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Figure 1. Anomaly scenarios overview. There are three possible outcomes when a segmentation network encounters an

anomalous instance. First, anomaly instances are properly segmented and classified as one of the training classes (i.e bird

is confused as a person) (top). Second, anomaly instances are over-segmented with multiple classes (i.e dog is detected

as a combination of person, vegetation, and terrain classes) (middle). And third, anomaly instances are blended with the

background, not detected (i.e boxes blend with the street segmentation) (bottom). Our proposed method produces robust

predictions for all scenarios, while previous approaches fail to handle at least one of them.

Abstract

The inability of state-of-the-art semantic segmentation

methods to detect anomaly instances hinders them from be-

ing deployed in safety-critical and complex applications,

such as autonomous driving. Recent approaches have

focused on either leveraging segmentation uncertainty to

identify anomalous areas or re-synthesizing the image from

the semantic label map to find dissimilarities with the in-

put image. In this work, we demonstrate that these two

methodologies contain complementary information and can

be combined to produce robust predictions for anomaly

segmentation. We present a pixel-wise anomaly detection

framework that uses uncertainty maps to improve over exist-

ing re-synthesis methods in finding dissimilarities between

the input and generated images. Our approach works as

a general framework around already trained segmentation

networks, which ensures anomaly detection without com-

promising segmentation accuracy, while significantly out-

performing all similar methods. Top-2 performance across

a range of different anomaly datasets shows the robustness

of our approach to handling different anomaly instances.

1. Introduction

Recent advances in deep learning have shown signifi-

cant improvements in the field of computer vision. Neural

networks have become the de-facto methodology for clas-

sification, object detection, and semantic segmentation due

to their high accuracy in comparison to previous methods

[35, 34, 41]. However, while the predictions of these net-

works are highly accurate, they usually fail when encoun-

tering anomalous inputs (i.e. instances outside the training

distribution of the network).
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With this work, we focus on the inability of existing se-

mantic segmentation models to localize anomaly instances

and how this limitation hinders them from being deployed

in safety-critical, in-the-wild scenarios. Consider the case

of a self-driving vehicle that uses a semantic segmentation

model. If the agent encounters an anomalous object (i.e. a

wooden box in the middle of the street), the model could

wrongly classify this object as part of the road and lead the

vehicle to crash.

To detect such anomalies in the input, we build our

approach upon two established groups of methods. The

first group uses uncertainty estimation to detect anoma-

lies. Their intuition follows that a low-confidence predic-

tion is likely an anomaly. However, uncertainty estimation

methods themselves are still noisy and inaccurate. Previ-

ous works [24, 4] have shown that these models fail to de-

tect many unexpected objects. Example failure cases are

shown in Figure 1 (top and bottom) where the anomaly ob-

ject is either detected but miss-classified or non-detected

and blended with the background. In both cases, the seg-

mentation network is overconfident about its prediction and,

thus, the estimated uncertainty (softmax entropy) is low.

The second group focuses on re-synthesizing the input

image from the predicted semantic map and then comparing

the two images (input and generated) to find the anomaly.

These models have shown promising results when dealing

with segmentation overconfidence but fail when the seg-

mentation outputs a noisy prediction for the unknown ob-

ject, as shown in Figure 1 (middle). This failure is explained

by the inability of the synthesis model to reconstruct noisy

patches of the semantic map, which complicates finding the

differences between input and synthesized images.

In this paper, we propose a novel pixel-level anomaly

framework that combines uncertainty and re-synthesis ap-

proaches in order to produce robust predictions for the dif-

ferent anomaly scenarios. Our experiments show that un-

certainty and re-synthesis approaches are complementary to

each other, and together they cover the different outcomes

when a segmentation network encounters an anomaly.

