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Abstract

Video understanding calls for a model to learn the char-

acteristic interplay between static scene content and its dy-

namics: Given an image, the model must be able to pre-

dict a future progression of the portrayed scene and, con-

versely, a video should be explained in terms of its static

image content and all the remaining characteristics not

present in the initial frame. This naturally suggests a bi-

jective mapping between the video domain and the static

content as well as residual information. In contrast to com-

mon stochastic image-to-video synthesis, such a model does

not merely generate arbitrary videos progressing the initial

image. Given this image, it rather provides a one-to-one

mapping between the residual vectors and the video with

stochastic outcomes when sampling. The approach is nat-

urally implemented using a conditional invertible neural

network (cINN) that can explain videos by independently

modelling static and other video characteristics, thus lay-

ing the basis for controlled video synthesis. Experiments

on diverse video datasets demonstrate the effectiveness of

our approach in terms of both the quality and diversity of

the synthesized results. Our project page is available at

https://bit.ly/3dg90fV .

1. Introduction

Anticipating and predicting what happens next are key

features of human intelligence that allow us to understand

and deal with the ever-changing environment that governs

our everyday life [8]. Consequently, the ability to foresee

and hallucinate the future progression of a scene is a cor-

nerstone of artificial visual understanding with applications

including autonomous driving [48, 49, 28], medical treat-

ment [5, 18, 6], and robotic planning [20, 24, 10].

Predicting and synthesizing plausible future progres-

sions from a given image requires a deep understanding of

how scenes and objects within video are depicted, interplay

with each other, and evolve over time. While an image pro-

*Indicates equal supervision.

Figure 1. Our approach establishes a bijective mapping between

the image and the video domain by introducing a residual repre-

sentation ν describing the latent scene dynamics. This allows us

not only to synthesize diverse videos but also to extend our ap-

proach to gain control over the video synthesis task.

vides information about the observed scene content, such

as object appearance and shape, the challenge is to under-

stand the missing information constituting potential futures,

such as the scene dynamics setting the scene in motion. Due

to the ambiguity and complexity of capturing this informa-

tion, many works [42, 25, 11, 74] directly focus on predict-

ing likely video continuations, often resorting to simplify-

ing assumptions (e.g., dynamics modelled by optical flow

[21, 59, 76]) and side information (e.g., semantic keypoints

[56, 72, 46, 22]). However, truly understanding the synthe-

sis problem not only requires to infer such image continua-

tions but, conversely, also demands when observing a video

sequence to describe and represent the instantiated scene

dynamics animating its initial frame.
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Consequently, the image-to-video synthesis task should

be modelled as a translation between the image and video

domains, ideally by an invertible mapping between them.

Since the content information describing an image only ac-

counts for a small fraction of the video information, in par-

ticular missing the temporal dimension, learning an invert-

ible mapping requires a dedicated residual representation

that captures all missing information. Once learned, given

an initial image and an instantiation of the latent residual,

we can combine them to synthesize the corresponding fu-

ture video sequence.

In this paper, we frame image-to-video synthesis as an

invertible domain transfer problem and implement it using

a conditional invertible neural network (cINN). To account

for the domain gap between images and videos, we intro-

duce a dedicated probabilistic residual representation. The

bijective nature of our mapping ensures that only informa-

tion complementary to that in the initial image is captured.

Using a probabilistic formulation, the residual representa-

tion allows to sample and thus synthesize novel future pro-

gressions in video with the same start frame. To reduce the

complexity of the learning task, we train a separate con-

ditional variational encoder-decoder architecture to com-

pute a compact, information preserving representation for

the video domain. Moreover, our specific framing of learn-

ing the residual representation allows to easily incorporat-

ing extra conditioning information to exercise control over

the image-to-video synthesis process. Our contributions can

be summarized as follows:

• We frame image-to-video synthesis as an invertible do-

main transfer problem and learn a dedicated residual

representation to capture the domain gap.

• Our framework naturally extends to incorporate ex-

plicit conditioning factors for exercising control over

the synthesis process.

• Extensive evaluations on four video datasets, ranging

from structured human motion synthesis to subtle dy-

namic textures, show strong results demonstrating the

effectiveness of our approach.

