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Abstract

DNN-based frame interpolation—that generates the in-

termediate frames given two consecutive frames—typically

relies on heavy model architectures with a huge number of

features, preventing them from being deployed on systems

with limited resources, e.g., mobile devices. We propose

a compression-driven network design for frame interpola-

tion (CDFI), that leverages model pruning through sparsity-

inducing optimization to significantly reduce the model size

while achieving superior performance. Concretely, we first

compress the recently proposed AdaCoF model and show

that a 10× compressed AdaCoF performs similarly as its

original counterpart; then we further improve this com-

pressed model by introducing a multi-resolution warping

module, which boosts visual consistencies with multi-level

details. As a consequence, we achieve a significant per-

formance gain with only a quarter in size compared with

the original AdaCoF. Moreover, our model performs fa-

vorably against other state-of-the-arts in a broad range of

datasets. Finally, the proposed compression-driven frame-

work is generic and can be easily transferred to other DNN-

based frame interpolation algorithm. Our source code is

available at https://github.com/tding1/CDFI.

1. Introduction

Video frame interpolation is a lower level computer vi-

sion task referring to the generation of intermediate (non-

existent) frames between actual frames in a sequence, which

is able to largely increase the temporal resolution. It plays

an important role in many applications, including frame rate

up-conversion [4], slow-motion generation [27], and novel

view synthesis [20, 66]. Though fundamental, the problem

is challenging in that the complex motion, occlusion and

feature variation in real world videos are difficult to esti-

mate and predict in a transparent way.

∗Equal contribution. This work was done when Tianyu Ding was an

intern at Applied Sciences Group, Microsoft.
†Corresponding author.

Figure 1. A challenging example consists of large motion, se-

vere occlusion and non-stationary finer details. From top to bot-

tom: the overlaid two inputs, the ground-truth middle frame, the

frame generated by AdaCoF [32], the frame generated by the 10×
compressed AdaCoF, and the frame generated by our method. The

compressed AdaCoF even outperforms the full one in this case.

Recently, a large number of researches have been con-

ducted in this area, especially those based on deep neural

networks (DNN) for their promising results in motion esti-

mation [18, 26, 55, 58], occlusion reasoning [2, 27, 46] and

image synthesis [19, 20, 28, 30, 66]. In particular, due to the
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rapid expansion in optical flow [1, 60], many approaches

either utilize an off-the-shelf flow model [2, 41, 42, 61] or

estimate their own task-specific flow [27, 36, 62, 63, 45] as

a guidance of pixel-level motion interpolation. However,

integrating a pre-trained flow model makes the whole ar-

chitecture cumbersome, while with only pixel-level infor-

mation the task-oriented flow alone is still insufficient in

handling complex occlusion and blur. As opposed to this,

kernel-based methods [43, 44, 46] synthesize the interme-

diate frames by convolution operations over local patches

surrounding each output pixel. Nevertheless, it cannot deal

with large motions beyond the kernel size and it typically

suffers from high computational cost. There are also hybrid

methods [2, 3] that combine the advantages of flow-based

and kernel-based methods, but the networks are much heav-

ier and thus limit their applications.

We observe a growing tendency that more and more

complicated and heavy DNN-based models are designed

for interpolating video frames. Most of the methods pro-

posed in the past few years [2, 3, 12, 16, 27, 32, 44, 61]

involve training and inference on DNN models consisting

of over 20 million parameters. For example, the hybrid

MEMC-Net [3] consists of more than 70 million param-

eters and requires around 280 megabytes if stored in 32-

bit floating point. Normally, large models are difficult to

train and inefficient during inference. Moreover, they are

not likely to be deployed on mobile devices, which restricts

their scenarios to a great extent. In the mean time, other

work [14, 36, 62, 63] directly focus on simple and light-

weight video interpolation algorithms. However, they ei-

ther perform less competitively on benchmark datasets or

are bound to specific design that lack of transferability.