Our framework builds upon previous re-synthesis meth-

ods [24, 12, 38] of reformulating the problem of segment-

ing unknown classes as one of identifying differences be-

tween the input image and the re-synthesised image from

a predicted semantic map. We improve over those frame-

works by integrating different uncertainty measures, such

as softmax entropy [10, 21], softmax difference [31], and

perceptual differences [16, 8] to assist the dissimilarity net-

work in differentiating the input and generated images. The

proposed framework successfully generalizes to all anoma-

lies scenarios, as shown in Figure 1, with minimal addi-

tional computation effort and without the need to jeopardize

the segmentation network accuracy (no re-training neces-

sary), which is one common flaw of other anomaly detec-

tors [3, 26, 27]. Besides maintaining state-of-the-art perfor-

mance in segmentation, eliminating the need for re-training

also reduces the complexity of adding an anomaly detector

to future segmentation networks, as training these networks

is non-trivial.

We evaluate our framework in public benchmarks for

anomaly detection, where we compare to methods similar

to ours that not compromise segmentation accuracy, as well

as those requiring full retraining. We also demonstrate that

our framework is able to generalize to different segmenta-

tion and synthesis networks, even when these models have

lower performance. We replace the segmentation and syn-

thesis models with lighter architectures to prioritize speed

in time-critical scenarios like autonomous driving.

In summary, our contributions are the following:

– We present a novel pixel-wise anomaly detection

framework that leverages the best features of existing

uncertainty and re-synthesis methodologies.

– Our approach is robust to the different anomaly sce-

narios, achieving state-of-the-art performance on the

Fishyscapes benchmark while maintaining state-of-

the-art segmentation accuracy.

– Our proposed framework is able to generalize to dif-

ferent segmentation and synthesis networks, serving

as a wrapper methodology to existing segmentation

pipelines.

2. Related Work

The task of localizing anomalous instances in seman-

tic segmentation has been studied under out-of-distribution

(OoD) detection and anomaly segmentation. In this section,

we review the methods which could be used for pixel-wise

anomaly detection, and exclude approaches that could only

be applied for image-level OoD classification.

2.1. Anomaly Segmentation via Uncertainty Esti­
mation

Methods that estimate the uncertainty of a model for a

given input may estimate high uncertainty for inputs that are

not anomalies, e.g. due to high input noises. Regardless of

this and other differences, anomaly detection is a common

benchmark method for uncertainty estimation, based on the

assumption that anomalous inputs should come with higher

uncertainty than any training data.

Early methods measure uncertainty from the predicted

softmax distributions and classify the samples as OoD by

using simple statistics [14, 22, 23]. While these approaches

are good baselines for image-level OoD classification, they

Available at https://github.com/giandbt/SynBoost.
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usually fail in anomaly segmentation. Specifically, the esti-

mated (aleatoric) uncertainty is often high at object bound-

aries, where no single label can be assigned with certainty,

and not at anomalous instances as desired. [31] mitigated

this shortcoming by aggregating different dispersion mea-

surements (e.g., entropy, and difference in softmax proba-

bility) and then predicting areas of potential high error in

the segmentation. Then, [28] demonstrated that these high

error areas can be used to localize anomalies by visual fea-

ture differences.

Alternative approaches use Bayesian NNs with MC

dropout to estimate pixel uncertainty [18, 27, 21]. These

methods differentiate between aleatoric (noise inherent in

the observations) and epistemic uncertainties (uncertainty

in the model), therefore mitigating the problem of object

boundaries, but still fail to detect anomalies on a pixel level

accurately. As shown in [24], they yield many false posi-

tive predictions, as well as miss-matches between anomaly

instances and uncertain areas.

2.2. Anomaly Segmentation via Outlier Exposure

Anomaly segmentation can also be accomplished by

training a network to differentiate inliers against unseen

samples by using an auxiliary dataset of outliers [15]. [2]

was one of the first approaches to use outlier exposure for

dense predictions using ImageNet [32] as the OoD dataset.

