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Abstract

The de-facto approach to many vision tasks is to start

from pretrained visual representations, typically learned via

supervised training on ImageNet. Recent methods have

explored unsupervised pretraining to scale to vast quan-

tities of unlabeled images. In contrast, we aim to learn

high-quality visual representations from fewer images. To

this end we revisit supervised pretraining, and seek data-

efficient alternatives to classification-based pretraining. We

propose VirTex – a pretraining approach using semantically

dense captions to learn visual representations. We train

convolutional networks from scratch on COCO Captions,

and transfer them to downstream recognition tasks includ-

ing image classification, object detection, and instance seg-

mentation. On all tasks, VirTex yields features that match

or exceed those learned on ImageNet – supervised or unsu-

pervised – despite using up to ten times fewer images.

1. Introduction

The prevailing paradigm for learning visual representa-

tions is first to pretrain a convolutional network [1, 2] to

perform image classification on ImageNet [3, 4], then trans-

fer the learned features to downstream tasks [5, 6]. This ap-

proach has been wildly successful, and has led to significant

advances on a wide variety of computer vision problems

such as object detection [7], semantic [8] and instance [9]

segmentation, image captioning [10–12], and visual ques-

tion answering [13, 14]. Despite its practical success, this

approach is expensive to scale since the pretraining step re-

lies on images annotated by human workers.

For this reason, there has been increasing interest in un-

supervised pretraining methods that use unlabeled images

to learn visual representations which are then transferred to

downstream tasks [15–21]. Some recent approaches have

begun to match or exceed supervised pretraining on Ima-

geNet [22–26], and have been scaled to hundreds of mil-

lions [22, 25, 27, 28] or billions [24] of images.

Continuing to scale unsupervised pretraining to ever-

larger sets of unlabeled images is an important scientific
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Figure 1: Learning visual features from language: First,

we jointly train a ConvNet and Transformers using image-

caption pairs, for the task of image captioning (top). Then,

we transfer the learned ConvNet to several downstream vi-

sion tasks, for example object detection (bottom).

goal. But we may also ask whether there are alternate ways

of pretraining that learn high-quality visual representations

with fewer images. To do so, we revisit supervised pre-

training and seek an alternative to traditional classification

pretraining that uses each image more efficiently.

In this paper we present an approach for learning Visual

representations from Textual annotations (VirTex). Our ap-

proach is straightforward: first, we jointly train a ConvNet

and Transformer [29] from scratch to generate natural lan-

guage captions for images. Then, we transfer the learned

features to downstream visual recognition tasks (Figure 1).

We believe that using language supervision is appealing

due to its semantic density. Figure 2 compares different pre-

training tasks for learning visual representations. Captions

provide a semantically denser learning signal than unsu-

pervised contrastive methods and supervised classification.

Hence, we expect that using textual features to learn visual

features may require fewer images than other approaches.

Another benefit of textual annotations is simplified data

collection. To collect classification labels, typically human

experts first build an ontology of categories [3, 4, 30, 31],

then complex crowdsourcing pipelines are used to elicit la-

bels from non-expert users [32, 33]. In contrast, natural lan-

guage descriptions do not require an explicit ontology and

can easily be written by non-expert workers, leading to a
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Figure 2: Comparison of pretraining tasks for learning visual representations: Contrastive self-supervised learning

methods provide a semantically sparse learning signal, encouraging different transforms of an image to have similar features.

Image classification pairs an image with a single semantic concept, providing moderate semantic density. Multi-label clas-

sification, object detection, and instance segmentation increase semantic density by labeling and localizing multiple objects.

Captions describe multiple objects, their attributes, relationships, and actions, giving a semantically dense learning signal. In

this work, we aim to leverage this semantic density of captions to learn visual representations in a data-efficient manner.

simplified data collection pipeline [34–36]. Large quanti-

ties of weakly aligned images and text can also be obtained

from internet images [37–39].

Our main contribution is to show that natural language

can provide supervision for learning transferable visual

representations with better data-efficiency than other ap-

proaches. We train models from scratch on the COCO

Captions dataset [36], and evaluate the learned features on

downstream tasks including image classification, object de-

tection, instance segmentation, and low-shot recognition.

On all tasks, VirTex matches or exceeds the performance

of existing methods for supervised or unsupervised pre-

training on ImageNet, despite using up to 10× fewer im-

ages. Our code and pretrained models are available at

https://github.com/kdexd/virtex

2. Related Work

Our work is related to recent efforts to move beyond

supervised pretraining on ImageNet using alternate data

sources or pretraining tasks.

