
RepVGG: Making VGG-style ConvNets Great Again

Xiaohan Ding 1∗ Xiangyu Zhang 2 Ningning Ma 3

Jungong Han 4 Guiguang Ding 1† Jian Sun 2

1 Beijing National Research Center for Information Science and Technology (BNRist);

School of Software, Tsinghua University, Beijing, China
2 MEGVII Technology

3 Hong Kong University of Science and Technology
4 Computer Science Department, Aberystwyth University, SY23 3FL, UK

dxh17@mails.tsinghua.edu.cn zhangxiangyu@megvii.com nmaac@cse.ust.hk

jungonghan77@gmail.com dinggg@tsinghua.edu.cn sunjian@megvii.com

Abstract

We present a simple but powerful architecture of convo-

lutional neural network, which has a VGG-like inference-

time body composed of nothing but a stack of 3 × 3 con-

volution and ReLU, while the training-time model has a

multi-branch topology. Such decoupling of the training-

time and inference-time architecture is realized by a struc-

tural re-parameterization technique so that the model is

named RepVGG. On ImageNet, RepVGG reaches over 80%

top-1 accuracy, which is the first time for a plain model,

to the best of our knowledge. On NVIDIA 1080Ti GPU,

RepVGG models run 83% faster than ResNet-50 or 101%

faster than ResNet-101 with higher accuracy and show fa-

vorable accuracy-speed trade-off compared to the state-

of-the-art models like EfficientNet and RegNet. The code

and trained models are available at https://github.

com/megvii-model/RepVGG.

1. Introduction

A classic Convolutional Neural Network (ConvNet),

VGG [31], achieved huge success in image recognition with

a simple architecture composed of a stack of conv, ReLU,

and pooling. With Inception [33, 34, 32, 19], ResNet [12]

and DenseNet [17], a lot of research interests were shifted

to well-designed architectures, making the models more and

more complicated. Some recent architectures are based on

∗This work is supported by The National Key Research and Develop-

ment Program of China (No. 2017YFA0700800), the National Natural

Science Foundation of China (No.61925107, No.U1936202) and Beijing

Academy of Artificial Intelligence (BAAI). Xiaohan Ding is funded by the

Baidu Scholarship Program 2019. This work is done during Xiaohan Ding

and Ningning Ma’s internship at MEGVII Technology.
†Corresponding author.

300 600 900 1200 1500
speed (examples/second)

74

75

76

77

78

79

ac
cu

ra
cy

RepVGG
RegNetX
ResNet
ResNeXt
EfficientNet

200 300 400 500 600
speed (examples/second)

79.4

79.6

79.8

80.0

80.2

80.4

80.6

ac
cu

ra
cy RepVGG

RegNetX
EfficientNet

Figure 1: Top-1 accuracy on ImageNet vs. actual speed.

Left: lightweight and middleweight RepVGG and baselines

trained in 120 epochs. Right: heavyweight models trained

in 200 epochs. The speed is tested on the same 1080Ti with

a batch size of 128, full precision (fp32), single crop, and

measured in examples/second. The input resolution is 300

for EfficientNet-B3 [35] and 224 for the others.

automatic [44, 29, 23] or manual [28] architecture search,

or a searched compound scaling strategy [35].

Though many complicated ConvNets deliver higher ac-

curacy than the simple ones, the drawbacks are significant.

1) The complicated multi-branch designs (e.g., residual-

addition in ResNet and branch-concatenation in Inception)

make the model difficult to implement and customize, slow

down the inference and reduce the memory utilization. 2)

Some components (e.g., depthwise conv in Xception [3]

and MobileNets [16, 30] and channel shuffle in ShuffleNets

[24, 41]) increase the memory access cost and lack sup-

ports of various devices. With so many factors affecting

the inference speed, the amount of floating-point opera-

tions (FLOPs) does not precisely reflect the actual speed.

Though some novel models have lower FLOPs than the old-

fashioned ones like VGG and ResNet-18/34/50 [12], they

13733

+

ReLU

(B) RepVGG training

Identity

3×3 1×1

+

3×3 1×1

+

3×3 1×1

+

3×3 1×1

conv

(C) RepVGG inference

3×3

3×3

3×3

3×3

3×3

+

3×3

3×3

+

3×3

1×1

(A) ResNet

stride=2 stride=2 stride=2

Figure 2: Sketch of RepVGG architecture. RepVGG has

5 stages and conducts down-sampling via stride-2 convolu-

tion at the beginning of a stage. Here we only show the first

4 layers of a specific stage. As inspired by ResNet [12], we

also use identity and 1× 1 branches, but only for training.

may not run faster (Table. 4). Consequently, VGG and the

original versions of ResNets are still heavily used for real-

world applications in both academia and industry.

In this paper, we propose RepVGG, a VGG-style archi-

tecture which outperforms many complicated models (Fig.

1). RepVGG has the following advantages.

• The model has a VGG-like plain (a.k.a. feed-forward)

topology 1 without any branches, which means every

layer takes the output of its only preceding layer as

input and feeds the output into its only following layer.

• The model’s body uses only 3× 3 conv and ReLU.

• The concrete architecture (including the specific depth

and layer widths) is instantiated with no automatic

search [44], manual refinement [28], compound scal-

ing [35], nor other heavy designs.

It is challenging for a plain model to reach a comparable

level of performance as the multi-branch architectures. An

explanation is that a multi-branch topology, e.g., ResNet,

makes the model an implicit ensemble of numerous shal-

lower models [36], so that training a multi-branch model

avoids the gradient vanishing problem.