2. Related Work

Video synthesis. Video synthesis involves a wide range

of tasks including video-to-video translation [73], image

animation [64, 65], frame interpolation [52, 4, 53], and

video prediction. The latter can be divided into uncondi-

tional [69, 14] and conditional video generation (the fo-

cus of our work). Conditional video generation can be de-

scribed as finding a future progression given a set of con-

text frames in a deterministic [76, 71, 75, 50] or stochas-

tic manner [42, 25, 11, 15, 3], as pursued here. Several

works decrease the complexity of the synthesis task by us-

ing keypoint annotations [51, 56] as conditioning informa-

tion. A major drawback of this approach is the requirement

of semantic keypoint labels which limit consideration to

highly structured objects, like humans, and thus exclude the

broader range of imagery we consider, e.g., natural scenes.

Recent methods aim at improving video prediction quality

by use of high capacity architectures with high computa-

tional demands, operating in the latent [58] or pixel-space

[74], or using attention [14]. In contrast, we propose a

model for understanding the image-to-video synthesis pro-

cess by learning a bijective transformation between the im-

age and video domains using a dedicated residual represen-

tation.

Dynamic texture synthesis. Previous work has given spe-

cial attention to generating dynamic textures. This work

can be divided into two groups: (i) methods that exploit

the statistics of dynamics textures [68, 12, 77, 79] and (ii)

learning-based approaches [80, 83, 45, 21, 78]. To general-

ize to other video domains, beyond dynamic textures, we in-

troduce a learning-based approach. MDGAN [80] generates

landscape videos from a static scene in a deterministic man-

ner. Several methods (e.g., [21, 83]) consider optical flow

in their video generation pipeline. The use of optical flow

limits application to specific types of imagery, like clouds,

at the exclusion of other dynamic textures which grossly

violate standard optical flow assumptions [68]. DeepLand-

scape [45] extends the structure of StyleGAN to animate

landscape images. Their model does not attempt to learn

full temporal dynamics of videos and works only by a com-

plex optimization scheme for inference, similar to [27] for

style transfer. In contrast, our approach allows for efficient

feedforward image-to-video synthesis while also maintain-

ing visual quality and temporal coherence.

Invertible Neural Networks. Invertible neural networks

(INNs) are bjiective functions which makes them attractive

for a variety of tasks, such as analyzing inverse problems

[1], interpreting neural networks [23], and representation

learning [34]. In particular, INNs can be implemented as

normalizing flows [60], a special class of likelihood-based

generative models which have recently been applied to vari-

ous tasks, such as image synthesis [38, 2, 57], domain trans-

fer [62, 61, 23, 82], superresolution [47, 82], and video syn-

thesis [40]. In contrast, we use a conditional normalizing

flow model to learn a dedicated residual latent, capturing

information not contained in the input image. This allows

us to both more efficiently learn the bijective mapping and

to consider explicit controlling factors.

3. Method

Our goal is to learn the interplay between images and

video by explaining video in terms of a single image and the

(stochastic) information not captured by the image about the
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Figure 2. Overview of our proposed framework. We learn an information preserving video representation z using our conditional

generative model consisting of an encoder qφ as well as the corresponding decoder pψ . The decoder consists of dedicated video residual

blocks shown in bottom right. After establishing the video representation, we learn a bijective transformation T conditioned on the starting

frame x0 and an optionally provided control factor η. During inference, we sample a residual ν, encapsulating the scene dynamics, from

the prior distribution and use Tφ to obtain the video representation z. Using our decoder we can then synthesize novel video sequences.

Training and inference is indicated by the dotted and solid lines, respectively.

video. Together the deterministic and stochastic content al-

low us to tackle the problem of image-to-video synthesis.

In Sec. 3.1, we begin by motivating and introducing our

conditional bijective framework for image-to-video map-

pings and Sec. 3.2 describes the learning process. Sec. 3.3

presents our generative model for video synthesis operating

on our learned transformation. Finally, in Sec. 3.4 we ex-

tend our model to directly exercise control over factors cap-

tured in the residual latent, e.g., direction of motion. Figure

2 provides an overview of our approach.