Weakly Supervised Learning scales beyond supervised

pretraining with a quantity over quality approach, and learns

on large numbers of images with noisy labels from web ser-

vices. Li et al. [40] trains visual N-gram models on the

YFCC-100M dataset [41], that provides 100M Flickr im-

ages with user-provided tags. Recent works [42–44] also

use JFT-300M [42] dataset, curated by automatic labeling

of images from web signals using Google’s internal tooling.

Weakly-supervised learning has also been studied on up to

3.5B Instagram images, using hashtags as labels [45, 46].

These approaches learn visual representations with large

quantities of images with low-quality labels; in contrast we

focus on using fewer images with high-quality annotations.

Self-Supervised Learning focuses on learning visual rep-

resentations by solving pretext tasks defined on unlabeled

images. Early works on self-supervised learning proposed

hand-crafted pretext tasks, such as context prediction [15],

colorization [17, 18], solving jigsaw puzzles [47], predict-

ing rotation [19], inpainting [16], clustering [27], and gener-

ative modeling [48]. Recent works are based on contrastive

learning [49, 50], encouraging similarity between image

features under different random transformations on single

input image [24–26, 51, 52]. Other approaches use con-

trastive losses based on context prediction [20, 23], mutual

information maximization [21, 53, 54], predicting masked

regions [55], and clustering [56–58].

These methods lack semantic understanding as they rely

on low-level visual cues (color, texture), whereas we lever-

age textual annotations for semantic understanding. Unlike

these methods, our approach can leverage additional meta-

data such as text, when scaled to internet images [37–39].

Vision-and-Language Pretraining attempts to learn joint

representations of image-text paired data that can be trans-

ferred to multimodal downstream tasks such as visual ques-

tion answering [13, 14, 59, 60], visual reasoning [61, 62],

referring expressions [63], and language-based image re-

trieval [35]. Inspired by the success of BERT [64] in NLP,

several recent methods use Transformers [29] to learn trans-

ferable joint representations of images and text [65–72].

These methods employ complex pretraining pipelines:

they typically (1) start from an ImageNet-pretrained CNN;

(2) extract region features using an object detector fine-

tuned on Visual Genome [73], following [74]; (3) optionally

start from a pretrained language model, such as BERT [64];

(4) combine the models from (2) and (3), and train a

multimodal transformer on Conceptual Captions [37]; (5)

fine-tune the model from (4) on the downstream task. In

this pipeline, all vision-and-language tasks are downstream

from the initial visual representations learned on ImageNet.
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In contrast, we pretrain via image captioning, and put vision

tasks downstream from vision-and-language pretraining.

Concurrent Work: Our work is closest to Sariyildiz et

al. [75] on learning visual representations from captions

via image conditioned masked language modeling, with one

major difference – we train our entire model from scratch,

whereas they rely on pretrained BERT for textual features.

Moreover, we evaluate on additional downstream tasks like

object detection and instance segmentation. Our work is

also closely related to Stroud et al. [76] on learning video

representations using paired textual metadata, however they

solely operate and evaluate their method on video tasks.

3. Method

Given a dataset of image-caption pairs, our goal is to

learn visual representations that can be transferred to down-

stream visual recognition tasks. As shown in Figure 2, cap-

tions carry rich semantic information about images, includ-

ing the presence of objects (cat, plate, cake); attributes of

objects (orange and white cat); spatial arrangement of ob-

jects (cat near a plate); and their actions (looking at apples).

Learned visual representations that capture such rich se-

mantics should be useful for many downstream vision tasks.

To this end, we train image captioning models to predict

captions from images. As shown in Figure 3, our model

has two components: a visual backbone and a textual head.

The visual backbone extracts visual features from an input

image I . The textual head accepts these features and pre-

dicts a caption C = (c0, c1, . . . , cT , cT+1) token by token,

where c0 = [SOS] and cT+1 = [EOS] are fixed special to-

kens indicating the start and end of sentence. The textual

head performs bidirectional captioning (bicaptioning): it

comprises a forward model that predicts tokens left-to-right,

and a backward model that predicts right-to-left. All model

components are randomly initialized, and jointly trained to

maximize the log-likelihood of the correct caption tokens

L(θ, φ) =

T+1
∑

t=1

log
(

p(ct | c0:t−1, I;φf , θ)
)

+

T
∑

t=0

log
(

p(ct | ct+1:T+1, I;φb, θ)
)

(1)

where θ, φf , and φb are the parameters of the visual back-

bone, forward, and backward models respectively. After

training, we discard the textual head and transfer the visual

backbone to downstream visual recognition tasks.