In this paper, we propose a compression-driven network

design for video interpolation (CDFI) that takes advantage

of model compression [5, 13, 67]. To the best of our knowl-

edge, we are the first to explore the over-parameterization

issue appearing in the state-of-the-art DNN models for

video interpolation. Concretely, we compress the recently

proposed AdaCoF [32] via fine-grained pruning [67] based

on sparsity-inducing optimization [7], and show that a 10×
compressed AdaCoF is still able to maintain a similar

benchmark performance as before, indicating a consider-

able amount of redundancy in the original model. The com-

pression provides us two direct benefits: (i) it helps us un-

derstand the model architecture in depth, which in turn in-

spires an efficient design; (ii) the obtained compact model

makes more room for further improvements that could po-

tentially boost the performance to a new level. Towards

justifying the latter point, observing that AdaCoF is capa-

ble of handling large motion while is short of dealing with

occlusion or preserving finer details, we improve upon the

compact model by introducing a multi-resolution warping

module that utilizes a feature pyramid representation of the

Figure 2. Pipeline of CDFI. Stage (I): compression of the base-

line; Stage (II): improvements upon the compression.

input frames to help with the image synthesis. As a result,

our final model outperforms AdaCoF on three benchmark

datasets with a large margin (more than 1 dB of PSNR on

the Middlebury [1] dataset) while is only a quarter of its ini-

tial size. Note that typically it is difficult to implement the

same improvements on the original heavy model. Experi-

ments show that our model also performs favorably against

other state-of-the-art methods.

In short, we present a compression-driven framework

for video interpolation, in which we take a step back with

reflections on over-parameterization. We first compress

AdaCoF and obtain a compact model but performs simi-

larly well, then we improve on top of it. The pipeline of

CDFI is illustrated in Figure 2. This retrospective approach

leads to superior performance and can be easily transferred

to any other DNN-based frame interpolation algorithm.

2. Related work

2.1. Video frame interpolation

Conventional video frame interpolation is modeled as

an image sequence problem, e.g., the path-based [38] and

phase-based approach [39, 40]. Unfortunately, these meth-

ods are less effective in complex scenes due to their incapa-

bility of accurately estimating the path (flow) or represent-

ing high-frequency components.

Convolutional neural network (CNN) has recently

demonstrated its success in understanding temporal mo-

tion [18, 26, 49, 55, 58, 60] through predicting opti-

cal flow, leading to flow-based motion interpolation algo-

rithms. [37] trains a deep CNN to directly synthesize the

intermediate frame. [36] estimates the flow by sampling

from the 3D spatio-temporal neighborhood of each output

pixel. [27, 45, 62, 63] utilize bi-directional flows to warp

frames and resort to additional modules to handle occlusion.

[41, 42] integrate an off-the-shelf flow model [55] into the

network. Also, quadratic [34, 61] and cubic [14] non-liner

8002



models are proposed to approximate complex motions.

One major drawback of the flow-based methods is that

only pixel-wise information is used for interpolation. In

contrast, kernel-based methods propose to generate the im-

age by convolving over local patches near each output pixel.

For example, [44] estimates spatially-adaptive 2D convolu-

tion kernels and [43] improves its efficiency by using pairs

of 1D kernels for all output pixels simultaneously. [2, 3] in-

tegrate both optical flow and local kernels; specifically [2]

detects the occlusion with depth information. However,

those methods only rely on local kernels and cannot deal

with large motion beyond the rectangular kernel region.

Inspired by the flexible spatial sampling locations of

deformable convolution (DConv) [17, 68], [32] proposes

the AdaCoF model that utilizes a spatially-adaptive sepa-

rable DConv to synthesize each output pixel. [51] gener-

alizes it by allowing sampling in the full spatial-temporal

space. [12] is similar to AdaCoF except that it estimates

1D separable kernels to approximate 2D kernels. [11] ex-

tends [12] to produce the intermediate frame at arbitrary

time step. This paper is also based on AdaCoF; how-

ever, unlike the previous work, for the first time we explore

the over-parameterization issue presenting in the existing

DNN-based approaches, and show that a much smaller

model performs similarly well through compression. More-

over, by addressing its drawbacks upon the compression,

one can easily build a model (still small) so that it outper-

forms the original one to a large extent. This compression-

driven network design is generic and can be transferred to

any other DNN-based frame interpolation algorithms.