Then, [3] build upon this methodology by modifying the

segmentation network to predict the semantic map as well

as the outlier map. Note that this requires re-training the

segmentation network as a multi-task model, which has

lead to drop in performance [36]. The biggest shortcoming

of these approaches is that they train from OoD samples,

which could compromise their ability to generalize to all

possible anomalies.

2.3. Anomaly Segmentation via Image Re­synthesis

Promising recent methods follow the approach of recon-

structing the input image using generative models. The in-

tuition behind this methodology is that the generated im-

age will yield appearance differences with respect to the

input image where anomalies are present, as the model

cannot handle these instances. Early work on this sub-

field used autoencoders to re-synthesize the original image

[1, 7]. However, these methods mostly generated a lower-

quality version of the input image [24]. More recent meth-

ods [38, 12, 24] re-synthesize the input image from the pre-

dicted semantic map using a generative adversarial network.

The photo-realistic image is then compared to the original

image by a discrepancy or comparison module to localize

the anomaly instances.

These approaches benefit from not needing to re-train the

segmentation network as they work as a wrapper method.

Additionally, they do not require OoD samples which helps

them to generalize to never-seen anomalies instances. How-

ever, the performance of these methods are limited by the

ability of the discrepancy module to differentiate between

features in the input and generated images, which could be

challenging for complex driving scenes. With our work,

we demonstrate that feeding uncertainty information of the

scene to the discrepancy network significantly improves the

ability of the module to detect anomalies.

3. Methodology

We propose a detection framework for segmenting

anomalous instances. Our framework is inspired by re-

cent re-synthesis approaches [24, 38], while extending them

to include the benefits of uncertainty estimation methods

[28, 31]. We first introduce our framework with its respec-

tive modules (Sec. 3.1). Next, we describe how to train

the modules to better handle the different anomaly scenar-

ios (Sec. 3.2). Finally, we combine our framework’s output

with the calculated uncertainty maps to have a final ensem-

ble method that reduces the false positives and overconfi-

dence in the predictions (Sec. 3.3).

3.1. Pixel­wise Anomaly Detection Framework

Our proposed framework follows the same base structure

as [24] and [12], where the input image gets segmented, a

reconstruction is synthesized from the segmentation map,

and a dissimilarity module detects anomalies by comparing

input and synthesized image. However, we extended each

component to predict and/or use uncertainty measurements

to improve the final anomaly prediction. Figure 2 shows a

high-level summary of our framework.

3.1.1 Segmentation Module

The segmentation module takes the input image and feeds it

into a segmentation network, such as [42] or [40], in order

to obtain a semantic map. In addition to the semantic map,

we also compute two dispersion measures to quantify the

uncertainty in the semantic map prediction. These two dis-

persion measurements are the softmax entropy H [10, 21]

and the softmax distance D (i.e. the difference between the

two largest softmax values), which have shown to be bene-

ficial in understanding errors within the segmentation [31].

For each pixel x, these two measurements are calculated as

follows:

Hx = −
∑

c∈classes

p(c) log2 p(c) (1)

Dx = 1− max
c∈classes

p(c) + max
c′∈classes\(argmax

c
p(c))

p(c′) (2)

where p(c) is the softmax probability for class c. We

normalize both quantities to [0, 1].
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Figure 2. Anomaly Segmentation Framework. We first pass the input image through a segmentation network, which will

output a semantic map and two uncertainty maps. The predicted semantic map is then processed by the synthesis network

to generate a photo-realistic image. Perceptual difference is then calculated by comparing features between the input and

generated images. Lastly, all the predicted images and the input are sent to the spatial-aware dissimilarity module to produce

the anomaly prediction.

3.1.2 Synthesis Module

The synthesis module generates a realistic image out of the

given semantic map with pixel-to-pixel correspondence. It

is trained as a conditional generative adversarial network

(cGAN) [37, 25] to fit the generative distribution to the dis-

tribution of input images from the semantic model.