Language Modeling: Our choice of pretraining task is

image captioning [10–12] – a well-studied vision-and-

language task, so far kept downstream from vision-based

pretraining. We draw inspiration from recent work in NLP

using language modeling as a pretraining task to learn trans-

ferable text representations. This involves training mas-

sive language models – either unidirectional [77] or bidirec-

tional [78–81], for predicting tokens one by one. However,

following BERT [64], many large-scale models [82, 83] in-

stead use masked language models (MLMs): some tokens

are randomly masked and are predicted by the model.

We performed preliminary experiments with MLMs, but

like [64, 84] we observed that MLMs converge more slowly

than directional models. We note that MLMs have poor

sample efficiency, as they only predict a subset of tokens for

each caption, while directional models predict all tokens.

Due to computational constraints, we focus on directional

models and leave MLMs to future work.

Visual Backbone: The visual backbone is a convolutional

network which computes visual features of images. It in-

puts raw image pixels, and outputs a spatial grid of image

features. During pretraining, these features are used to pre-

dict captions. In downstream tasks, we either train linear

models on features extracted from the visual backbone, or

fine-tune the visual backbone end-to-end.

In principle we could use any convolutional network ar-

chitecture for the visual backbone. In our experiments we

use a standard ResNet-50 [2] as the visual backbone to fa-

cilitate comparison with our baseline methods (Section 4).

It accepts a 224 × 224 image and produces a 7 × 7 grid

of 2048-dimensional features after the final convolutional

layer. During pretraining, we apply a linear projection layer

to the visual features before passing them to the textual head

to facilitate decoder attention over visual features. This pro-

jection layer is not used in downstream tasks.

Textual Head: The textual head receives features from the

visual backbone and predicts captions for images. It pro-

vides a learning signal to the visual backbone during pre-

training. Our overall goal is not to predict high-quality cap-

tions, but instead to learn transferable visual features.

The textual head comprises two identical language mod-

els which predict captions in forward and backward di-

rections respectively. Following recent advances in lan-

guage modeling, we use Transformers [29], which use mul-

tiheaded self-attention both to propagate information along

the sequence of caption tokens, as well as to fuse visual

and textual features. We closely follow the transformer de-

coder architecture from [29], but use GELU [85] rather than

ReLU, following [64, 79]. We briefly review the architec-

ture here; refer to [29] for a more complete description.

During training, the forward model receives two in-

puts: image features from the visual backbone, and a cap-

tion describing the image. Image features are a matrix of

shape NI × DI giving a DI -dimensional vector for each

of the NI = 7 × 7 positions in the final layer of the

visual backbone. As described earlier, the caption C =
(c0, c1, . . . , cT , cT+1) is a sequence of T + 2 tokens, with

c0 = [SOS] and cT+1 = [EOS]. It is trained to predict

C1:T+1 token-by-token, starting with c0. The prediction ct
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Figure 3: VirTex pretraining setup: Our model consists of a visual backbone (ResNet-50), and a textual head (two uni-

directional Transformers). The visual backbone extracts image features, and textual head predicts captions via bidirectional

language modeling (bicaptioning). The Transformers perform masked multiheaded self-attention over caption features, and

multiheaded attention over image features. Our model is trained end-to-end from scratch. After pretraining, the visual

backbone is transferred to downstream visual recognition tasks.

is causal – it only depends on past predictions c0:t−1 and

visual features. The backward model is similar; it operates

right-to-left – trained to predict CT :0, given cT+1.

First, we convert the tokens of C to vectors via learned

token and positional embeddings, followed by elementwise

sum, layer normalization [86] and dropout [87]. Next, we

process these vectors through a sequence of Transformer

layers. As shown in Figure 3, each layer performs masked

multiheaded self-attention over token vectors, multiheaded

attention between token vectors and image vectors, and

applies a two-layer fully-connected network to each vec-

tor. These three operations are each followed by dropout,

wrapped in a residual connection, and followed by layer

normalization. Token vectors interact only through self-

attention; the masking in this operation maintains causal

structure of the final predictions. After the last Transformer

layer, we apply a linear layer to each vector to predict un-

normalized log-probabilities over the token vocabulary.

The forward and backward models consist of indepen-

dent Transformer layers. However they share the same to-

ken embedding matrix (similar to [77]) which is also reused

at the output layers of each model (similar to [88, 89]).

Model Size: Several architectural hyperparameters control

the size of our textual head. We can control the width of

each Transformer layer by varying its hidden size H , the

number of attention heads A used in multiheaded attention,

and the feedforward size F of the fully-connected network.

We follow [64] and always set A = H/64 and F = 4H;

this allows us to control the width of our textual head by

varying H . We can also control the depth of our textual

head by varying the number of transformer layers L.