2.2. Pruningbased model compression

Model compression [5, 13] is particularly important to

DNN models, which are known to suffer high cost of stor-

age and computation. In general, model compression can

be categorized into several types: pruning [67], quantiza-

tion [48], knowledge distillation [25] and AutoML [24]. We

adopt the pruning technique for its simplicity, which seeks

to induce sparse connections. There are many hybrid prun-

ing methods [10, 22, 56] that are suitable for model deploy-

ment, but they may be overkill for our purpose of searching

and designing the architecture after the compression. That

being said, compression plays a completely different role

in our work, namely it works as a tool for a better under-

standing of the underlying architecture and makes room for

further improvements. For this reason, we turn our atten-

tion to optimization-based sparsity-inducing pruning tech-

niques [31, 33, 59, 65] which involve training with spar-

sity constraints, e.g. ℓ0 or ℓ1 regularizers. Specifically, we

use a simple three-step pipeline (see Stage (I) in Figure 2)

which is most similar to [8, 23] that involves: (i) training

with ℓ1-norm sparsity constraint; (ii) reformulating a small

dense network according to the sparse structures identified

Ground-truth AdaCoF [32] Ours

Figure 3. Visualization of the difference between the interpola-

tion and the ground-truth image.

in each layer; and (iii) retraining the small network to ver-

ify its performance. We will see shortly (Sec. 3.2) that its

implementation and test is straightforward.

3. The proposed approach

Given two consecutive frames I0 and I1 in a video se-

quence, the goal of video frame interpolation is to synthe-

size an intermediate frame It, where t ∈ (0, 1) is an ar-

bitrary temporal position. A common practice is t = 0.5,

that is synthesizing the middle frame between I0 and I1.

We now introduce the proposed CDFI framework with the

recently proposed AdaCoF [32] as an instance.

3.1. Motivation

To describe AdaCoF, we begin with the introduction of

one of its key components, a spatially-adaptive separable

DConv operation for synthesizing one image (denoted by

Iout) from another one (denoted by Iin). Towards synthe-

sizing Iout from Iin, the input image Iin is padded such that

Iout preserves the original shape of Iin. For each pixel (i, j)
in Iout, AdaCoF computes Iout(i, j) by convolving a de-

formable patch surrounding the reference pixel (i, j) in Iin:

F−1∑

k=0

F−1∑

l=0

W
(k,l)
i,j Iin

(
i+ dk + α

(k,l)
i,j , j + dl + β

(k,l)
i,j

)
, (1)

where F is the deformable kernel size, W
(k,l)
i,j is the

(k, l)-th kernel weight in synthesizing Iout(i, j), ~∆ :=(
α
(k,l)
i,j , β

(k,l)
i,j

)
is the offset vector of the (k, l)-th sampling

point associated with Iin(i, j), and d ∈ {0, 1, 2, · · · } is the

dilation parameter that helps to explore a wider area. Note

that the values of F and d are pre-determined. For synthe-

sizing each output pixel in Iout, a total number of F 2 points

are sampled in Iin. With the offset vector ~∆, the F 2 sam-

pling points are not necessarily restricted inside a rigid rect-

angular region centered at the reference point. On the other

hand, unlike the classic DConv, AdaCoF uses different ker-

8003



feature pyramid

Synthesis

Net

!"!#

1x1 Conv

AdaCoF

AdaCoF

$#

%#

&#

$'

%'

&'

(# ('

AdaCoF

AdaCoF Conv + Relu

AvgPool

Sigmoid

Upsample

Softmax

Figure 4. Illustration of our architecture design based on the compressed AdaCoF [32]. The lower part (AdaCoF) consists of a U-Net,

a group of sub-networks for estimating two sets of {Wi, αi, βi} in AdaCoF operation (1) correspond to backward/forward warping, and

an occlusion mask V1 for synthesizing one candidate intermediate frame I
(1)
0.5 . The upper part (our design) extracts a feature pyramid

representation of the input frames through 1-by-1 convolutions from the encoder of the U-Net, then the multi-scale features are warped

by AdaCoF operation of learned backward/forward parameters, which are fed into a synthesis network to generate another candidate

intermediate frame I
(2)
0.5 . Note that the pink and blue AdaCoF modules are associated with {W1, α1, β1} and {W2, α2, β2}, respectively.

Finally, the network outputs the interpolation frame by blending I
(1)
0.5 and I

(2)
0.5 via an extra occlusion mask V2.

nel weights across different reference pixels (i, j), indicated

by W
(k,l)
i,j in (1); hence the attribute “separable” [44].