While the synthesis module is trained to produce photo-

realistic images and is well able to produce realistic cars,

buildings, or pedestrians, the semantic map misses essential

information like color or appearance to allow for a direct

per-pixel value comparison. We therefore calculate the per-

ceptual difference V between the original and synthesized

image. This novel feature map is inspired from the per-

ceptual loss presented in [16] and [8], which is commonly

used in cGANs methods. The idea is to find the pixels that

have the most different feature representations using Ima-

geNet [32] pre-trained VGG as feature extractor [33]. The

difference in these representations allow us to compare ob-

jects based on their image content and spatial structure, as

opposed to low level features such as color and texture. If

the anomaly object is not detected or wrongly classified,

the synthesized image would be generated with the wrong

feature representation, and thus the perceptual difference

should detect these discrepancies with the input image.

For every pixel x of the input image and corresponding

pixel r from the synthesized image, the perceptual differ-

ence is calculated as follows:

V (x, r) =
N
∑

i=1

1

Mi

∥

∥

∥
F (i)(x)− F (i)(r)

∥

∥

∥

1
(3)

where F (i) denotes the i-th layer with Mi elements of

the VGG network and N layers. For consistency, these dis-

persion measure is also normalized between [0, 1].

3.1.3 Dissimilarity Module

The dissimilarity module takes as input the original image,

generated image, and semantic map, as well as the uncer-

tainty maps (softmax entropy, softmax distance, perceptual

difference) calculated in previous steps. Then, the network

combines these features to predict the anomaly segmenta-

tion map. The dissimilarity module is divided into three

components (encoder, fusion module, and decoder) as seen

in Figure 3. Implementation details can be found in Ap-

pendix A.1.

Encoder. Each image is passed through an encoder to

extract features. Similarly to [24], we use a pre-trained

VGG [33] network for both the original and re-synthesized

images as well as a simple CNN to process the semantic

map. We also added another simple CNN to encode the

uncertainty maps, which are all concatenated.

Fusion Module. At each level of the feature pyramid,

we concatenate the input, synthesis, and semantic feature

maps and pass them through a 1 × 1 convolution. With

this first step, we are training the network to differentiate

between the original and generated images, as it is common

for re-synthesis methods. Additionally, we use the resulting

feature map and perform a point-wise correlation with the

uncertainty feature map. This step guides the network to

pay attention to high-uncertain areas in the feature map.

Decoder. We then decode each feature map and concate-

nate it with the corresponding higher level in the pyramid

until we get our anomaly segmentation prediction. Note
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Figure 3. Dissimilarity Module Architecture. Given the input, synthesized, semantic, and uncertainty images, we extract

high to low-level features for each image with a CNN. For each level, we then concatenate the input (blue), synthesized (yel-

low), and semantic (red) features and fuse them with a 1x1 convolution. The resulting map is used to calculate a correlation

with the features from the uncertainty maps (green). The output of the fusion module (purple) is then fed to a decoder to

produce the predicted anomaly segmentation. Note the semantic map is used in the decoder block to ensure a spatial aware

prediction by using a SPADE normalization [29].

that the decoder block uses the semantic map as an input

since it uses a spatial-aware normalization as presented in

[29]. This normalization was used to ensure semantic infor-

mation is not wash-away during the decoding process.

3.2. Training Procedure

Anomaly instances by definition include any object

which does not belong to the training classes. As such, it

is crucial to ensure the proposed methodology is robust to

detect any anomaly and does not overfit to specific objects

from an OoD dataset. Additionally, the training needs to be

general to cover all three anomaly scenarios of Figure 1.

The segmentation and synthesis module are simply

trained on the inlier segmentation dataset. This is therefore

free of any assumptions on anomalies, and also ensures that

the segmentation module is solely trained on the segmenta-

tion task without balancing in any other factors.