Tokenization: We tokenize captions with Sentence-

Piece [90] using the BPE algorithm [91]. Prior to tok-

enization we lowercase and strip accents from captions.

We build a vocabulary of 10K tokens, including boundary

([SOS], [EOS]) and out-of-vocab ([UNK]) tokens. Follow-

ing [79, 80] we restrict subword merges between letters and

punctuation to prevent redundant tokens such as dog? and

dog!. Compared to basic tokenization schemes often used

for image captioning that split on whitespace [10, 11], BPE

makes fewer linguistic assumptions, exploits subword in-

formation, and results in fewer out-of-vocab tokens.

Training Details: We train on the train2017 split of the

COCO Captions dataset [36], which provides 118K images

with five captions each. During training we apply standard

data augmentation: we randomly crop to 20-100% of the

original image size, apply color jitter (brightness, contrast,

saturation, hue), and normalize using the ImageNet mean

color. We also apply random horizontal flips, also inter-

changing the words ‘left’ and ‘right’ in the caption.

We train using SGD with momentum 0.9 [92, 93] and

weight decay 10−4 wrapped in LookAhead [94] with α =
0.5 and 5 steps. Following [64], we do not apply weight

decay to layer normalization and bias parameters in Trans-

formers. We perform distributed training across 8 GPUs

with batch normalization [95] per GPU, following [22]. We

train with a batch size of 256 images (32 per GPU) for

500K iterations (≈1080 epochs). We use linear learning

rate warmup [22] for the first 10K iterations followed by co-

sine decay [96] to zero. We found that the visual backbone

required a higher LR than the textual head for faster con-

vergence. The visual backbone uses a max LR of 2× 10−1;

the textual head uses 10−3. We implement our models using

PyTorch [97] with native automatic mixed-precision [98].

We observe that performance on image captioning has

a positive but imprecise correlation with performance on

downstream visual recognition tasks (Refer Appendix A.4).

We thus perform early stopping based on the performance

of our visual backbone on downstream PASCAL VOC [99]

linear classification (see Section 4.1) since it is fast to eval-

uate and correlates well with our other downstream tasks.
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Method Annotations Cost (hours)† VOC07 IN-1k

MoCo-COCO self-sup. – 63.3 41.1

Multi-label Clf. labels 11.1K [30] 86.2 46.2

Instance Segmentation masks 30.0K [30] 82.3 51.0

VirTex (1 caption) captions 1.3K [100] 84.2 50.2

VirTex (5 caption) captions 6.5K [100] 88.7 53.8

Table 1: Annotation Cost Efficiency: We compare down-

stream performance of various pretraining methods on

COCO. VirTex outperforms all other methods trained on the

same set of images with best performance vs. cost tradeoff.

†: For COCO train2017 split, see Appendix A.1 for more details.

4. Experiments

In our experiments, we aim to demonstrate the effective-

ness of learning visual features via natural language super-

vision. As described in Section 3, we jointly train a VirTex

model from scratch on the COCO Captions [36] dataset.

Here, we evaluate the features learned by visual backbone

on six downstream vision tasks. We select these tasks based

on two common mechanisms for transfer learning: where

the visual backbone is either used as (a) frozen feature ex-

tractor, or (b) weight initialization for fine-tuning.

4.1. Image Classification with Linear Models

Our first set of evaluations involve training linear mod-

els on frozen visual backbones – we compare VirTex with

various pretraining methods to test our two hypotheses:

1. Learning visual features via captions is cheaper than us-

ing other types of annotations, like labels and masks.

2. Using semantically dense captions helps with learning

effective visual features using fewer training images.

We evaluate on two datasets: PASCAL VOC [99] and

ImageNet-1k [4]. We choose these tasks based on their sim-

plicity and evaluation speed. We briefly describe the setup

here. Refer Appendix A.1 for more details.

PASCAL VOC: We follow same protocol as SwAV [58]

(highly similar to [22, 25]); we train on VOC07 trainval

split (9K images, 20 classes) and report mAP on test split.

We train per-class SVMs on 2048-dimensional global aver-

age pooled features extracted from the last layer of the vi-

sual backbone. For each class, we train SVMs for cost val-

ues C ∈ {0.01, 0.1, 1, 10} and select best C by 3-fold cross-

validation. Other SVM hyperparameters are same as [22].

