48.3 56.5

BorderDet[19] ResNeXt-64x4d-101 2x 46.5 65.7 50.5 29.1 49.4 57.5

DyHead ResNet-50 1x 43.0 60.7 46.8 24.7 46.4 53.9

DyHead ResNet-101 2x 46.5 64.5 50.7 28.3 50.3 57.5

DyHead ResNeXt-64x4d-101 2x 47.7 65.7 51.9 31.5 51.7 60.7

Table 4. Comparison with results using different backbones on the MS COCO test-dev set

Method Backbone Iteration AP AP50 AP75 APS APM APL

multi-scale training:

ATSS[32] ResNeXt-64x4d-101-DCN 2x 47.7 66.5 51.9 29.7 50.8 59.4

SEPC[28] ResNeXt-64x4d-101-DCN 2x 50.1 69.8 54.3 31.3 53.3 63.7

BorderDet[19] ResNeXt-64x4d-101-DCN 2x 48.0 67.1 52.1 29.4 50.7 60.5

RepPoints v2[4] ResNeXt-64x4d-101-DCN 2x 49.4 68.9 53.4 30.3 52.1 62.3

RelationNet++[5] ResNeXt-64x4d-101-DCN 2x 50.3 69.0 55.0 32.8 55.0 65.8

DETR[2] ResNet-101 ∼25x 44.9 64.7 47.7 23.7 49.5 62.3

Deformable DETR[34] ResNeXt-64x4d-101-DCN ∼4x 50.1 69.7 54.6 30.6 52.8 64.7

EfficientDet[24] Efficient-B7 ∼50x 52.2 71.4 56.3 – – –

SpineNet[8] SpineNet-190 ∼40x 52.1 71.8 56.5 35.4 55.0 63.6

DyHead ResNeXt-64x4d-101-DCN 2x 52.3 70.7 57.2 35.1 56.2 63.4

multi-scale training and multi-scale testing:

ATSS[32] ResNeXt-64x4d-101-DCN 2x 50.7 68.9 56.3 33.2 52.9 62.4

BorderDet[19] ResNeXt-64x4d-101-DCN 2x 50.3 68.9 55.2 32.8 52.8 62.3

RepPoints v2[4] ResNeXt-64x4d-101-DCN 2x 52.1 70.1 57.5 34.5 54.6 63.6

Deformable DETR[34] ResNeXt-64x4d-101-DCN ∼4x 52.3 71.9 58.1 34.4 54.4 65.6

RelationNet++[5] ResNeXt-64x4d-101-DCN 2x 52.7 70.4 58.3 35.8 55.3 64.7

DyHead ResNeXt-64x4d-101-DCN 2x 54.0 72.1 59.3 37.1 57.2 66.3

Table 5. Comparison with the state-of-the-art results on the MS COCO test-dev set

5. Conclusion

In this paper, we have presented a novel object detection

head, which unify the scale-aware, spatial-aware, and task-

aware attentions in a single framework. It suggests a new

view of object detection head with attentions. As a plu-

gin block, the dynamic head can be flexibly integrated into

any existing object detector framework to boost its perfor-

mance. Moreover, it is efficient to learn. Our study shows

that designing and learning attentions in the object detec-

tion head is an interesting direction which deserves more

focused studies. This work only takes a step, and could be

further improved in these aspects: how to make the full at-

tention model easy to learn and efficient to compute, and

how to systematically consider more modalities of atten-

tions into the head designing for better performance.
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