Although AdaCoF is flexible in handling large and com-

plex motion since the parameters {W
(k,l)
i,j , α

(k,l)
i,j , β

(k,l)
i,j } are

computed specifically for each pair of input frames, it is un-

able to deal with severe occlusion and non-stationary finer

details, as shown in Figure 1. We further visualize the dif-

ference between the interpolation and the ground-truth in

Figure 3. AdaCoF is insufficient in preserving the con-

textual information because the interpolation is simply ob-

tained by blending the two warped frames through a sig-

moid mask (V1), as demonstrated in Figure 4. A natural

question to ask is that if we can make direct improvements

on top of it. However, we find the architecture design of

the AdaCoF model is relatively cumbersome, especially the

encoder-decoder part. For example, six 512× 512× 3× 3
convolutional layers are employed in the middle, which is

an entire heuristic since it is unclear whether this design

is sufficient or not for the interpolation task. The origi-

nal AdaCoF model has 21.8 millions of parameters when

F = 5, d = 1 and requires 83.4 megabytes if stored with

PyTorch. Typically, such a large model takes a long time

for training and validation, and thus prohibits direct im-

provements upon it. Towards better understanding the ar-

chitecture and improving its performance, we propose a

compression-driven approach described as follows.

3.2. First stage: compression of the baseline

As the first stage in our approach, we compress the

baseline model, i.e., AdaCoF here, by leveraging the fine-

grained model pruning [67] through sparsity-inducing op-

timization [6]. Specifically, given a pre-trained full model

M0, we start by re-training (fine-tuning) its weights θ by

imposing an ℓ1 norm sparsity regularizer, and solve the fol-

lowing optimization problem:

min
θ

f(θ|M0) + λ‖θ‖1, (2)

where f(·) denotes the training objective for our task

(see Sec. 3.4 for details) and λ > 0 is the regulariza-

tion constant. It is known that with appropriately cho-

sen λ the formulation (2) promotes a sparse solution, with

which one can easily identify those important connections

among neurons, namely the ones corresponding to non-zero

weights. Towards solving (2), we utilize the newly pro-

posed orthant-based stochastic method [7] for its efficient

mechanism in promoting sparsity and less performance re-

gression compared with other solvers. By solving the ℓ1-

regularized problem (2), we indeed perform a fine-grained

pruning since zeros are promoted in an unstructured man-

ner. Note that one can also impose group sparsity con-

straints [9, 31, 65], e.g., mixed ℓ1/ℓ2, to prune the kernel

weights in a group-wise fashion. We only adopt the ℓ1 con-

straint in the presentation for its simplicity.

After obtaining a sparse solution θ̂, different than [23]

that directly operates on the sparse network, we re-design a

small dense network M1 based on the sparsity computed in

each layer. Given the l-th convolutional layer consisting of

Kl = C in
l ×Cout

l × q× q parameters (denoted as θ̂l), where

C in
l is the number of input channels, Cout

l is the number of

output channels, q× q is the kernel size, then the sparsity sl
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Optimizing the
𝑙
" problem

Figure 5. Plot of PSNR against the density of AdaCoF, trained

on Middlebury, within 20 epochs of optimizing equation (2).

and density ratio dl of this layer are respectively defined as

sl :=
(
# of zeros in θ̂l

)
/Kl and dl := 1− sl. (3)

Inspired by [8], we use dl as the compression ratio and

compute C̃ in
l := ⌈dl · C

in
l ⌉ as the number of kernels we

actually need in that layer. The main intuition is that the

density ratio dl reflects the minimal amount of necessary

information that needs to be encoded in that layer with-

out affecting performance largely. Since C in
l ≡ Cout

l−1, we

also update C̃out
l−1 = C̃ in

l , then repeat the above process for

computing the number of kernels in the (l − 1)-th layer by

C̃ in
l−1 := ⌈dl−1 · C in

l−1⌉, and so on. In words, we refor-

mulate a small network by updating the number of kernels

in each convolutional layer according to its density ratio,

and proceed from back to the front. Since AdaCoF is fully

convolutional (see Figure 4), the above procedure can be

easily implemented by reducing the number of input/output

channels for each layer, leading to a much more compact

architecture. In fact, the strategy does not bind to convo-

lutional layers. One can also operate on a fully connected

layer by re-computing its number of input/output features

accordingly, making it extensible to other architectures.