ImageNet-1k: We follow similar protocol as MoCo [24]

and SwAV [58]: we train on the ILSVRC 2012 train split

and report top-1 accuracy on val split. We train a lin-

ear classifier (fully connected layer + softmax) on 2048-

dimensional global average pooled features extracted from

the last layer of the visual backbone. We train with batch

size 256 distributed across 8 GPUs for 100 epochs. We use

SGD with momentum 0.9 and weight decay 0. We set the

initial LR to 0.3 and decay it to zero by cosine schedule.
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Figure 4: Data Efficiency: We compare VirTex and IN-

sup models trained using varying amounts of images. Vir-

Tex closely matches or significantly outperforms IN-sup

on downstream tasks despite using 10× fewer images.

IN-1k: Models using ≤ 105 images are mean of 5 trials, std dev. ≤ 1.0.

Annotation Cost Efficiency: We believe that using cap-

tions is appealing due to a simple and cost-efficient collec-

tion pipeline. Here, we test our first hypothesis by compar-

ing various pretraining methods on COCO, each drawing

supervision from different annotation types (Figure 2):

– MoCo-COCO (self-supervised): We train a MoCo-v1

model on COCO images with default hyperparameters.

– Multi-label Classification (labels): We use COCO

object detection annotations (80 classes), and train a

ResNet-50 backbone to predict a K-hot vector with val-

ues 1/K with a KL-divergence loss, similar to [45].

– Instance Segmentation (masks): We use a pretrained

Mask R-CNN from Detectron2 model zoo [101], and ex-

tract its ResNet-50 backbone for downstream tasks. This

model is trained from scratch on COCO, following [102].

– VirTex (captions): We train a VirTex model on COCO

Captions, with ResNet-50 visual backbone and L =
1, H = 2048 textual head. Note that COCO Captions

provides five captions per image, which effectively in-

creases image-caption pairs by five-fold. Hence for a fair

comparison, we also train an additional VirTex model us-

ing only one randomly selected caption per image.

Results are shown in Table 1. We also compare annotation

costs in terms of worker hours. For labels and masks, we

use estimates reported by COCO [30]. For captions, we es-

timate the cost based on nocaps [100] 1, that follows a sim-

ilar data collection protocol as COCO. We observe that Vir-

Tex outperforms all methods, and has the best performance

vs. cost tradeoff, indicating that learning visual features us-

ing captions is more cost-efficient than labels or masks.

Data Efficiency: We believe that the semantic density of

captions should allow VirTex to learn effective visual fea-

tures from fewer images than other methods. To test our

hypothesis, we compare VirTex and ImageNet-supervised

models (IN-sup) trained using varying amount of images

from COCO Captions and ImageNet-1k respectively.

We train 4 VirTex models using {10, 20, 50, 100}% of

COCO Captions (118K images) and 7 ResNet-50 models

using {1, 2, 5, 10, 20, 50, 100}% of ImageNet-1k (1.28M

1We could not find estimates for COCO Captions in existing literature.
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Method Pretrain Images Annotations VOC07 IN-1k

MoCo-IN v1 [24] 1.28M self-sup. 79.4 60.8

PCL v1 [57] 1.28M self-sup. 83.1 61.5

SwAV (200 ep.) [58] 1.28M self-sup. 87.9 72.7

ICMLMatt-fc [75] † 118K captions 87.5 47.9

VirTex 118K captions 88.7 53.8

Table 2: Comparison with other methods: We compare

downstream performance of VirTex with recent SSL meth-

ods and concurrent work. †: Uses pretrained BERT-base.

images). Similar to prior experiments, we also train 4 Vir-

Tex models using one randomly selected caption per image.

All VirTex models use L = 1, H = 2048 textual heads.

We show results in Figure 4. On VOC07, VirTex-100%
outperforms IN-sup-100% (mAP 88.7 vs 87.6), despite us-

ing 10× fewer images (118K vs. 1.28M). When using sim-

ilar amount of images, VirTex consistently outperforms IN-

sup (blue, orange vs green), indicating superior data ef-

ficiency of VirTex. We also observe that given the same

number of captions for training, it is better to spread them

over more images – VirTex-50% (1 caption) significantly

outperforms VirTex-10% (5 captions) (mAP 79.4 vs 69.3).

Comparison with IN-sup on ImageNet-1k classification

is unfair for VirTex, since IN-sup models are trained for

the downstream task, using the downstream dataset. Even

so, VirTex-100% outperforms IN-sup-10% (53.8 vs. 53.6,

118K vs. 128K images), and consistently outperforms it

when both methods use fewer than 100K images.

Comparison with other methods: Here, we compare Vir-

Tex with recent pretraining methods that have demonstrated

competitive performance on downstream tasks.

– Self-supervised pretraining: We choose three recent

methods based on their availability and compatibility

with our evaluation setup – MoCo [24], PCL [57], and

SwAV [58]. We choose models trained with a similar

compute budget as ours (8 GPUs, 200 ImageNet epochs).