3.1. Bijection for Image­to­Video Synthesis

Given an initial image, x0 ∈ R
dx , image-to-video syn-

thesis generates a video sequence, X = [x1, . . . , xT ]. This

problem is inherently underdetermined with many possible

videos conceivable based on x0. As a result, we cannot

synthesize or explain a video merely with a single frame,

but require additional information, ν, such as the scene dy-

namics. Video synthesis can then be framed as mapping x0
and a residual ν onto a videoX or, equivalently, a represen-

tation z thereof,

z = T (ν;x0) . (1)

Commonly, stochastic video prediction methods [42, 25,

51] only focus on synthesizing arbitrary realistic videos for

a single initial or a sequence of frames. In contrast, under-

standing this synthesis process not only demands to explain

the missing information ν to be inferred, but also to recover

the residual information from video so that it can be modi-

fied subsequently. Explaining a video thus requires to esti-

mate this residual information ν, so that x0 and ν together

are isomorphic to the representation z of the video X . Con-

sequently, T needs to be a conditional bijective mapping

between videos and their description in terms of a starting

frame x0 and the remaining residual information ν.

3.2. Inferring an Explicit Residual Representation

Given a single frame x0, a multitude of videos are possi-

ble with a corresponding z,

z ∼ p(z|x0) . (2)

Since ν contains all the information of z not captured in x0
and T is conditionally bijective, we can invert (1) to obtain

the residual

ν = T −1(z;x0) . (3)

Then, by the change-of-variables theorem for probability

distributions, T −1 transforms p(z|x0) as
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p(z|x0) =
p(ν|x0)

| det JT (ν;x0)|
(4)

= p(T −1(z;x0)) · | det JT −1(z;x0)| , (5)

where JT denotes the Jacobian of the transformation T and

| det[·]| the absolute value of the determinant of its input.

Using the transformed distribution, p(z|x0), we can now

directly learn our transformation T and the distribution

p(ν|x0) by maximum likelihood estimation (MLE). To this

end, we need to choose an appropriate prior distribution,

which can be analytically evaluated and easily sampled.

Since we factorize the residual information ν from the

starting frame x0, we can assume p(ν|x0) = q(ν) and,

thus, resort to the widely used standard normal distribution

q(ν) = N (ν|0,1) [39, 81, 29]. Moreover, we parametrize

T as an invertible neural network [54, 17, 16] Tθ with pa-

rameters θ which, given the image x0, translates between

the representations z and ν. Thus, we arrive at the negative

log-likelihood minimization problem

min
θ∈Θ

Ez,x0

[

log q(T −1
θ (z;x0))− log | det JT −1

θ
(z;x0)|

]

.

(6)

By simplifying using the standard normal prior and drop-

ping resulting constant terms, we finally arrive at our final

objective function

min
θ∈Θ

Ez,x0

[

‖T −1
θ (z;x0)‖

2
2 − log | det JT −1

θ
(z;x0)|

]

.

(7)

Due to the information-preserving, isomorphic mapping Tθ,

ν indeed captures the latent information in X not explained

by x0.

To generate a video representation z based on an initial

frame x0, we first sample a residual representation ν ∼ q(ν)
and then apply (1) to obtain z = Tθ(x0, ν).

3.3. Generative Model for Video Synthesis

We now learn a decoding p(X|z) to synthesize video

sequences based on z. Since we require z to be a com-

pact, information-preserving video representation, we also

need to learn the corresponding encoding q(z|X). Simul-

taneously learning both is naturally expressed by an au-

toencoder [39]. Moreover, to optimally enable learning

the transformation Tθ, we consider the following modelling

constraints: (i) the representation z of the input should

be maximally information-preserving to fully capture the

residual dynamics information, (ii) we model the residual

ν to be a continuous probabilistic model, thus the bijection

property of Tθ requires q(z|X) to be a strictly positive den-

sity, and (iii) reducing the complexity of the representation

z eases the task of learning the bijective mapping Tθ. Thus,

while still fully capturing scene dynamics in z, we ideally

exclude all information in the video which is already present

in the initial image x0.

Learning p(X|z) and q(z|X). Variational latent mod-

els [39] are a straightforward choice for stochastic au-

toencoders. To address (iii) above, we use a condi-

tional variational autoencoder [81] with a parametrized en-

coder qφ(z|X) and a parametrized, conditional decoder

pψ(X|x0, z) with (φ, ψ) being their trainable parameters.