Since the benefits of multi-branch architecture are all

for training and the drawbacks are undesired for infer-

ence, we propose to decouple the training-time multi-

branch and inference-time plain architecture via structural

re-parameterization, which means converting the architec-

ture from one to another via transforming its parameters.

To be specific, a network structure is coupled with a set of

parameters, e.g., a conv layer is represented by a 4th-order

1In this paper, a network topology only focuses on how the components

connect to others, an architecture refers to the topology together with the

specification of components like depth and width, and a structure may refer

to any component or part of the architecture.

kernel tensor. If the parameters of a certain structure can be

converted into another set of parameters coupled by another

structure, we can equivalently replace the former with the

latter, so that the overall network architecture is changed.

Specifically, we construct the training-time RepVGG us-

ing identity and 1×1 branches, which is inspired by ResNet

but in a different way that the branches can be removed by

structural re-parameterization (Fig. 2,4). After training, we

perform the transformation with simple algebra, as an iden-

tity branch can be regarded as a degraded 1×1 conv, and the

latter can be further regarded as a degraded 3 × 3 conv, so

that we can construct a single 3 × 3 kernel with the trained

parameters of the original 3 × 3 kernel, identity and 1 × 1
branches and batch normalization (BN) [19] layers. Conse-

quently, the transformed model has a stack of 3 × 3 conv

layers, which is saved for test and deployment.

Notably, the body of an inference-time RepVGG only

has one single type of operator: 3 × 3 conv followed by

ReLU, which makes RepVGG fast on generic computing

devices like GPUs. Even better, RepVGG allows for spe-

cialized hardware to achieve even higher speed because

given the chip size and power consumption, the fewer types

of operators we require, the more computing units we can

integrate onto the chip. Consequently, an inference chip

specialized for RepVGG can have an enormous number of

3×3-ReLU units and fewer memory units (because the plain

topology is memory-economical, as shown in Fig. 3). Our

contributions are summarized as follows.

• We propose RepVGG, a simple architecture with

favorable speed-accuracy trade-off compared to the

state-of-the-arts.

• We propose to use structural re-parameterization to de-

couple a training-time multi-branch topology with an

inference-time plain architecture.

• We show the effectiveness of RepVGG in image classi-

fication and semantic segmentation, and the efficiency

and ease of implementation.

2. Related Work

2.1. From Single­path to Multi­branch

After VGG [31] raised the top-1 accuracy of ImageNet

classification to above 70%, there have been many inno-

vations in making ConvNets complicated for high perfor-

mance, e.g., the contemporary GoogLeNet [33] and later

Inception models [34, 32, 19] adopted elaborately designed

multi-branch architectures, ResNet [12] proposed a sim-

plified two-branch architecture, and DenseNet [17] made

the topology more complicated by connecting lower-level

layers with numerous higher-level ones. Neural architec-

ture search (NAS) [44, 29, 23, 35] and manual designing

space design [28] can generate ConvNets with higher per-

formance but at the costs of vast computing resources or

13734

manpower. Some large versions of NAS-generated models

are even not trainable on ordinary GPUs, hence limiting the

applications. Except for the inconvenience of implemen-

tation, the complicated models may reduce the degree of

parallelism [24] hence slow down the inference.

2.2. Effective Training of Single­path Models

There have been some attempts to train ConvNets with-

out branches. However, the prior works mainly sought to

make the very deep models converge with reasonable ac-

curacy, but not achieve better performance than the com-

plicated models. Consequently, the methods and resul-

tant models were neither simple nor practical. An initial-

ization method [37] was proposed to train extremely deep

plain ConvNets. With a mean-field-theory-based scheme,

10,000-layer networks were trained over 99% accuracy on

MNIST and 82% on CIFAR-10. Though the models were

not practical (even LeNet-5 [21] can reach 99.3% accuracy

on MNIST and VGG-16 can reach above 93% on CIFAR-

10), the theoretical contributions were insightful. A recent

work [25] combined several techniques including Leaky

ReLU, max-norm and careful initialization. On ImageNet,

it showed that a plain ConvNet with 147M parameters could

reach 74.6% top-1 accuracy, which was 2% lower than its

reported baseline (ResNet-101, 76.6%, 45M parameters).

Notably, this paper is not merely a demonstration that

plain models can converge reasonably well, and does not

intend to train extremely deep ConvNets like ResNets.

Rather, we aim to build a simple model with reasonable

depth and favorable accuracy-speed trade-off, which can

be simply implemented with the most common components

(e.g., regular conv and BN) and simple algebra.

2.3. Model Re­parameterization

DiracNet [39] is a re-parameterization method related

to ours. It builds deep plain models by encoding the ker-

nel of a conv layer as Ŵ = diag(a)I + diag(b)Wnorm,

where Ŵ is the eventual weight used for convolution (a 4th-

order tensor viewed as a matrix), a and b are learned vec-

tors, and Wnorm is the normalized learnable kernel. Com-

pared to ResNets with comparable amount of parameters,

the top-1 accuracy of DiracNet is 2.29% lower on CIFAR-

100 (78.46% vs. 80.75%) and 0.62% lower on ImageNet

(72.21% of DiracNet-34 vs. 72.83% of ResNet-34). Dirac-

Net differs from our method in two aspects. 1) The training-

time behavior of RepVGG is implemented by the actual

dataflow through a concrete structure which can be later

converted into another, while DiracNet merely uses an-

other mathematical expression of conv kernels for easier

optimization. In other words, a training-time RepVGG

is a real multi-branch model, but a DiracNet is not. 2)

The performance of a DiracNet is higher than a normally

parameterized plain model but lower than a comparable

ResNet, while RepVGG models outperform ResNets by a

large margin. Asym Conv Block (ACB) [10], DO-Conv [1]

and ExpandNet [11] can also be viewed as structural re-

parameterization in the sense that they convert a block into

a conv. Compared to our method, the difference is that they

are designed for component-level improvements and used

as a drop-in replacement for conv layers in any architec-

ture, while our structural re-parameterization is critical for

training plain ConvNets, as shown in Sect. 4.2.