– ICMLM (Concurrent Work): We adapt numbers from

Sariyildiz et al. [75]; evaluation may slightly differ. This

model uses pretrained BERT [64] for textual features.

– Note on vision-and-language pretraining: Since we

use captions, we also consider methods that learn

multimodal representations for downstream vision-and-

language tasks [65–72]). As described in Section 2, all

these methods use an object detector trained on Visual

Genome [73] (with ImageNet-pretrained backbone) to

extract visual features, made available by [74]. These

features are kept frozen, and do not learn from any tex-

tual supervision at all. Our comparison with ImageNet-

supervised models subsumes this family of models.

Results are shown in Table 2. VirTex outperforms all

methods on VOC07, despite being trained with much

fewer images. On ImageNet-1k, comparison between self-

(a) Pretraining Task Ablations (b) Visual Backbone Ablations

(c) Transformer Size Ablations
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Figure 5: Ablations. (a) Pretraining Tasks: Bicaptioning

improves over weaker pretraining tasks – forward caption-

ing, token classification and masked language modeling.

(b) Visual Backbone: Bigger visual backbones improve

downstream performance – both, wider (R-50 w2×) and

deeper (R-101). (c) Transformer Size: Larger transform-

ers (wider and deeper) improve downstream performance.

supervised models and VirTex is unfair on both ends, as

the former observes downstream images during pretraining,

while the latter uses annotated images.

4.2. Ablations

The preceeding linear classification experiments demon-

strate the effectiveness and data-efficiency of VirTex. In this

section, we conduct ablation studies to isolate the effects of

our pretraining setup and modeling decisions, and uncover

performance trends to seed intuition for future work. We

evaluate all ablations on PASCAL VOC and ImageNet-1k

linear classification, as described in Section 4.1.

Pretraining Task Ablations: We choose bicaptioning task

as it gives a dense supervisory signal per caption. To justify

this choice, we form three pretraining tasks with sparser

supervisory signal and compare them with bicaptioning:

– Forward Captioning: We remove the backward trans-

former decoder and only perform left-to-right captioning.

– Token Classification: We replace the textual head with

a linear layer and perform multi-label classification (Ta-

ble 1, row 2). We use the set of caption tokens as targets,

completely ignoring the linguistic structure of captions.

– Masked Language Modeling (MLM): We use a single

bidirectional transformer in the textual head, and perform

BERT-like masked language modeling. We randomly

mask 15% of input tokens, and train the model to pre-

dict ground-truth tokens of masked positions.

All textual heads with transformers have L = 1, H = 2048.

Results are shown in Figure 5(a). Bicaptioning outper-

forms forward captioning, indicating that denser supervi-
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Method
Pretrain
Images

COCO Instance Segmentation LVIS Instance Segmentation PASCAL VOC Detection iNat 18

APbbox
all

APbbox
50

APbbox
75

APmask
all

APmask
50

APmask
75

APmask
all

APmask
50

APmask
75

APbbox
all

APbbox
50

APbbox
75

Top-1

1) Random Init 36.7 56.7 40.0 33.7 53.8 35.9 17.4 27.8 18.4 33.8 60.2 33.1 61.4

2) IN-sup 1.28M 41.1 62.0 44.9 37.2 59.1 40.0 22.6 35.1 23.7 54.3 81.6 59.7 65.2

3) IN-sup-50% 640K 40.3–0.8 61.0–1.0 44.0–0.9 36.6–0.6 58.0–1.1 39.3–0.7 21.2–1.4 33.3–1.8 22.3–1.4 52.1–2.2 80.4–1.2 57.0–2.7 63.2–2.0

4) IN-sup-10% 128K 37.9–3.2 58.2–3.8 41.1–3.8 34.7–2.5 55.2–3.9 37.1–2.9 17.5–5.1 28.0–7.1 18.4–5.3 42.6–11.7 72.0–9.6 43.8–15.9 60.2–4.7

5) MoCo-IN 1.28M 40.8–0.3 61.6–0.4 44.7–0.2 36.9–0.3 58.4–0.7 39.7–0.3 22.8+0.2 35.4+0.3 24.2+0.5 56.1+1.8 81.5–0.1 62.4+0.7 63.2–1.7

6) MoCo-COCO 118K 38.5–0.6 58.5–3.5 42.0–2.9 35.0–2.2 55.6–3.5 37.5–2.5 20.7–1.9 32.3–2.8 21.9–1.8 47.6–6.7 75.4–6.2 51.0–8.7 60.5–4.4