Such models encourage the distribution of information

among latent variables due to the regularization of the ca-

pacity of the latent encoding [13, 84, 9]. Thus, using x0 as

a conditioning to represent most of the scene content, the

complexity of z can be reduced by forcing the network ca-

pacity to focus on capturing the latent information in X . To

balance this with maximally preserving the latent residual

information in X , we introduce a weighting parameter β to

the standard variational lower bound [9],

Lpψ,qφ = Ez∼qφ(z|X) [log pψ(X|x0, z)]

− βDKL(qφ(z|X)||q(z)) ,
(8)

where q(z) denotes a standard normal prior on the encoder

qφ. The first term optimizes the synthesis quality of the de-

coding process, thus maximizing information-preservation.

While the second term regularizes qφ(z|X) to match the

prior q(z) which constrains its capacity and, thus, encour-

ages the distribution of information among x0 and z to

ease subsequent learning of Tθ. Hence, β allows us to di-

rectly balance the informativeness of z and its complex-

ity [13, 84, 9].

Building the video synthesis model. The design of gen-

erative architectures significantly influences their synthesis

capabilities, especially when dealing with highly complex

data. In our conditional model this particularly affects the

interplay between information in x0 and z in pφ(X|z, x0).
To this end, we construct the conditional decoder pψ us-

ing a sequence of n dedicated video residual blocks operat-

ing on increasing spatial and temporal feature resolutions.

To optimally facilitate the interplay between z and the con-

tent information in x0, we combine them both in each block

and, thus, at all scales of pψ . Fig. 2 illustrates the gen-

eral structure of our video residual blocks used for decod-

ing to a video. The conditioning x0 is incorporated using a

SPADE [55] normalization layer to preserve semantic infor-

mation throughout the generator. The video representation

z is added by means of an ADAIN [36] layer to provide

video information at all scales of the decoder. Our encoder

qφ is implemented as a 3D-ResNet [31] to capture the scene

dynamics evolving over time in an input video.

Overall training objective. Following common prac-

tice [39], we train our conditional model, (8), using an L1

reconstruction loss. To emphasize perceptual quality [41]

we use a frame-wise perceptual loss ℓφ [19, 35]. Similar to

previous work [14, 73], we use a discriminator DS applied
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Figure 3. Stochastic video synthesis on Landscape [80] showing

subtle motions. Red arrows indicate the direction of motion. Best

viewed as video provided in the supplemental.

Method LPIPS ↓ FID ↓ DTFVD ↓ FVD ↓ DIV VGG ↑

MDGAN2 [80] 0.49 68.9 2.35 385.1 –

DTVNet2 [83] 0.35 90.3 2.78 693.4 0.00

AL2 [21] 0.26 19.5 1.24 307.0 1.84

DL2,† [45] 0.41 45.2 1.96 351.5 –

Ours 0.25 16.0 0.83 160.4 1.55

Table 1. Quantitative evaluation of video synthesis quality and

diversity on Landscape [80]. Numeric superscripts indicate the

source of the results, cf. Sec. 4.3. The diversity score based on

the I3D [67] trained on DTDB [30] can be found in the supple-

mental. † provided pretrained model from DL was trained on their

unreleased dataset.

to each frame and DT on the temporal level. Both discrim-

inators are optimized using the hinge formulation [43, 7].

Thus, the overall training objective can be summarized as

L = Lpψ,qφ + LDT + LDS . (9)

Please see the supplemental for further details of our loss.

3.4. Controllable Video Synthesis

There are many factors comprising the latent residual ν.

Understanding the image-to-video process allows us to di-

rectly exercise control over such factors and thus over the

progression of the depicted scene in the input image x0.

Assuming η ∈ R
dη represents such a factor, e.g., the tar-

get location of a moving object, we can explicitly model

it while learning our bijective mapping Tθ as Tθ(ν;x0, η).
Note, now ν constitutes the residual latent information to

both x0 and η. Since such individual factors are typically

low in information themselves, in general there is no benefit

in considering them when learning the conditional decoder

pψ in contrast to the richer information in x0. Image-to-

video synthesis now extends to manually additionally ad-

justing η to a fixed value η∗ to infer a video representation

Figure 4. Stochastic video synthesis on iPER [44] showing struc-

tured, diverse human motion. Best viewed as video provided in

the supplemental.