To train the dissimilarity module, [24] solved the prob-

lem of not needing OoD dataset by generating synthetic data

to simulate segmentation maps in the presence of anoma-

lies. This method replaced the class of randomly-chosen ob-

ject instances in the ground truth semantic map for an alter-

native random class. Then, these altered semantic maps are

synthesized (with the already trained module), creating vi-

sual differences between real and generated images. These

differences are used by the dissimilarity network to train

and detect discrepancies. Even though this approach does

not require seen OoD objects during training, it falls short

to train a fully robust pixel-wise anomaly detection. First,

this training data generator only covers one anomaly sce-

nario (Figure 1 - top) but lacks examples for the other two.

Second, this approach trains the dissimilarity network using

ground truth semantic maps, but during inference, it uses

predicted maps. This change in distribution can negatively

affect the performance of the network to detect anomalies.

Lastly, specific to the methodology presented in Sec. 3.1,

the altered instances would not correlate to uncertain areas.

As such, these training examples cannot leverage informa-

tion from uncertainty maps.

We expanded the training data generator by adding a sec-

ond source of training examples. Specifically, we label ob-

jects within the void class in ground truth semantic maps

as anomalies. The void class is commonly used in seg-

mentation datasets [6] to cover objects that do not belong

to any of the training classes, which falls within the defini-

tion of an anomaly. This additional source of labels helped

us to overcome the challenges of the previous data gener-

ator. First, the predicted semantic map in these void re-

gions will closely match the three anomaly scenarios seen

during inference (Figure 1), as opposed to just one. Sec-

ond, the dissimilarity network will train using predicted se-

mantic maps as opposed to ground truth which prevents any

domain adaption during inference. Lastly, void regions usu-

ally match with high uncertainty pixels which guide the dis-

similarity network to use uncertainty information.

Note that by adding these void class objects as anoma-
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lies, we lose the benefit of not requiring OoD data during

training. However, by using both approaches, our proposed

methodology is still able to generalize to unseen objects as

shown in Sec. 4.2.

3.3. Predictions Ensemble

Until now, we have used the calculated uncertainty maps

(i.e. softmax entropy, softmax distance and perceptual

difference) as an attention mechanism in the dissimilarity

module. However, as shown in [31] and [28], these un-

certainty maps are already anomaly predictions by them-

selves. Thus, we can exploit the uncertainty estimates to

complement the output of the dissimilarity network in or-

der to detect all the anomaly scenarios. With this ensemble,

we mitigate any possible overconfidence of the dissimilar-

ity network, a common problem with deep learning models

as explained by [11].

We ensemble these predictions using a weighted aver-

age, where the weights are selected by grid search. Addi-

tionally, we tested learning the ensemble weights in an end-

to-end training of the dissimilarity network. These results

were not satisfactory as the network still produces overcon-

fident predictions. Further details about end-to-end training

can be found under Appendix A.4.

4. Experiments

4.1. Experiments Set­up

Module Implementations. The segmentation and syn-

thesis modules use publicly available state-of-the-art net-

works already trained on Cityscapes [6]. Specifically, the

segmentation module uses the work presented by [42],

while the synthesis module uses the generator trained by

[25]. A full description of the dissimilarity network im-

plementation can be found in Appendix A.1. It is impor-

tant to note that the segmentation module uses the origi-

nal Cityscapes resolution of 2048 x 1024 as its input, the

synthesis module downsamples the resolution by two and

finally, the dissimilarity module downsamples the original

resolution by four. This downscaling was done due to GPU

memory constrains and for faster inference time.

Datasets. We evaluated the performance of our frame-

work with the Fishyscapes benchmark [4]. Fishyscapes is a

public benchmark for uncertainty/anomaly estimation in se-

mantic segmentation for urban driving. The benchmark is

divided into three sets: FS Lost & Found (L&F), FS Static

and FS Web. For all datasets, we provide qualitative eval-

uations on the public validation images, but submitted our

method to the benchmark for quantitative results on the pri-

vate test sets. FS Lost & Found is a set of real images cap-

tured in [30] with anomalous objects in front of the vehicle.