Finally, we train the compressed model M1 from scratch

(without the ℓ1 constraint) to verify its performance. Typ-

ically, it takes a significantly shorter time than that of the

full model M0 due to its compactness. The entire compres-

sion pipeline is illustrated as the Stage (I) of Figure 2. We

remark that a pre-trained M0 is not necessarily required for

the sake of compression since problem (2) is suitable for a

one-shot training/pruning, but M0 allows us to make sure

the compressed model works competitively as before.

Compression of AdaCoF. We now apply the compres-

sion strategy to the AdaCoF model [32]. We use the pre-

trained model provided by the authors. Starting with the ℓ1-

regularized problem (2), where λ is set as 10−4, we run the

orthant-based stochastic solver [7] for 20 epochs by feed-

ing the model with only 1000 video triplets from Vimeo-

90K [62]. For each epoch, we record the network density

and the PSNR evaluated on the Middlebury dataset [1], as

plotted in Figure 5. One can see that the model performance

declines as more sparsity is promoted. After 20 epochs of

training, the density of the network is down to 26%. In-

Original AdaCoF

(F = 5, d = 1)

After

Compression

PSNR 35.72 35.43

SSIM 0.96 0.96

Size (MB) 83.4 9.4

Time (ms) 82.6 60.4

FLOPS (G) 359.2 185.9

Parameters (M) 21.8 2.45

Table 1. The statistics of AdaCoF and the compressed version.

terestingly, by examining the density ratio of each layer, we

find that the six 512×512×3×3 convolutional layers in the

middle of the U-Net are among the most redundant portions.

In particular, the 512× 512× 3× 3 convolutional layer fol-

lowing the upsampling layer achieves a density ratio of only

7%, which means 93% of the kernel is of little use. This

observation confirms our previous conjecture that the origi-

nal architecture design has a considerable amount of redun-

dancy. Then we reformulate a compact network guided by

the computed density ratio in each layer, as described be-

fore, and train it from scratch by using the entire taining

set (51312 video triplets) of Vimeo-90K. In this case, the

training of the compressed AdaCoF is about 5× faster than

previously. When it finishes, we compare the before-and-

after models in Table 1, where PSNR and SSIM [57] are

evaluated on the Middlebury dataset, and time and FLOPS

are calculated in synthesizing a 3 × 1280 × 720 frame on

RTX 6000 Ti GPU. Note that although the PSNR drops be-

low 34.2 during the ℓ1 optimization, after formulating and

training the compressed model rises again to 35.46, which

is on par with the original uncompressed AdaCoF. We con-

clude that a 10× compressed AdaCoF still maintains a sim-

ilar performance as its original counterpart.

3.3. Second stage: improve upon the compression

In the second stage, we improve upon the compression

against its deficiencies. The point is that the compression

makes room for further improvements due to its compact-

ness, which is typically difficult if directly operating on the

original large model, e.g., the long training and validation

time appears daunting in the first place.

Observing that AdaCoF is short of handling severe oc-

clusion and preserving finer details, we design three spe-

cific components, i.e., a feature pyramid, an image synthe-

sis network and a path selection mechanism, on top of the

compressed AdaCoF. Note that the improvements are case

by case since different baselines have their own weakness.

Feature pyramid. In AdaCoF, the final interpolation

frame is computed by blending the two warped frames

through a single sigmoid mask V1 (see Figure 4), which is a

generalization of using a binary mask to determine the oc-

clusion weights of the two warped frames for each output

pixel. We argue that with only raw pixel information the

loss of contextual details in the input frames is inevitable
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Vimeo-90K [62] Middlebury [1] UCF101-DVF [36] Parameters

(million)
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

AdaCoF (F = 5, d = 1) 34.35 0.956 0.019 35.72 0.959 0.019 35.16 0.950 0.019 21.84

Compressed AdaCoF (F = 5, d = 1) 34.10 0.954 0.020 35.43 0.957 0.018 35.10 0.950 0.019 2.45

AdaCoF+ (F = 11, d = 2) 34.56 0.959 0.018 36.09 0.962 0.017 35.16 0.950 0.019 22.93

Compressed AdaCoF+ (F = 11, d = 2) 34.44 0.958 0.019 35.73 0.960 0.018 35.13 0.950 0.019 2.56