Method FVD ↓ DIV VGG ↑ DIV I3D ↑

SAVP3 [42] 368.6 0.00† 0.01†

SRVP3 [26] 336.3 0.34 1.01

IVRNN3 [11] 206.9 0.23 0.57

Ours w/o cINN 255.2 0.31 1.11

Ours w/o x0 582.6 1.19∗ 2.87∗

Ours w/o ADAIN 213.1 0.51 1.64

Ours 176.9 0.58 1.76

Table 2. Quantitative evaluation of video synthesis quality and di-

versity on iPER [44]. Numeric superscripts indicate the source of

the results, cf. Sec. 4.3. † SAVP experienced mode collapse due

to training instabilities originating from the two involved discrim-

inators. ∗ denotes high diversity due to artifacts.

z = Tθ(ν;x0, η
∗) which is then used to synthesize a video

sequence using pψ .

4. Experiments

We evaluate the efficacy of our video synthesis method

on a diverse set of video datasets which range from human

motion to stochastic dynamics as encompassed by natural

landscape scenery. Video prediction results and compar-

isons are best viewed as videos which are available in the

supplemental and on our project page1. Implementation de-

tails can be found in the supplemental.

4.1. Datasets

Here, we summarize the four diverse datasets used in our

evaluation. We train all models on a sequence length of 16.

A detailed description of the evaluation protocol for each

dataset is in the supplemental.

1https://bit.ly/3dg90fV
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Method
Fire Vegetation Waterfall Clouds

LPIPS ↓ FID ↓ FVD ↓ DTFVD ↓ DIV ↑ LPIPS ↓ FID ↓ FVD ↓ DTFVD ↓ DIV ↑ LPIPS ↓ FID ↓ FVD ↓ DTFVD ↓ DIV ↑ LPIPS ↓ FID ↓ FVD ↓ DTFVD ↓ DIV ↑

DG3 [77] 0.18 29.4 361.3 0.40 – 0.22 71.6 290.3 0.86 – 0.25 143.4 1680.6 2.41 – 0.17 73.5 217.5 0.40 –

AL3 [21] 0.28 48.4 1475.9 11.42 0.74 0.28 48.9 271.0 1.48 0.93 0.32 124.3 1847.8 5.94 0.98 0.27 38.7 142.1 0.76 1.52

Ours 0.27 31.3 460.7 0.79 1.34 0.26 38.5 170.8 0.44 1.21 0.25 81.7 1072.1 2.67 0.63 0.27 31.3 179.3 0.73 0.96

Table 3. Quantitative evaluation of video synthesis quality and diversity (based on VGG [66]) on DTDB [30]. The diversity score based

on the I3D [67] trained on DTDB [30] can be found in the supplemental. Note, DG [77] directly optimizes on test samples. Numeric

superscripts indicate the source of the results, cf. Sec. 4.3.

Landscape [80] consists of ∼ 3000 time-lapse videos of

dynamic sky scenes, e.g., cloudy skies and night scenes

with moving stars. This dataset contains a wide range of

sky appearances and motion speeds. Following previous

work [80, 83], we evaluate on a sequence length of 32

frames. We compare with recent work on landscape syn-

thesis [80, 21, 83, 45]. To generate sequences of length 32

we apply our model sequentially, meaning we use the last

predicted frame as an input for the next prediction.

Dynamic Texture DataBase (DTDB) [30] contains more

than 10,000 dynamic texture videos. For evaluation, we fo-

cus on the following classes: fire, clouds, vegetation, and

waterfall. Each texture class consists of 150 to 300 videos.

We train one model for each texture (same as for [21, 77])

on a sequence length of 16 on a resolution of 128× 128.

BAIR Robot Pushing [20] consists of a randomly moving

robotic arm that pushes and grasps objects in a box. It con-

tains around 40k training and 256 test videos. This dataset

is used by prior work as a benchmark due its stochastic na-

ture and the real-world application. We follow the standard

protocol [74, 70, 14, 58] and evaluate on a sequence length

of 16 frames on a resolution of 64× 64.