2.4. Winograd Convolution

RepVGG uses only 3 × 3 conv because it is highly op-

timized by some modern computing libraries like NVIDIA

cuDNN [2] and Intel MKL [18] on GPU and CPU. Table. 1

shows the theoretical FLOPs, actual running time and com-

putational density (measured in Tera FLoating-point Opera-

tions Per Second, TFLOPS) 2 tested with cuDNN 7.5.0 on a

1080Ti GPU. The theoretical computational density of 3×3
conv is around 4× as the others, suggesting the total theo-

retical FLOPs is not a comparable proxy for the actual speed

among different architectures. Winograd [20] is a classic al-

gorithm for accelerating 3× 3 conv (only if the stride is 1),

which has been well supported (and enabled by default) by

libraries like cuDNN and MKL. For example, with the stan-

dard F (2 × 2, 3 × 3) Winograd, the amount of multiplica-

tions (MULs) of a 3×3 conv is reduced to 4
9 of the original.

Since the multiplications are much more time-consuming

than additions, we count the MULs to measure the com-

putational costs with Winograd support (denoted by Wino

MULs in Table. 4, 5). Note that the specific computing li-

brary and hardware determine whether to use Winograd for

each operator because small-scale convolutions may not be

accelerated due to the memory overhead. 3

3. Building RepVGG via Structural Re-param

3.1. Simple is Fast, Memory­economical, Flexible

There are at least three reasons for using simple Con-

vNets: they are fast, memory-economical and Flexible.

Fast Many recent multi-branch architectures have

lower theoretical FLOPs than VGG but may not run faster.

For example, VGG-16 has 8.4× FLOPs as EfficientNet-B3

[35] but runs 1.8× faster on 1080Ti (Table. 4), which means

the computational density of the former is 15× as the latter.

Except for the acceleration brought by Winograd conv, the

discrepancy between FLOPs and speed can be attributed to

2As a common practice, we count a multiply-add as a single operation

when counting the theoretical FLOPs, but hardware vendors like NVIDIA

usually count it as two operations when reporting the TFLOPS.
3Our results are manually tested operator-by-operator with cuDNN

7.5.0, 1080Ti. For each stride-1 3 × 3 conv, we test its time usage along

with a stride-2 counterpart of the same FLOPs. We assume the former uses

F (2 × 2, 3 × 3) Winograd if the latter runs significantly slower. Such a

testing method is approximate hence the results are for reference only.

13735

Table 1: Speed test with varying kernel size and batch size

= 32, input channels = output channels = 2048, resolution =

56×56, stride = 1 on NVIDIA 1080Ti. The results of time

usage are average of 10 runs after warming up the hardware.

Kernel

size

Theoretical

FLOPs (B)

Time

usage (ms)

Theoretical

TFLOPS

1× 1 420.9 84.5 9.96

3× 3 3788.1 198.8 38.10

5× 5 10522.6 2092.5 10.57

7× 7 20624.4 4394.3 9.38

two important factors that have considerable affection on

speed but are not taken into account by FLOPs: the mem-

ory access cost (MAC) and degree of parallelism [24]. For

example, though the required computations of branch addi-

tion or concatenation are negligible, the MAC is significant.

Moreover, MAC constitutes a large portion of time usage

in groupwise convolution. On the other hand, a model with

high degree of parallelism could be much faster than an-

other one with low degree of parallelism, under the same

FLOPs. As multi-branch topology is widely adopted in

Inception and auto-generated architectures, multiple small

operators are used instead of a few large ones. A prior

work [24] reported that the number of fragmented operators

(i.e. the number of individual conv or pooling operations

in one building block) in NASNET-A [43] is 13, which is

unfriendly to devices with strong parallel computing pow-

ers like GPU and introduces extra overheads such as kernel

launching and synchronization. In contrast, this number is

2 or 3 in ResNets, and we make it 1: a single conv.

Memory-economical The multi-branch topology is

memory-inefficient because the results of every branch need

to be kept until the addition or concatenation, significantly

raising the peak value of memory occupation. Fig. 3 shows

that the input to a residual block need to be kept until the

addition. Assuming the block maintains the feature map

size, the peak value of extra memory occupation is 2× as

the input. In contrast, a plain topology allows the memory

occupied by the inputs to a specific layer to be immediately

released when the operation is finished. When designing

specialized hardware, a plain ConvNet allows deep mem-

ory optimizations and reduces the costs of memory units so

that we can integrate more computing units onto the chip.

Flexible The multi-branch topology imposes con-

straints on the architectural specification. For example,

ResNet requires the conv layers to be organized as resid-

ual blocks, which limits the flexibility because the last conv

layers of every residual block have to produce tensors of the

same shape, or the shortcut addition will not make sense.

Even worse, multi-branch topology limits the application of

channel pruning [22, 14], which is a practical technique to

remove some unimportant channels, and some methods can

optimize the model structure by automatically discovering

(A) Residual (B) Plain

1×memory

2× memory

1× memory

1× memory

1× memory

1× memory2× memory

3×3

+

3×3

3×3

3×3

1× memory

Figure 3: Peak memory occupation in residual and plain

model. If the residual block maintains the size of feature

map, the peak value of extra memory occupied by feature

maps will be 2× as the input. The memory occupied by the

parameters is small compared to the features hence ignored.

the appropriate width of each layer [8]. However, multi-

branch models make pruning tricky and result in significant

performance degradation or low acceleration ratio [7, 22, 9].