Ours: FP (F = 5, d = 1) 34.62 0.962 0.011 36.13 0.961 0.008 35.08 0.949 0.015 4.88

Ours: FP + 1x1 Conv (F = 5, d = 1) 34.82 0.963 0.011 36.52 0.964 0.008 35.11 0.949 0.015 4.72

Ours: FP + 1x1 Conv (F = 11, d = 2) 34.82 0.963 0.011 36.70 0.964 0.008 35.14 0.949 0.015 4.83

Ours: FP + 1x1 Conv + PS (F = 11, d = 2) 35.17 0.964 0.010 37.14 0.966 0.007 35.21 0.950 0.015 4.98

Table 2. Ablation experiments on the architecture design of our approach.

Figure 6. Examples of adding the path selection (PS) mechanism in our design.

since it lacks guidance from the feature space. Instead, we

extract a feature pyramid representation [42] of the input

frames from the encoder part of the U-Net. Specifically, it

has five feature levels in accordance with the encoder, and

for each level we utilize a 1-by-1 convolution to filter the en-

coder at multi-scale with 4, 8, 12, 16, 20 output features (in

descending order by the feature scale). The extracted multi-

scale features are then warped by AdaCoF operation (1),

which captures the motion in the feature space.

Image synthesis network. To better make use of the

extracted multi-scale features, we resort to a GridNet [21]

architecture with three rows and six columns in synthesiz-

ing the image, which is also employed in [41, 42] for its

superiority in combining multi-scale information. Particu-

larly, we feed the synthesis network with both the forward-

and backward-warped multi-scale feature maps, generating

a single RGB image that focuses on the contextual details.

Path selection. In order to take advantage of both Ada-

CoF (handling complex motion) and our own components

(handling contextual details), we apply a path selection

mechanism in generating the final interpolation result. As

shown in Figure 4, one path leads to the output of the origi-

nal AdaCoF (denoted as I
(1)
0.5 ), which is computed by blend-

ing two warped input frames using the occlusion mask V1.

Parallel to this, another path leads to the output of the syn-

thesis network (denoted as I
(2)
0.5 ), which is computed by

combining the warped multi-scale feature maps. In the end,

we learn another occlusion module V2 to synthesize the fi-

nal result from I
(1)
0.5 and I

(2)
0.5 , and we expect that I

(2)
0.5 can

compensate for the lack of contextual information in I
(1)
0.5 .

The above three specific components can not only be

easily incorporated into the compressed AdaCoF, but also

boost the performance to a large extent while still maintain

the compactness (see Sec. 4).

3.4. Training

With the architecture described above, we train it using

AdaMax [29] with β1 = 0.9, β2 = 0.999, an initial learning

rate of 0.001 which decays half every 20 epochs, a mini-

batch size of 8, and a maximum training epochs of 100.

Objective function. Given the interpolated frame Iout

of our network and its ground truth Igt, we first employ the

Charbonnier penalty [36] as a surrogate for the ℓ1 loss:

LCharbon = ρ(Iout − Igt) (4)

where ρ(x) = (‖x‖22 + ǫ2)1/2 and ǫ is set to 0.001. Next,

we follow [32] and use a perceptual loss with feature φ ex-

tracted from conv4 3 of the pre-trained VGG16 [52]:

Lvgg = ‖φ(Iout)− φ(Igt)‖2. (5)

Then, inspired by the implementation of AdaCoF, we use a

total variation loss imposed on the offset vectors for ensur-

ing spatial continuity and smoothness:

Ltv = τ(α1) + τ(α2) + τ(β1) + τ(β2) (6)

where τ(I) =
∑

i,j ρ(Ii,j+1 − Ii,j) + ρ(Ii+1,j − Ii,j), and

α1,α2,β1,β2 are the offsets modules computed within our

network. Lastly, we formulate our final loss function as

L = LCharbon + λvggLvgg + λtvLtv (7)

where we set λvgg = 0.005, λtv = 0.01 in the experiments.
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Training