The test set has 275 images. FS Static blends anomalous

objects from Pascal VOC [9] into validation images from

Cityscapes. The test set has 1,000 images. FS Web is a dy-

namically changing dataset, which overlay objects crawled

from the internet using a list of keywords. Methods are only

evaluated on data that is crawled after submission to the

benchmark, which is why we can only report our method’s

performance on FS Web Oct. 2020.

Note that there is another anomaly segmentation bench-

mark named Street Hazards [13], which some related

works have used to evaluate their performance in pixel-wise

anomaly detection [38]. Unfortunately, this benchmark is

not compatible with our data generation and training pro-

cedure. As explained in Sec. 3.2, our method requires in-

stance labels, as well as a void class to successfully learn to

differentiate the synthesis and original image. The training

dataset of Street Hazards does not provide either. We there-

fore could not evaluate on the Street Hazards Benchmark.

Evaluation Metrics. To assess the performance of the

framework against existing methods, we use the same met-

rics presented in the Fishyscapes benchmark for anomaly

detection: average precision (AP) and the false positive

rate at 95% true positive rate (FPR95). It is important

to note that previous works have used the receiver oper-

ating curve (ROC) as their metric for anomaly segmenta-

tion ([24], [38]). Nonetheless, ROC is not well-suited for

highly imbalance problems, such as anomaly detection, as

explained in [5].

Baselines. We compare our approach against all ex-

isting methods shown in the Fishyscapes benchmark. As

of November 2020, the benchmark includes Dirichlet

DeepLab [26], Outlier Head [3], Bayesian DeepLab [27],

Embedding Density [4], and Softmax Entropy [14]. If a

method has multiple variants, we show only the best.

We also compare our method against Image Re-synthesis

[24], as our framework builds upon it. Note that an of-

ficial submission for this approach has not been done for

Fishyscapes. As such, we implemented our own version of

Image Re-synthesis and submitted it to the benchmark for

comparison, which we named Image Resynthesis++. Ap-

pendix A.2 contains details about our implementation and a

quantitative comparison against the original work.

In order to ensure a fair comparison between the afore-

mentioned methodologies, we divide the baselines into two

groups depending on whether they require retraining the

segmentation network or not. This split is intended to

differentiate between methods that compromise segmenta-

tion accuracy to detect anomalies and methods that work

as a wrapper to state-of-the-art (SOTA) segmentation mod-

els. To measure the difference between these two groups,

we also report each method’s mean intersection over union

(mIOU) for all Cityscapes classes. This ensures that each

approach produces competitive semantic segmentation pre-

Results for the Fishyscapes benchmark can be found here: https:

//fishyscapes.com/results.
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Method
FS L&F FS Static FS Web Oct. 2020 CS

↑AP ↓FPR95 ↑AP ↓FPR95 ↑AP ↓FPR95 ↑mIOU

N
o

R
et

ra
in Softmax Entropy [14] 2.93 44.83 15.41 39.75 16.61 39.79 80.30

Embedding Density [4] 4.65 24.36 62.14 17.43 29.16 38.80 80.30

Image Resynthesis++ [24] 5.70 48.05 29.60 27.13 12.46 51.29 83.50

Ours 43.22 15.79 72.59 18.75 61.31 18.89 83.50

R
et

ra
in Bayesian DeepLab [27] 9.81 38.46 48.70 15.50 35.80 25.67 73.80

Dirichlet DeepLab [26] 34.28 47.43 31.30 84.60 30.02 76.62 70.50

Outlier Head [3] 30.92 22.18 84.02 10.34 63.99 18.79 77.30

Table 1. Comparison between anomaly segmentation methods. Our method achieves higher AP and lower FPR95 than

previous methods that do not compromise segmentation performance (class mIOU on Cityscapes). It also achieves second-

best performance when compared to all existing approaches.

dictions, while still detecting the anomalous instances.

4.2. Results

Table 1 shows quantitative comparisons between our

proposed framework and the baselines discussed in Sec. 4.1

for the FS benchmark test sets.