In contrast, a plain architecture allows us to freely configure

every conv layer according to our requirements and prune to

obtain a better performance-efficiency trade-off.

3.2. Training­time Multi­branch Architecture

Plain ConvNets have many strengths but one fatal weak-

ness: the poor performance. For example, with mod-

ern components like BN [19], a VGG-16 can reach over

72% top-1 accuracy on ImageNet, which seems outdated.

Our structural re-parameterization method is inspired by

ResNet, which explicitly constructs a shortcut branch to

model the information flow as y = x + f(x) and uses a

residual block to learn f . When the dimensions of x and

f(x) do not match, it becomes y = g(x)+f(x), where g(x)
is a convolutional shortcut implemented by a 1×1 conv. An

explanation for the success of ResNets is that such a multi-

branch architecture makes the model an implicit ensemble

of numerous shallower models [36]. Specifically, with n

blocks, the model can be interpreted as an ensemble of 2n

models, since every block branches the flow into two paths.

Since the multi-branch topology has drawbacks for in-

ference but the branches seem beneficial to training [36],

we use multiple branches to make an only-training-time en-

semble of numerous models. To make most of the mem-

bers shallower or simpler, we use ResNet-like identity (only

if the dimensions match) and 1 × 1 branches so that the

training-time information flow of a building block is y =
x + g(x) + f(x). We simply stack several such blocks to

construct the training-time model. From the same perspec-

tive as [36], the model becomes an ensemble of 3n members

with n such blocks.

3.3. Re­param for Plain Inference­time Model

In this subsection, we describe how to convert a trained

block into a single 3× 3 conv layer for inference. Note that

we use BN in each branch before the addition (Fig. 4). For-

mally, we use W(3) ∈ R
C2×C1×3×3 to denote the kernel

of a 3 × 3 conv layer with C1 input channels and C2 out-

13736

put channels, and W(1) ∈ R
C2×C1 for the kernel of 1 × 1

branch. We use µ(3),σ(3),γ(3),β(3) as the accumulated

mean, standard deviation and learned scaling factor and bias

of the BN layer following 3× 3 conv, µ(1),σ(1),γ(1),β(1)

for the BN following 1 × 1 conv, and µ(0),σ(0),γ(0),β(0)

for the identity branch. Let M(1) ∈ R
N×C1×H1×W1 ,

M(2) ∈ R
N×C2×H2×W2 be the input and output, respec-

tively, and ∗ be the convolution operator. If C1 = C2, H1 =
H2,W1 = W2, we have

M(2) = bn(M(1) ∗W(3),µ(3),σ(3),γ(3),β(3))

+ bn(M(1) ∗W(1),µ(1),σ(1),γ(1),β(1))

+ bn(M(1),µ(0),σ(0),γ(0),β(0)) .

(1)

Otherwise, we simply use no identity branch, hence the

above equation only has the first two terms. Here bn is the

inference-time BN function, formally, ∀1 ≤ i ≤ C2,

bn(M,µ,σ,γ,β):,i,:,: = (M:,i,:,: − µi)
γi

σi

+ βi . (2)

We first convert every BN and its preceding conv layer

into a conv with a bias vector. Let {W′,b′} be the kernel

and bias converted from {W,µ,σ,γ,β}, we have

W′

i,:,:,: =
γi

σi

Wi,:,:,: , b
′

i = −
µiγi

σi

+ βi . (3)

Then it is easy to verify that ∀1 ≤ i ≤ C2,

bn(M ∗W,µ,σ,γ,β):,i,:,: = (M ∗W′):,i,:,: + b
′

i . (4)

This transformation also applies to the identity branch

because an identity can be viewed as a 1 × 1 conv with an

identity matrix as the kernel. After such transformations,

we will have one 3× 3 kernel, two 1× 1 kernels, and three

bias vectors. Then we obtain the final bias by adding up the

three bias vectors, and the final 3 × 3 kernel by adding the

1×1 kernels onto the central point of 3×3 kernel, which can

be easily implemented by first zero-padding the two 1 × 1
kernels to 3 × 3 and adding the three kernels up, as shown

in Fig. 4. Note that the equivalence of such transformations

requires the 3 × 3 and 1 × 1 layer to have the same stride,

and the padding configuration of the latter shall be one pixel

less than the former. For example, for a 3×3 layer that pads

the input by one pixel, which is the most common case, the

1× 1 layer should have padding = 0.

3.4. Architectural Specification

Table. 2 shows the specification of RepVGG including

the depth and width. RepVGG is VGG-style in the sense

that it adopts a plain topology and heavily uses 3× 3 conv,

but it does not use max pooling like VGG because we desire

the body to have only one type of operator. We arrange the

3×3 layers into 5 stages, and the first layer of a stage down-

samples with the stride = 2. For image classification, we use

3×3 1×1

(B) Perspective of parameter

BN parameters

conv parameters

(A) Perspective of structure

+

3×3 3×3

+

3×3

3×3

μ, σ, γ, β

b

conv layer BN layer a parameter a zero value

Figure 4: Structural re-parameterization of a RepVGG

block. For the ease of visualization, we assume C2 = C1 =
2, thus the 3×3 layer has four 3×3 matrices and the kernel

of 1× 1 layer is a 2× 2 matrix.

global average pooling followed by a fully-connected layer

as the head. For other tasks, the task-specific heads can be

used on the features produced by any layer.