Impersonator (iPER) [44] is a recent dataset that contains

humans with diverse styles of clothing executing various

random actions. The entire dataset contains 206 videos with

a total of 241, 564 frames. We follow the train/test split de-

fined in [44] which leads to a training set containing 180k

frames and a test set of 49k frames. We evaluate our model

on a sequence length of 16 on a 64× 64 resolution.

4.2. Evaluation Metrics

Synthesis quality. We evaluate the video synthesis qual-

ity using the Fréchet video distance (FVD) [70] which is

sensitive to both perceptual quality and temporal coher-

ence. This metric represents the spatiotemporal counterpart

to FID [32] which is based on an I3D network [67] trained

on Kinetics [37], a large-scale human action dataset. To

evaluate dynamic textures, we introduce the Dynamic Tex-

ture Fréchet Video Distance (DTFVD) by replacing the pre-

trained network with one we trained on DTDB for classifi-

cation [30]. The motivation behind introducing DTFVD is

that we seek a metric that is sensitive to the types of dynam-

ics encapsulated by dynamic textures, rather than human

action-related motions as captured by FVD. To further eval-

uate dynamic textures, we also evaluate perceptual qual-

ity in terms of the Fréchet Inception Distance (FID) [32]

Figure 5. Stochastic video synthesis on DTDB [30] for diverse

texture categories. Best viewed as video provided in the supple-

mental.

and the Learned Perceptual Image Patch Similarity (LPIPS)

[19, 35] metrics.

Diversity. Photorealism and plausible dynamics are not the

only factors we are interested in. In addition, our model is

capable of stochastically generating plausible videos from a

single image. Following previous work [42] on video syn-

thesis, we measure the diversity between video sequence

predictions given an initial frame x0 as their average mu-

tual distance in the feature space of a VGG-16 network [66]

pre-trained on ImageNet [63]. In contrast to [42], we use the

Euclidean distance instead of the Cosine distance. More-

over, we also report diversity on pre-trained I3D [67] mod-

els (similar to above) which is sensitive to both appearance

and motion instead of comparing samples frame-wise. We

discuss and compare our chosen diversity measures in the

supplemental.

4.3. Quantitative Evaluation

For comparison, we use reported performance from the

corresponding paper (marked by 1), where possible, oth-

erwise we report numbers based on pretrained models

(marked by 2) or retrained models using the official code

(marked by 3) provided by the author.

Landscape. Tab. 1 provides a summary of our evalua-

tion on Landscape in terms of perceptual quality and tem-

poral coherence. As can be seen, we generally outper-

form all methods across all metrics. Animating Landscape
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Method FVD ↓ DIV VGG ↑ DIV I3D↑

Video Flow1 [40] 131.0 – –

SRVP2 [26] 141.7 0.93 1.65

IVRNN3 [11] 121.3 0.69 1.13

SAVP1,2 [42] 116.4 0.98 1.70

LVT1 [58] 125.8 – –

DVD-GAN1 [14] 109.8 – –

Video Transformer1 [74] 94.0 – –

Ours w/o cINN 134.5 0.59 0.94

Ours w/o x0 272.6 2.40† 2.48†

Ours w/o ADAIN 131.2 0.78 1.60

Ours 99.6 0.95 1.75

Table 4. Quantitative evaluation and ablation study of generation

quality and diversity on BAIR [20]. Numeric superscripts indicate

the source of the results, cf. Sec. 4.3. † denotes high diversity due

to artifacts.

(AL) [21] stores the motion embeddings of all training in-

stances in their codebook and uses them to generate videos

during inference. In this way, AL is able to reproduce the

diversity of the training videos. DTVNet [83] does not

enforce a distribution over their representation and con-

sequently are limited to deterministic video generations.

DeepLandscape [45] (DL) does not learn dynamics from

videos, but rather uses a manually constructed set of homo-

graphies. The pretrained model provided by DL was trained

on their unreleased dataset. In contrast, we explicitly model

and learn the dynamics distribution and by that, are able to

synthesize novel dynamics to set scenes in motion.