We first compare our approach against existing method-

ologies that do not jeopardize the performance of the seg-

mentation model. Within this sub-group, our technique out-

performs all previous best methods for the three datasets.

Specifically, our method significantly improved the AP on

all datasets. Additionally, the approach reduce the FPR95

for FS L&F and FS Web by 50%, while having comparable

performance on this metric against the previous best method

in FS Static. These results show the value of our contribu-

tions when grouped together. A detailed ablation study that

quantifies the improvements of each added component can

be found under Sec 5.1.

We then compare our proposed approach against meth-

ods that impact the segmentation network performance. In

this comparison, our model had the best performance on

FS L&F in both AP and FPR95. Additionally, our ap-

proach achieves the second-best AP, behind Outlier Head

[3] by 16% and 4% in FS Static and FS Web respectively.

Our framework achieves comparable state-of-the-art perfor-

mance on anomaly segmentation, while still maintaining

state-of-the-art performance in semantic segmentation. Our

pipeline accomplishes these results by working as a general

framework which could potentially be implemented on top

of different segmentation models (Sec. 5.2 and shows the

framework’s ability to generalize to different segmentation

and synthesis networks). Note that one of the limitations of

wrapper methods is their extended running time in compar-

ison to methods that predict anomaly and segmentation in

a single model. Details about inference time for our frame-

work can be found in Appendix A.3.

It is important to note that our technique is the only

method that achieves top-2 performance in the Fishyscapes

benchmark, showing the generalization ability of our

method in different test sets. In comparison, previous meth-

ods, such as Dirichlet DeepLab [26], has high AP in FS

L&F, but low AP in FS Static and FS Web. Similarly, Out-

lier Head [3] has a high AP in FS Static and FS Web, but

the method does not generalize well for FS L&F.

Qualitative comparison between our proposed frame-

work and baselines for uncertainty methods [14] and image-

resynthesis methods [24] can be found under Appendix A.5.

5. Discussion

When comparing all methods in Table 1, excluding ours,

one could come to the conclusion that there is a trade-off

between segmentation performance and anomaly detection.

Our framework invalidates this hypothesis and shows that

state-of-the-art anomaly detection does not have to come at

a cost of segmentation quality. In the following, we discuss

key insights that contribute to this result.

5.1. Ablation Study

Table 2 provides results for an ablation study analyzing

the contribution of individual components in the proposed

method. We first find that both our training data genera-

tor and adding the uncertainty maps have significant im-

provements to the framework. The improvement due to the

training data confirms the importance of covering all three

anomaly scenarios of Figure 1, as opposed to just the one

in [24]. The further improvement due to uncertainty maps

confirms our hypothesis that resynthesis and uncertainty

carry complementary information, and combining these ap-

proaches leads to overall better performance. Note that re-

moving the training data generator entails that the dissimi-

larity network does not train to use the uncertainty maps.

We also find that combining the uncertainty maps (soft-

max entropy, softmax distance, and perceptual difference)

with the output of the dissimilarity model greatly reduces

the FPR95 for both datasets. This indicates that our dissim-

ilarity module, like many deep CNNs, tends to be overcon-

fident in its predictions [11]. The ensemble helps to reduce

this issue. The FPR95 improvement does not correlate to
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Method
FS L&F FS Static

↑AP ↓FPR95 ↑AP ↓FPR95

Full Framework 55± 5 40± 5 62± 5 26± 1

w/o ensemble 58± 9 66± 8 57± 6 41± 12
w/o unc. maps 39± 9 64± 10 38± 8 51± 4
w/o data generator

15± 5 63± 12 14± 4 57± 11
& w/o unc. maps

Image Resyn.++ 6± 1 48± 12 8± 1 63± 18

Table 2. Ablation Study. Ensemble, uncertainty maps, and

data generators contribute to better overall performance.

Image Resynthesis++ is used for comparison as our method

builds upon it. Results are given as average and standard

deviation over five random weight initializations.