We decide the numbers of layers of each stage follow-

ing three simple guidelines. 1) The first stage operates with

large resolution, which is time-consuming, so we use only

one layer for lower latency. 2) The last stage shall have

more channels, so we use only one layer to save the param-

eters. 3) We put the most layers into the second last stage

(with 14 × 14 output resolution on ImageNet), following

ResNet and its recent variants [12, 28, 38] (e.g., ResNet-101

uses 69 layers in its 14 × 14-resolution stage). We let the

five stages have 1, 2, 4, 14, 1 layers respectively to construct

an instance named RepVGG-A. We also build a deeper

RepVGG-B, which has 2 more layers in stage2, 3 and 4.

We use RepVGG-A to compete against other lightweight

and middleweight models including ResNet-18/34/50, and

RepVGG-B against the high-performance ones.

We determine the layer width by uniformly scaling the

classic width setting of [64, 128, 256, 512] (e.g., VGG and

ResNets). We use multiplier a to scale the first four stages

and b for the last stage, and usually set b > a because we

desire the last layer to have richer features for the classifi-

cation or other down-stream tasks. Since RepVGG has only

one layer in the last stage, a larger b does not significantly

increase the latency nor the amount of parameters. Specifi-

cally, the width of stage2, 3, 4, 5 is [64a, 128a, 256a, 512b],
respectively. To avoid large-scale conv on high-resolution

feature maps, we scale down stage1 if a < 1 but do not

13737

Table 2: Architectural specification of RepVGG. Here 2 ×
64a means stage2 has 2 layers each with 64a channels.

Stage Output size RepVGG-A RepVGG-B

1 112× 112 1× min(64, 64a) 1× min(64, 64a)
2 56× 56 2× 64a 4× 64a
3 28× 28 4× 128a 6× 128a
4 14× 14 14× 256a 16× 256a
5 7× 7 1× 512b 1× 512b

scale it up, so that the width of stage1 is min(64, 64a).
To further reduce the parameters and computations, we

may optionally interleave groupwise 3× 3 conv layers with

dense ones to trade accuracy for efficiency. Specifically, we

set the number of groups g for the 3rd, 5th, 7th, ..., 21st

layer of RepVGG-A and the additional 23rd, 25th and 27th

layers of RepVGG-B. For the simplicity, we set g as 1, 2, or

4 globally for such layers without layer-wise tuning. We do

not use adjacent groupwise conv layers because that would

disable the inter-channel information exchange and bring a

side effect [41]: outputs from a certain channel would be

derived from only a small fraction of input channels. Note

that the 1×1 branch shall have the same g as the 3×3 conv.

4. Experiments

We compare RepVGG with the baselines on ImageNet,

justify the significance of structural re-parameterization by

a series of ablation studies and comparisons, and verify the

generalization performance on semantic segmentation [42].

4.1. RepVGG for ImageNet Classification

We compare RepVGG with the classic and state-of-the-

art models including VGG-16 [31], ResNet [12], ResNeXt

[38], EfficientNet [35], and RegNet [28] on ImageNet-1K

[6], which comprises 1.28M images for training and 50K

for validation. We use EfficientNet-B0/B3 and RegNet-

3.2GF/12GF as the representatives for middleweight and

heavyweight state-of-the-art models, respectively. We vary

the multipliers a and b to generate a series of RepVGG mod-

els to compare against the baselines (Table. 3).

We first compare RepVGG against ResNets [12], which

are the most common benchmarks. We use RepVGG-

A0/A1/A2 for the comparisons with ResNet-18/34/50, re-

spectively. To compare against the larger models, we con-

struct the deeper RepVGG-B0/B1/B2/B3 with increasing

width. For those RepVGG models with interleaved group-

wise layers, we postfix g2/g4 to the model name.

For training the lightweight and middleweight models,

we only use the simple data augmentation pipeline includ-

ing random cropping and left-right flipping, following the

official PyTorch example [27]. We use a global batch size

of 256 on 8 GPUs, a learning rate initialized as 0.1 and

cosine annealing for 120 epochs, standard SGD with mo-

mentum coefficient of 0.9 and weight decay of 10−4 on the

Table 3: RepVGG models defined by multipliers a and b.

Name Layers of each stage a b

RepVGG-A0 1, 2, 4, 14, 1 0.75 2.5

RepVGG-A1 1, 2, 4, 14, 1 1 2.5

RepVGG-A2 1, 2, 4, 14, 1 1.5 2.75

RepVGG-B0 1, 4, 6, 16, 1 1 2.5

RepVGG-B1 1, 4, 6, 16, 1 2 4

RepVGG-B2 1, 4, 6, 16, 1 2.5 5

RepVGG-B3 1, 4, 6, 16, 1 3 5

kernels of conv and fully-connected layers. For the heavy-

weight models including RegNetX-12GF, EfficientNet-B3

and RepVGG-B3, we use 5-epoch warmup, cosine learn-

ing rate annealing for 200 epochs, label smoothing [34]

and mixup [40] (following [13]), and a data augmentation

pipeline of Autoaugment [5], random cropping and flipping.

RepVGG-B2 and its g2/g4 variants are trained in both set-

tings. We test the speed of every model with a batch size of

128 on a 1080Ti GPU 4 by first feeding 50 batches to warm

the hardware up, then 50 batches with time usage recorded.

For the fair comparison, we test all the models on the same

GPU, and all the conv-BN sequences of the baselines are

also converted into a conv with bias (Eq. 3).