7) VirTex 118K 40.9–0.2 61.7–0.3 44.8–0.1 36.9–0.3 58.4–0.7 39.7–0.3 23.0+0.4 35.4+0.4 24.3+0.6 55.3+1.0 81.3–0.3 61.0+1.3 63.4–1.4

Table 3: Fine-tuning Tasks for Transfer: We compare VirTex with different pretraining methods across four downstream

tasks. For each task, all methods use the same architecture. We initialize the ResNet-50 backbone weights from pretraining

(except Random Init), which are then fine-tuned end-to-end. Performance gaps with IN-sup are shown on the side. On all

tasks, VirTex significantly outperforms all methods that use similar amount of pretraining images. VirTex closely matches or

exceeds ImageNet supervised and self-supervised methods, despite using 10× fewer pretraining images.

sory signal from bidirectional modeling is beneficial. Bi-

captioning and forward captioning both outperform token

classification, demonstrating that learning to model the se-

quential structure of language improves visual features.

MLM performs quite worse than all three methods, pos-

sibly due to poor sample efficiency (discussed in Section 3)

It may benefit from longer training schedules, however we

leave this for future work due to computational constraints.

Visual Backbone Ablations: Bigger visual backbones tend

to show improvements on many vision tasks [2, 9, 103].

We investigate whether VirTex models with bigger visual

backbones can improve downstream performance. We train

three VirTex models with L = 1, H = 1024 textual heads,

and different visual backbones: (a) ResNet-50 (default), (b)

ResNet-50 w2× [104] (2× channel width), and (c) ResNet-

101 (2× depth). We observe that bigger visual backbones

better results on VOC07, however the trends are opposite on

ImageNet (Figure 5(b)). We believe it to be an optimization

issue. See Appendix A.2 for comparison on other tasks.

Transformer Size Ablations: Prior work in language mod-

eling has shown that larger Transformers tend to learn better

textual features [80–83]. We investigate whether this holds

for VirTex: do larger transformers in the textual head cause

the visual backbone to learn better visual features? As dis-

cussed in Section 3, we may scale our textual head by in-

creasing its width (hidden size H) or its depth (number of

layers L). We investigate both, training VirTex models with:

– Fixed L = 1, increasing H ∈ {512, 768, 1024, 2048}.

– Fixed H = 1024, increasing L ∈ {1, 2, 3, 4}.

Results are shown in Figure 5(c) – increasing transformer

size, both width and depth, generally improves downstream

performance. Performance degrades slightly with very deep

transformers (L = 4), indicating overfitting. We hope that

massive transformers with billions of parameters will help

when scaling VirTex to large-scale, more noisy image-text

paired datasets [37–39] that are larger than COCO Captions.

4.3. Fine­tuning Tasks for Transfer

So far we have evaluated VirTex using features extracted

from frozen visual backbones. Another common mecha-

nisms for transfer learning is fine-tuning, where the entire

visual backbone is updated for the downstream task.

We evaluate features learned using VirTex on four down-

stream tasks with fine-tuning: (a) Instance Segmentation

on COCO [30]; (b) Instance Segmentation on LVIS [31];

and (c) Object Detection on PASCAL VOC [99]; (d) Fine-

grained Classification on iNaturalist 2018 [107]. In all these

experiments, we use the VirTex model with ResNet-50 vi-

sual backbone and a textual head with L = 1, H = 2048.

Baselines: Our main baselines are ImageNet-supervised

(IN-sup) and MoCo. We consider three variants of IN-sup

pretrained with {10, 50, 100}% of ImageNet images (Fig-

ure 4). Similarly for MoCo, we consider both MoCo-IN

(Table 2) and MoCo-COCO (Table 1). We also include Ran-

dom Init baseline, trained from scratch on downstream task.

We follow the same evaluation protocol as MoCo [24]

for all four tasks. We use Detectron2 [101] for tasks (a,b,c).

Our IN-sup-100% results are slightly better than those re-

ported in [24] – we use pretrained ResNet-50 model from

torchvision, whereas they used the MSRA ResNet-50

model from Detectron [108]. We briefly describe imple-

mentation details here, refer Appendix A.3 for full details.

COCO Instance Segmentation: We train Mask R-

CNN [9] models with ResNet-50-FPN backbones [109].

We initialize backbone with pretrained weights, train on

train2017 split, and evaluate on val2017 split. We fine-

tune all layers end-to-end with BN layers synchronized

across GPUs [110] (SyncBN). We also use SyncBN in FPN

layers. We train with batch size 16 distributed across 8

GPUs, following 2× schedule (180K iterations with initial

LR 0.02, multiplied by 0.1 at iterations 120K and 160K).