AP as we see a drop in FS Lost & Found. This drop is

expected as we are combining our framework’s prediction

with a weaker detector in order to reduce FPR95 for safety-

critical applications. Nonetheless, we see a boost in AP for

FS Static. We explain this increment as FS Static artificially

blends anomaly objects into urban landscapes images. As

such, uncertainty methods outperform in these images as it

is easier to detect the overlay of the objects. In general, we

expect a small drop in performance by AP using ensemble

predictions, but a much larger improvements for FPR95.

Finally, we observe that the ensemble has more consis-

tent performance across trainings on all metrics. This is

expected as the impact of the dissimilarity module training

on the overall performance of the ensemble is more limited

than in the standalone case. Nonetheless, it is also a desir-

able property when deploying in safety critical applications.

5.2. Framework Generalization

The dissimilarity module in the proposed framework

serves as a wrapper method for the segmentation and syn-

thesis networks. In other words, the architecture shown in

Figure 3 is independent of the specific segmentation and

synthesis approaches, as long as the segmentation network

has a softmax layer as its output.

We validate this generalization ability by re-training our

dissimilarity network with different segmentation and syn-

thesis techniques than the ones presented in Sec. 4.1.

Specifically, we chose ICNet as our segmentation module

[39] and SPADE as our synthesis module [29]. We selected

these networks to create a lighter version of our pipeline,

which we called Ours Light. These lighter networks are

significantly faster than the ones introduced in Sec. 4.1, but

with lower performance for their respective tasks.

Table 3 shows the performance of our best and lighter

frameworks, as well as Image resynthesis++ as our baseline.

Ours Light significantly outperforms the Image resynthe-

sis++ baseline, even though this lighter version is using seg-

mentation and synthesis modules with lower performance

Method
FS L&F FS Static CS

↑AP ↓FPR95 ↑AP ↓FPR95 ↑mIOU

Im. Resyn.++ 5.7 47.7 8.0 62.7 83.5

Ours Light 36.0 46.4 33.4 36.1 70.6

Ours 55.1 39.6 61.5 25.6 83.5

Table 3. Performance comparison between best and

lighter frameworks. Our framework generalizes well to

different segmentation and synthesis, even those with lower

performance.

(i.e 83.5% vs 70.6% class mIOU on Cityscapes). This study

demonstrates that not only the dissimilarity network gener-

alizes to different segmentation and synthesis networks, but

it also performs well even when the segmentation and syn-

thesis networks produce lower quality outputs.

Table 3 also indicates a direct correlation between the

performance of the segmentation and synthesis modules

and the anomaly detection accuracy. Ours outperforms

Ours Light in all metrics, as Ours uses state-of-the-art

networks. These results agree with our intuition that re-

synthesis methods are highly related to the quality of seg-

mentation and synthesis networks. The better the predic-

tions of these two modules, the easier the dissimilarity mod-

ule differentiates between the input and synthesized image.

As these networks improve in the upcoming years, we ex-

pect an improvement in performance for our anomaly de-

tector framework. An inference time analysis between Ours

and Ours Light can be found in Appendix A.3.

6. Conclusion

We investigate pixel-level anomaly detection for com-

plex driving scenes (i.e urban landscapes). We design

an anomaly segmentation framework that combines two

complementary approaches to anomaly detection: uncer-

tainty and re-synthesis methods. Specifically, our frame-

work leverages uncertainty measurement maps (i.e. soft-

max entropy, softmax distance and perceptual differences)

to guide a dissimilarity network to find the differences be-

tween the input image and a generated image from the pre-

dicted semantic map. The presented approach significantly

outperforms both re-synthesis and uncertainty based meth-

ods on the Fishyscapes benchmark, where it is the best over-

all method across datasets. It does not put any constraint on

the segmentation network, and therefore can be used with

any already trained state-of-the-art segmentation model.

In fact, we demonstrate that our method also works well

with lighter segmentation and synthesis networks, making

it ready for deployment in autonomous machines.
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