Table. 4 shows the favorable accuracy-speed trade-

off of RepVGG: RepVGG-A0 is 1.25% and 33% better

than ResNet-18 in terms of accuracy and speed, RepVGG-

A1 is 0.29%/64% better than ResNet-34, RepVGG-A2 is

0.17%/83% better than ResNet-50. With interleaved group-

wise layers (g2/g4), the RepVGG models are further accel-

erated with reasonable accuracy decrease: RepVGG-B1g4

is 0.37%/101% better than ResNet-101, and RepVGG-

B1g2 is impressively 2.66× as fast as ResNet-152 with the

same accuracy. Though the number of parameters is not our

primary concern, all the above RepVGG models are more

parameter-efficient than ResNets. Compared to the clas-

sic VGG-16, RepVGG-B2 has only 58% parameters, runs

10% faster and shows 6.57% higher accuracy. Compared

to the highest-accuracy (74.5%) VGG to the best of our

knowledge trained with RePr [26] (a pruning-based training

method), RepVGG-B2 outperforms by 4.28% in accuracy.

Compared with the state-of-the-art baselines, RepVGG

also shows favorable performance, considering its simplic-

ity: RepVGG-A2 is 1.37%/59% better than EfficientNet-

B0, RepVGG-B1 performs 0.39% better than RegNetX-

3.2GF and runs slightly faster. Notably, RepVGG mod-

els reach above 80% accuracy with 200 epochs (Table. 5),

which is the first time for plain models to catch up with the

state-of-the-arts, to the best of our knowledge. Compared

to RegNetX-12GF, RepVGG-B3 runs 31% faster, which is

impressive considering that RepVGG does not require a lot

4We use such a batch size because it is large enough to realize 100%

GPU utilization of every tested model to simulate the actual application

scenario pursuing the maximum QPS (Queries Per Second), and our GPU

memory is insufficient for EfficientNet-B3 with a batch size of 256.

13738

Table 4: Results trained on ImageNet with simple data aug-

mentation in 120 epochs. The speed is tested on 1080Ti

with a batch size of 128, full precision (fp32), and mea-

sured in examples/second. We count the theoretical FLOPs

and Wino MULs as described in Sect. 2.4. The baselines

are our implementations with the same training settings.

Model
Top-1

acc
Speed

Params

(M)

Theo

FLOPs

(B)

Wino

MULs

(B)

RepVGG-A0 72.41 3256 8.30 1.4 0.7

ResNet-18 71.16 2442 11.68 1.8 1.0

RepVGG-A1 74.46 2339 12.78 2.4 1.3

RepVGG-B0 75.14 1817 14.33 3.1 1.6

ResNet-34 74.17 1419 21.78 3.7 1.8

RepVGG-A2 76.48 1322 25.49 5.1 2.7

RepVGG-B1g4 77.58 868 36.12 7.3 3.9

EfficientNet-B0 75.11 829 5.26 0.4 -

RepVGG-B1g2 77.78 792 41.36 8.8 4.6

ResNet-50 76.31 719 25.53 3.9 2.8

RepVGG-B1 78.37 685 51.82 11.8 5.9

RegNetX-3.2GF 77.98 671 15.26 3.2 2.9

RepVGG-B2g4 78.50 581 55.77 11.3 6.0

ResNeXt-50 77.46 484 24.99 4.2 4.1

RepVGG-B2 78.78 460 80.31 18.4 9.1

ResNet-101 77.21 430 44.49 7.6 5.5

VGG-16 72.21 415 138.35 15.5 6.9

ResNet-152 77.78 297 60.11 11.3 8.1

ResNeXt-101 78.42 295 44.10 8.0 7.9

Table 5: Results on ImageNet trained in 200 epochs with

Autoaugment [5], label smoothing and mixup.

Model Acc Speed Params FLOPs MULs

RepVGG-B2g4 79.38 581 55.77 11.3 6.0

RepVGG-B3g4 80.21 464 75.62 16.1 8.4

RepVGG-B3 80.52 363 110.96 26.2 12.9

RegNetX-12GF 80.55 277 46.05 12.1 10.9

EfficientNet-B3 79.31 224 12.19 1.8 -

of manpower to refine the design space like RegNet [28],

and the architectural hyper-parameters are set casually.

As two proxies of computational complexity, we count

the theoretical FLOPs and Wino MULs as described in Sect.

2.4. For example, we found out that none of the conv in

EfficientNet-B0/B3 is accelerated by Winograd algorithm.

Table. 4 shows Wino MULs is a better proxy on GPU, e.g.,

ResNet-152 runs slower than VGG-16 with lower theoret-

ical FLOPs but higher Wino MULs. Of course, the actual

speed should always be the golden standard.

4.2. Structural Re­parameterization is the Key

In this subsection, we verify the significance of our struc-

tural re-parameterization technique (Table. 6). All the

models are trained from scratch for 120 epochs with the

same simple training settings described above. First, we

conduct ablation studies by removing the identity and/or

1 × 1 branch from every block of RepVGG-B0. With both

branches removed, the training-time model degrades into

an ordinary plain model and only achieves 72.39% accu-

racy. The accuracy is lifted to 73.15% with 1×1 or 74.79%

with identity. The accuracy of the full featured RepVGG-

B0 is 75.14%, which is 2.75% higher than the ordinary plain

model. Seen from the inference speed of the training-time

(i.e., not yet converted) models, removing the identity and

1×1 branches via structural re-parameterization brings sig-

nificant speedup.

Then we construct a series of variants and baselines for

comparison on RepVGG-B0 (Table. 7). Again, all the mod-

els are trained from scratch in 120 epochs.

• Identity w/o BN removes the BN in identity branch.

• Post-addition BN removes the BN layers in the three

branches and appends a BN layer after the addition. In

other words, the position of BN is changed from pre-

addition to post-addition.

• +ReLU in branches inserts ReLU into each branch

(after BN and before addition). Since such a block

cannot be converted into a single conv layer, it is of

no practical use, and we merely desire to see whether

more nonlinearity will bring higher performance.