dataset

Vimeo-90K [62] Middlebury [1] UCF101-DVF [36] Parameters

(million)
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

†SepConv - L1 [44] proprietary 33.80 0.956 0.027 35.73 0.959 0.017 34.79 0.947 0.029 21.6
†SepConv - LF [44] proprietary 33.45 0.951 0.019 35.03 0.954 0.013 34.69 0.945 0.024 21.6
†CtxSyn - LLap [41] proprietary 34.39 0.961 0.024 36.93 0.964 0.016 34.62 0.949 0.031 –
†CtxSyn - LF [41] proprietary 33.76 0.955 0.017 35.95 0.959 0.013 34.01 0.941 0.024 –
†SoftSplat - LLap [42] Vimeo-90K 36.10 0.970 0.021 38.42 0.971 0.016 35.39 0.952 0.033 –
†SoftSplat - LF [42] Vimeo-90K 35.48 0.964 0.013 37.55 0.965 0.008 35.10 0.948 0.022 –
†DAIN [2] Vimeo-90K 34.70 0.964 0.022 36.70 0.965 0.017 35.00 0.950 0.028 24.02

AdaCoF [32] Vimeo-90K 34.35 0.956 0.019 35.72 0.959 0.019 35.16 0.950 0.019 21.84

AdaCoF+ [32] Vimeo-90K 34.56 0.959 0.018 36.09 0.962 0.017 35.16 0.950 0.019 22.93

EDSC - LC [11] Vimeo-90K 34.86 0.962 0.016 36.76 0.966 0.014 35.17 0.950 0.019 8.9

EDSC - LF [11] Vimeo-90K 34.57 0.958 0.010 36.48 0.963 0.007 35.04 0.948 0.015 8.9

BMBC [45] Vimeo-90K 35.06 0.964 0.015 36.79 0.965 0.015 35.16 0.950 0.019 11.0

CAIN [16] Vimeo-90K 34.65 0.959 0.020 35.11 0.951 0.019 34.98 0.950 0.021 42.8

Ours Vimeo-90K 35.17 0.964 0.010 37.14 0.966 0.007 35.21 0.950 0.015 4.98

Table 3. Quantitative comparisons with state-of-the-art methods. The results of methods marked with † are cloned from [42].

Training dataset. We use the Vimeo-90K dataset [62]

for training, which contains 51312/3782 video triplets of

size 256×448 for training/validation. We further augment

the data by randomly flipping them horizontally and verti-

cally as well as perturbing the temporal order.

Evaluation. Besides the validation set of Vimeo-90K,

we also evaluate the model on the well-known Middlebury

dataset [1] and UCF101 [36, 54]. The metrics we use are

PSNR, SSIM [57] and LPIPS [64]. Note higher values

of PSNR and SSIM indicate better performance, while for

LPIPS a lower value corresponds to a better result.

4. Experiments

4.1. Ablation study

We analyze three components in our proposed method:

model compression, feature pyramid, and path selection.

Model compression. As described in Sec. 3.2, we com-

press the baseline model to remove a large mount of re-

dundancy, which also facilitates the training and inference.

In Table 2, we compare the performance of the AdaCoF

and the compressed counterpart. It shows that a 10× com-

pressed model does not sacrifice much when evaluated on

the three benchmark datasets in different settings of (F, d)
(which are the parameters in (1)), revealing the redundancy

in AdaCoF and the necessity of the compression stage.

Feature pyramid. In order to better capture the contex-

tual details, we incorporate the feature pyramid (FP) mod-

ule into the compressed AdaCoF followed by warping op-

erations and an image synthesis network (see Sec. 3.3). We

isolate its effect by training a network that only outputs the

synthesized image without a path selection mechanism. It

turns out that by using only FP module (see “Ours - FP”,

Table 2) on top of the compressed AdaCoF (F = 5, d = 1),

we achieve visible improvements in terms of PSNR, SSIM

and LPIPS on the Vimeo-90K and Middlebury datasets.

Note that it substantially improves LPIPS on all the three

benchmark datasets. Moreover, filtering the multi-scale fea-

ture maps with 1-by-1 convolutions leads to better PSNR

and SSIM as well as a slightly smaller model size.