LVIS Instance Segmentation: The LVIS dataset provides

instance segmentation labels for a long tail of 1230 entry-
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Backbone Depth Width CIDEr SPICE

R-50 1 512 93.4 18.1

R-50 1 768 93.1 18.5

R-50 1 1024 92.8 18.4

R-50 1 2048 92.1 18.4

R-50 1 1024 92.8 18.4

R-50 2 1024 94.1 18.4

R-50 3 1024 95.5 18.1

R-50 4 1024 92.9 17.6

R-50 w2× 1 1024 91.7 18.2

R-101 1 1024 94.3 18.6

VirTex predicted captions (R-50, L = 1, H = 512), forward transformer decoder

a cat laying on a

pair of blue shoes

a laptop computer

sitting on top of a

desk

an orange is

sitting on the side

of a road

a dog riding on a

surfboard in the

ocean

Figure 6: Image Captioning. We report image captioning performance (CIDEr [105] and SPICE [106]) of VirTex models

on COCO val2017. On the right, we show some predicted captions and attention visualizations on input image for the

highlighted word. VirTex focuses on relevant regions to predict objects (shoes), background (road) and actions (riding).

level object classes and stresses the ability to recognize

many object types from few training samples. We train

Mask R-CNN models with ResNet-50-FPN backbones on

train v1.0 and evaluate on val v1.0 split. Following

MoCo settings, we keep BN parameters frozen for all IN-

sup baselines. We train with 2× schedule as COCO, use

class resampling and test-time hyperparameters (0.0 score

threshold and 300 detections per image) same as [31].

PASCAL VOC Detection: We train Faster R-CNN [111]

models with ResNet-50-C4 backbones on trainval07+12

split, and evaluate on test2007 split. Like COCO, we fine-

tune all models with batch size 2 per GPU (8 GPUs) and

SyncBN. We train for 24K iterations, including linear LR

warmup for first 100 iterations. We start with LR 0.02 and

divide it by 10 at iterations 18K and 22K.

iNaturalist 2018 Fine-grained Classification: The iNatu-

ralist 2018 dataset provides labeled images for 8142 fine-

grained categories, with a long-tailed distribution. We fine-

tune the pretrained ResNet-50 with a linear layer end-to-

end. We train on train2018 split and evaluate on val2018

split. We use SGD with momentum 0.9 and weight decay

10−4 for 100 epochs with batch size 256 distributed across

8 GPUs. Fine-tuning uses LR 0.025 (and Random Init uses

0.1), which is multiplied by 0.1 at epochs 70 and 90.

Results: We show results in Table 3. VirTex matches or ex-

ceeds ImageNet-supervised pretraining and MoCo-IN on all

tasks (row 2,5 vs. 7) despite using 10× fewer pretraining

images. Moreover, VirTex significantly outperforms meth-

ods that use similar, or more pretraining images (row 3,4,6

vs. 7), indicating its superior data-efficiency. Among all

tasks, VirTex shows significant improvements on LVIS, in-

dicating the effectiveness of natural language annotations in

capturing the long tail of visual concepts in the real world.

4.4. Image Captioning

Our goal is to learn transferable visual features via tex-

tual supervision. To do so, we use image captioning as a

pretraining task. Although our goal is not to advance the

state-of-the-art in image captioning, in Figure 6 we show

quantitative and qualitative results of VirTex models trained

from scratch on COCO. All models show modest perfor-

mance, far from current state-of-the-art methods, that com-

monly involve some pretraining. However, captioning met-

rics are known to correlate weakly with human judgement

– we surpass human performance on COCO.

We show some predicted captions by VirTex (R-50, L =
1, H = 512) model. We apply beam search on the for-

ward transformer decoder (5 beams) to decode most likely

captions. The decoder attention module in this transformer

attends over a 7 × 7 grid of image features through A = 8
heads at each time-step for predicting a token. We average

these 7×7 attention weights over all the heads, and overlay

them on 224× 224 input image (via bicubic upsampling).

In Figure 6, we show visualizations for some tokens. We

observe that our model attends to relevant image regions for

making predictions, indicating that VirTex learns meaning-

ful visual features with good semantic understanding.

5. Conclusion

We have shown that learning visual representations us-

ing textual annotations can be competitive to methods based

on supervised classification and self-supervised learning on

ImageNet. We solely focus on downstream vision tasks –

future works can explore other tasks that transfer both the

visual backbone and the textual head. Finally, using cap-

tions opens a clear pathway to scaling our approach to web-

scale image-text pairs, that are orders of magnitude larger,

albeit noisier than COCO Captions.
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