• DiracNet [39] adopts a well-designed re-

parameterization of conv kernels, as introduced

in Sect. 2.2. We use its official PyTorch code to build

the layers to replace the original 3× 3 conv.

• Trivial Re-param is a simpler re-parameterization of

conv kernels by directly adding an identity kernel to

the 3× 3 kernel, which can be viewed a degraded ver-

sion of DiracNet (Ŵ = I +W [39]).

• Asymmetric Conv Block (ACB) [10] can be viewed

as another form of structural re-parameterization. We

compare with ACB to see whether the improvement

of our structural re-parameterization is due to the

component-level over-parameterization (i.e., the extra

parameters making every 3× 3 conv stronger).

• Residual Reorg builds each stage by re-organizing it

in a ResNet-like manner (2 layers per block). Specifi-

cally, the resultant model has one 3×3 layer in the first

and last stages and 2, 3, 8 residual blocks in stage2, 3,

4, and uses shortcuts just like ResNet-18/34.

We reckon the superiority of structural re-param over

DiractNet and Trivial Re-param lies in the fact that the for-

mer relies on the actual dataflow through a concrete struc-

ture with nonlinear behavior (BN), while the latter merely

uses another mathematical expression of conv kernels. The

former “re-param” means “using the params of a struc-

ture to parameterize another structure”, but the latter means

“computing the params first with another set of params, then

using them for other computations”. With nonlinear compo-

nents like a training-time BN, the former cannot be approxi-

mated by the latter. As evidences, the accuracy is decreased

13739

Table 6: Ablation studies with 120 epochs on RepVGG-B0.

The inference speed w/o re-param (examples/s) is tested

with the models before conversion (batch size=128). Note

again that all the models have the same final structure.

Identity

branch

1× 1
branch

Accuracy
Inference speed

w/o re-param

72.39 1810

X 74.79 1569

X 73.15 1230

X X 75.14 1061

Table 7: Comparison with variants and baselines on

RepVGG-B0 trained in 120 epochs.

Variant and baseline Accuracy

Identity w/o BN 74.18

Post-addition BN 73.52

Full-featured reparam 75.14

+ReLU in branch 75.69

DiracNet [39] 73.97

Trivial Re-param 73.51

ACB [10] 73.58

Residual Reorg 74.56

by removing the BN and improved by adding ReLU. In

other words, though a RepVGG block can be equivalently

converted into a single conv for inference, the inference-

time equivalence does not imply the training-time equiva-

lence, as we cannot construct a conv layer to have the same

training-time behavior as a RepVGG block.

The comparison with ACB suggests the success of

RepVGG should not be simply attributed to the effect of

over-parameterization of every component, since ACB uses

more parameters but yields inferior performance. As a dou-

ble check, we replace every 3 × 3 conv of ResNet-50 with

a RepVGG block and train from scratch for 120 epochs.

The accuracy is 76.34%, which is merely 0.03% higher

than the ResNet-50 baseline, suggesting that RepVGG-

style structural re-parameterization is not a generic over-

parameterization technique, but a methodology critical for

training powerful plain ConvNets. Compared to Residual

Reorg, a real residual network with the same number of

3 × 3 conv and additional shortcuts for both training and

inference, RepVGG outperforms by 0.58%, which is not

surprising since RepVGG has far more branches. For ex-

ample, the branches make stage4 of RepVGG an ensemble

of 2 × 315 = 2.8 × 107 models [36], while the number for

Residual Reorg is 28 = 256.

4.3. Semantic Segmentation

We verify the generalization performance of ImageNet-

pretrained RepVGG for semantic segmentation on

Cityscapes [4] (Table. 8). We use the PSPNet [42]

framework, a poly learning rate policy with base of 0.01

and power of 0.9, weight decay of 10−4 and a global

Table 8: Semantic segmentation on Cityscapes [4] tested

on the validation subset. The speed (examples/second) is

tested with a batch size of 16, full precision (fp32), and in-

put resolution of 713×713 on the same 1080Ti GPU.

Backbone Mean IoU Mean pixel acc Speed

RepVGG-B1g2-fast 78.88 96.19 10.9

ResNet-50 77.17 95.99 10.4

RepVGG-B1g2 78.70 96.27 8.0

RepVGG-B2-fast 79.52 96.36 6.9

ResNet-101 78.51 96.30 6.7

RepVGG-B2 80.57 96.50 4.5

batch size of 16 on 8 GPUs for 40 epochs. For the fair

comparison, we only change the ResNet-50/101 backbone

to RepVGG-B1g2/B2 and keep other settings identical.

Following the official PSPNet-50/101 [42] which uses

dilated conv in the last two stages of ResNet-50/101,

we also make all the 3 × 3 conv layers in the last two

stages of RepVGG-B1g2/B2 dilated. However, the current

inefficient implementation of 3 × 3 dilated conv (though

the FLOPs is the same as 3 × 3 regular conv) slows down

the inference. For the ease of comparison, we build another

two PSPNets (denoted by fast) with dilation only in the last

5 layers (i.e., the last 4 layers of stage4 and the only layer

of stage5), so that the PSPNets run slightly faster than the

ResNet-50/101-backbone counterparts. RepVGG back-

bones outperform ResNet-50 and ResNet-101 by 1.71%

and 1.01% respectively in mean IoU with higher speed, and

RepVGG-B1g2-fast outperforms the ResNet-101 backbone

by 0.37 in mIoU and runs 62% faster. Interestingly, dilation

seems more effective for larger models, as using more

dilated conv layers does not improve the performance

compared to RepVGG-B1g2-fast, but raises the mIoU of

RepVGG-B2 by 1.05% with reasonable slowdown.