DTDB. We observe similar results on DTDB (Tab. 3) on

nearly all dynamic textures (fire, waterfall, and vegetation)

across all perceptual quality and coherence metrics. For

the clouds texture, AL achieves better results due to the

fact that this motion can be faithfully described by optical

flow. Here, we also consider results from methods dedi-

cated to dynamic texture synthesis [77, 79] as strong base-

lines. These methods are not exactly comparable as they

directly optimize on test samples. We only present results

for DG [77], as Xie et al. [79] did not converge when trained

on all test samples.

BAIR. We achieve strong results in terms of video quality

(Tab. 4), even when compared with the computationally ex-

pensive transformer based approach [74]. In terms of diver-

sity, we are on par with the state-of-the-art stochastic video

prediction approaches.

iPER. The evaluation of articulated human motion is pre-

sented in Tab. 2 on iPER [44]. We achieve superior re-

sults to recent approaches for video prediction [25, 11, 42]

in terms of FVD and diversity. Note, that we only condi-

tion on one frame in comparison to the baselines which use

two [42, 11] and eight context frames [26].

4.4. Qualitative Evaluation

Image-to-video synthesis. We provide samples for all

datasets. On Landscape [80] we see that our model is able to

Figure 6. Qualitative evaluation of diversity on BAIR [20].

Stochastic video synthesis: (top two rows, left-to-right) input

frame and last frame from a BAIR sequence and four frames rep-

resenting the last frames from sampled videos generated using

the input frame alone. The generated frames show a high degree

of stochasticity in terms of the end effector position, as desired.

Controlled video synthesis: (bottom two rows, left-to-right) in-

put frame and last frame from a BAIR sequence, and four frames

representing the last frames from sampled videos generated using

both the input frame and the 3D end effector position in the last

frame. The end effector position in the last frame is in close agree-

ment with the position control input, as desired.

synthesize realistic samples (see Fig. 3) from diverse, com-

plex scenes captured in the input image. In Fig. 4, we show

samples on iPER [44] which illustrates the complexity of

motion in the dataset. In Fig. 5, we visualize one sample

per DTDB class which shows the variety of dynamic tex-

tures used for evaluation. Lastly, Fig. 6 (top two rows) show

the diversity in our video samples by way of the differences

across the last generated frame per sample on BAIR [20].

Controllable video synthesis. A strength of our model is

the ability to exert explicit control over the synthesis pro-

cess. As described in Sec. 3.4, we control this process by

introducing a factor η. Here, we consider two different

factors for controllable video synthesis on BAIR [20] and

DTDB [30]. On BAIR we condition the synthesis process

on the 3D location of the robot arm’s end effector in the

last frame; we use the location provided in the groundtruth.

Fig. 6 (bottom two rows) shows several samples of the last

frame of each sequence of our controllable synthesis. It can

clearly be seen that the last frames of our samples match

closely to the groundtruth end frame. As a second example,

this time on DTDB [30], we condition the video synthesis of

clouds based on the 2D direction of motion, again through

manipulating η. This is visualized in Fig. 7 where four dif-

ferent directions are considered. To aid in the visualization,

we also include the optical flow fields, estimated with [33],

to show the consistency between the motion direction used
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Figure 7. Examples of controlling video synthesis of clouds in

DTDB [30] starting at frame x0 using motion direction inputs (in-

dicated by arrows). We show intermediate frames x7 and x15. The

color wheel indicates flow direction.

for conditioning and the direction realized in the generated

videos. As can be seen, the conditioning and generated mo-

tion directions are in close agreement. For results on con-

trolled video-to-video synthesis (cf. Sec. 3.4), please refer

to the supplemental.

Motion transfer. Finally, we illustrate the capability of our

model to transfer a motion contained in one sequence to a

set of initial frames for video synthesis. Using Landscape

[80] Fig. 8 illustrates this process, where the top row con-

tains the motion to be transferred and the bottom three rows

show the generated video sequences realized by combining

the transferred motion and the initial frames. As can be

clearly seen, the original motion is successfully transferred

to each of the scenes.