Path selection. Although by adding only the FP module

(and 1-by-1 convolutions) we are able to achieve promising

quantitative results as shown in Table 2, it does not take ad-

vantage of the capability of AdaCoF in handling complex

motion, which can be integrated into our design with the

proposed path selection (PS) mechanism. The left exam-

ple in Figure 6 shows that, when there is only fine detail

variations in the input frames, adding PS or not does not

quite affect our interpolation performance since FP mod-

ule is capable of synthesizing details (also note the output

of AdaCoF is blurry due to the loss of information). On

the other hand, the right example contains large motion of

two balls, and with only FP module the model is difficult

in capturing the motion of the right ball precisely. In con-

trast, our final model with the embedded PS mechanism can

deal with the large motion very well (even sharper on the

edges of the balls compared to AdaCoF). More importantly,

our approach preserves the finger shape (see the bottom-left

corner) while AdaCoF totally misses that part of informa-

tion. In conclusion, our completed model with FP and PS

can handle both fine details and large motion, and achieves

significant improvements when evaluated quantitatively.

4.2. Quantitative evaluation

We evaluate our compression-driven approach based on

AdaCoF with F = 11, d = 2 against the other state-

of-the-art DNN methods in Table 3. Since SepCov [44],

CtxSyn [41] and SoftSplat [42] are not open source, we di-

rectly copy their numerical results as well as DAIN’s [2]

from [42]. For the rest of the methods, we evaluate their

pre-trained models on the three datasets. Note that “Ada-

CoF” corresponds to the setting of F = 5, d = 1 while

“AdaCoF+” is associated with F = 11, d = 2.

As shown in Table 3, first note that our approach per-

forms favorably against all the compared methods in terms

of SSIM and LPIPS. As for PSNR, the proposed method

also outperforms all the other methods with a large margin

8007



Ground-truth Overlaid AdaCoF+ [32] BMBC [45] CAIN [16] EDSC-LC [11] EDSC-LF [11] Ours

Figure 7. Visual comparisons on the DAVIS 2016 dataset [47]. Our compression-driven method not only outperforms the baseline model

AdaCoF but also is more appealing compared with more recently proposed methods in handling large motion, occlusion and fine details.

except for SoftSplat [42]. Moreover, our model is signifi-

cantly smaller than the other competitors. We remark that in

the past there do exist some light-weight frame interpolation

models, e.g., DVF [36], ToFlow [62] and CyclicGen [35],

but they fail to compete with SepConv [44] or CtxSyn [41]

as reported in [42]. Lastly, we observe that AdaCoF [32]

is only mediocre among those methods, but our final model

which is based upon it has a significantly better performance

while maintains compactness, indicating the superiority of

the proposed CDFI design framework.

4.3. Qualitative evaluation

We demonstrate the visual comparisons on the DAVIS

dataset [47] in Figure 7. The first and third example con-

tain complex motion and occlusion, while the second ex-

ample involves many non-stationary finer details. Note

that AdaCoF+ [32] generates relatively blurry interpolation

frame for all these examples (see the motorbike, house and

swing stool). In contrast, our method built upon it predicts

sharper and more realistic results due to our newly added

FP module and PS mechanism. Furthermore, we compare

with BMBC [45], CAIN [16] and EDSC [11], which are

all newly developed within the year. In particular, similar

to AdaCoF, EDSC relies on the deformable separable con-

volution but estimates an extra mask to help with the image

synthesis. However, they are not as appealing as our method

on the provided examples. One can see that their interpola-

tions normally contain visible artifacts and are not capable

of preserving clear details. Note that BMBC [45] occasion-

ally synthesizes sharp results but is not as consistent as ours.

We conjecture that the additional bilateral cost volume in

BMBC benefits the intermediate motion estimations, which

can also be incorporated into our design. Recall that the

size of our model is the smallest among them, which again

confirms the advantage of the CDFI network design.

5. Conclusions

We presented a compression-driven network design for

frame interpolation (CDFI) that uses model compression as

a guide in determining an efficient architecture and then im-

proves upon it. For the first time, we considered the redun-

dancy in the existing methods. As an instance, we showed

that a much smaller AdaCoF model performs similarly as

the original one, and with simple modifications it is able

to outperform the baseline with a large extent and is also

superior against other state-of-the-art methods. We empha-

size that the optimization-based compression over a base-

line model does not rely on particular design of the base-

line. Therefore, we believe that our framework is generic to

be applied to other models and provides a new perspective

on developing efficient frame interpolation algorithms. In

future work, it will be of interest to construct a better asso-

ciation between the compression and design stages which

iteratively refines the underlying architecture.
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