4.4. Limitations

RepVGG models are fast, simple and practical ConvNets

designed for the maximum speed on GPU and specialized

hardware, less concerning the number of parameters. They

are more parameter-efficient than ResNets but may be less

favored than the mobile-regime models like MobileNets

[16, 30, 15] and ShuffleNets [41, 24] for low-power devices.

5. Conclusion

We proposed RepVGG, a simple architecture with a

stack of 3× 3 conv and ReLU, which is especially suitable

for GPU and specialized inference chips. With our struc-

tural re-parameterization method, it reaches over 80% top-1

accuracy on ImageNet and shows favorable speed-accuracy

trade-off compared to the state-of-the-art models.

13740

References

[1] Jinming Cao, Yangyan Li, Mingchao Sun, Ying Chen, Dani

Lischinski, Daniel Cohen-Or, Baoquan Chen, and Changhe

Tu. Do-conv: Depthwise over-parameterized convolutional

layer. arXiv preprint arXiv:2006.12030, 2020. 3

[2] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,

Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan

Shelhamer. cudnn: Efficient primitives for deep learning.

arXiv preprint arXiv:1410.0759, 2014. 3

[3] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1251–1258, 2017. 1

[4] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In 2016

IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,

pages 3213–3223. IEEE Computer Society, 2016. 8

[5] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

strategies from data. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 113–123,

2019. 6, 7

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 248–255.

IEEE, 2009. 6

[7] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong

Han. Centripetal sgd for pruning very deep convolutional

networks with complicated structure. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4943–4953, 2019. 4

[8] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han,

and Chenggang Yan. Approximated oracle filter pruning for

destructive cnn width optimization. In International Confer-

ence on Machine Learning, pages 1607–1616, 2019. 4

[9] Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng

Tang. Auto-balanced filter pruning for efficient convolu-

tional neural networks. In Thirty-Second AAAI Conference

on Artificial Intelligence, 2018. 4

[10] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong

Han. Acnet: Strengthening the kernel skeletons for power-

ful cnn via asymmetric convolution blocks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1911–1920, 2019. 3, 7, 8

[11] Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann.

Expandnets: Linear over-parameterization to train compact

convolutional networks. Advances in Neural Information

Processing Systems, 33, 2020. 3

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 2, 5, 6

[13] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-

yuan Xie, and Mu Li. Bag of tricks for image classification

with convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 558–567, 2019. 6

[14] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In International

Conference on Computer Vision (ICCV), volume 2, page 6,

2017. 4

[15] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V.

Le, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh

Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and

Yukun Zhu. Searching for mobilenetv3. In 2019 IEEE/CVF

International Conference on Computer Vision, ICCV 2019,

Seoul, Korea (South), October 27 - November 2, 2019, pages

1314–1324. IEEE, 2019. 8

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 1, 8

[17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July

21-26, 2017, pages 2261–2269. IEEE Computer Society,

2017. 1, 2

[18] Intel. Intel mkl. https://software.intel.com/

content/www/us/en/develop/tools/math-

kernel-library.html, 2020. 3

[19] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International Conference on Machine Learn-

ing, pages 448–456, 2015. 1, 2, 4

[20] Andrew Lavin and Scott Gray. Fast algorithms for convo-

lutional neural networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4013–4021, 2016. 3

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

3

[22] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016. 4

[23] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 19–34, 2018. 1, 2

[24] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European conference on

computer vision (ECCV), pages 116–131, 2018. 1, 3, 4, 8

[25] Oyebade K Oyedotun, Djamila Aouada, Björn Ottersten,

et al. Going deeper with neural networks without skip con-

nections. In 2020 IEEE International Conference on Image

Processing (ICIP), pages 1756–1760. IEEE, 2020. 3

13741

[26] Aaditya Prakash, James A. Storer, Dinei A. F. Florêncio, and

Cha Zhang. Repr: Improved training of convolutional fil-

ters. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2019, Long Beach, CA, USA, June 16-

20, 2019, pages 10666–10675. Computer Vision Foundation

/ IEEE, 2019. 6

[27] PyTorch. Pytorch example. https://github.com/

pytorch/examples/blob/master/imagenet/

main.py, 2019. 6

[28] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,

Kaiming He, and Piotr Dollár. Designing network design

spaces. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 10428–

10436, 2020. 1, 2, 5, 6, 7

[29] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789, 2019. 1, 2

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018. 1, 8

[31] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1, 2, 6

[32] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In Thirty-first

AAAI conference on artificial intelligence, 2017. 1, 2

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

1, 2

[34] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2818–2826, 2016. 1, 2, 6

[35] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 1, 2, 3, 6

[36] Andreas Veit, Michael J Wilber, and Serge Belongie. Resid-

ual networks behave like ensembles of relatively shallow net-

works. In Advances in neural information processing sys-

tems, pages 550–558, 2016. 2, 4, 8

[37] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein,

Samuel Schoenholz, and Jeffrey Pennington. Dynamical

isometry and a mean field theory of cnns: How to train

10,000-layer vanilla convolutional neural networks. In In-

ternational Conference on Machine Learning, pages 5393–

5402, 2018. 3

[38] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1492–1500,

2017. 5, 6

[39] Sergey Zagoruyko and Nikos Komodakis. Diracnets: Train-

ing very deep neural networks without skip-connections.

arXiv preprint arXiv:1706.00388, 2017. 3, 7, 8

[40] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. arXiv preprint arXiv:1710.09412, 2017. 6

[41] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

6848–6856, 2018. 1, 6, 8

[42] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In 2017

IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,

pages 6230–6239. IEEE Computer Society, 2017. 6, 8

[43] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016. 4

[44] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018. 1, 2

13742