4.5. Ablation study

To evaluate the design choices of our approach, we now

perform ablation studies on BAIR [20] and iPER [44]:

(Ours w/o x0) represents implementing our video genera-

tor, pψ without conditioning on the input image, x0, thus z

also captures the full scene content information, (Ours w/o

ADAIN) similarly denotes removing the ADAIN input of z

in our proposed Video ResBlk, i.e., pψ only has access to z

via the bottleneck and (Ours w/o cVAE) stands for remov-

ing the cINN resulting in a cVAE framework.

In Tab. 2 and Tab. 4, we observe significant performance

drops for all ablations compared to our full model (Ours).

In particular removing the conditioning image, x0, from the

generator, pψ , greatly affects the synthesis quality. This is

due to the generator not having direct access to the static in-

formation depicted in the initial frame x0. When removing

the ADAIN input of z from our Video ResBlk, the infor-

Figure 8. Transferring motion across videos on Landscape [80].

(top row, left-to-right) source video for target motion. (bottom

three rows, left-to-right) animating different starting frames by

transferring motion from source video. Red arrows indicate the

direction of motion. Best viewed as video provided in the supple-

mental.

mation of z is now only available at the lowest scale of pψ ,

in contrast to the multi-scale information flow in our full

model. Moreover, the cVAE only model (w/o cINN) results

in worse performance both in quality and diversity, which

can be explained by the trade-off between synthesis quality

and capacity regularization, as discussed in Sec. 3.3.

5. Conclusion

In summary, we introduced a novel model for under-

standing image-to-video synthesis based on a bijective

transformation, instantiated as a cINN, between the video

domain and the image domain plus residual information.

The probabilistic residual representation allows to sample

and synthesize novel, plausible progressions in video with

the same initial frame. Moreover, our framework allows

for incorporating additional controlling factors to guide the

image-to-video synthesis process. Our empirical evaluation

and comparison to strong baselines on four diverse video

datasets demonstrated the efficacy of our stochastic image-

to-video synthesis approach.
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[6] Biagio Brattoli, Uta Büchler, Anna-Sophia Wahl, Martin E.

Schwab, and Björn Ommer. LSTM self-supervision for de-

tailed behavior analysis. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 3747–3756, 2017.

[7] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthesis.

In Proceedings of the International Conference on Learning

Representations (ICLR), 2019.

[8] Andreja Bubic, D Yves von Cramon, and Ricarda I

Schubotz. Prediction, cognition and the brain. Frontiers in

human neuroscience, 4:25, 2010.

[9] Christopher P. Burgess, Irina Higgins, Arka Pal, Loı̈c

Matthey, Nick Watters, Guillaume Desjardins, and Alexan-

der Lerchner. Understanding disentangling in β-VAE.

CoRR, 2018.

[10] Arunkumar Byravan, Felix Leeb, Franziska Meier, and Di-

eter Fox. Se3-pose-nets: Structured deep dynamics models

for visuomotor planning and control. CoRR, 2017.

[11] Lluı́s Castrejón, Nicolas Ballas, and Aaron C. Courville. Im-

proved conditional vrnns for video prediction. In Proceed-

ings of the International Conference on Computer Vision

(ICCV), pages 7607–7616, 2019.

[12] Shiming Chen, Peng Zhang, Xinge You, Qinmu Peng, Xin

Liu, and Zehong Cao. Similarity-dt: Kernel similarity em-

bedding for dynamic texture synthesis. CoRR, 2019.

[13] Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Pra-

fulla Dhariwal, John Schulman, Ilya Sutskever, and Pieter

Abbeel. Variational lossy autoencoder. In Proceedings of

the International Conference on Learning Representations

(ICLR), 2017.

[14] Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversar-

ial video generation on complex datasets, 2019.

[15] Emily Denton and Rob Fergus. Stochastic video generation

with a learned prior. In Proceedings of the International Con-

ference on Machine Learning (ICML), pages 1182–1191,

2018.

[16] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE:

non-linear independent components estimation. In Proceed-

ings of the International Conference on Learning Represen-

tations (ICLR), 2015.

[17] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.

Density estimation using real NVP. In Proceedings of the In-

ternational Conference on Learning Representations (ICLR),

2017.

[18] Michael Dorkenwald, Uta Büchler, and Björn Ommer. Unsu-
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