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Abstract

We address the problem of jointly denoising and super

resolving neuromorphic events, a novel visual signal that

represents thresholded temporal gradients in a space-time

window. The challenge for event signal processing is that

they are asynchronously generated, and do not carry ab-

solute intensity but only binary signs informing temporal

variations. To study event signal formation and degrada-

tion, we implement a display-camera system which enables

multi-resolution event recording. We further propose Event-

Zoom, a deep neural framework with a backbone architec-

ture of 3D U-Net. EventZoom is trained in a noise-to-noise

fashion where the two ends of the network are unfiltered

noisy events, enforcing noise-free event restoration. For res-

olution enhancement, EventZoom incorporates an event-to-

image module supervised by high resolution images. Our

results showed that EventZoom achieves at least 40× tem-

poral efficiency compared to state-of-the-art (SOTA) event

denoisers. Additionally, we demonstrate that EventZoom

enables performance improvements on applications includ-

ing event-based visual object tracking and image recon-

struction. EventZoom achieves SOTA super resolution im-

age reconstruction results while being 10× faster.

1. Introduction

Neuromorphic events are novel visual signals that ad-

dress several limitations of mainstream image signals, par-

ticularly featuring low power, low latency and high dynamic

range (HDR). These are due to the unique sensor design

that enables each event pixel to only compare current and

last intensity states in log-scale and fire a binary-signed

event whenever the log-intensity variation exceeds the pre-

set thresholds [6, 10, 24, 35, 42]. Such sensors are suitable

for dynamic visual scenarios thanks to their high sensing

speed. Yet event cameras are unable to reveal scene appear-
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(a) Our multi-resolution display-camera system.

(b) EventZoom results. Blue/red: positive/negative events.

Figure 1: We propose EventZoom, a network that performs

event denoising and super resolution.

ance, especially under static conditions. Moreover, events

are fired asynchronously, resulting in spatio-temporal point

clouds rather than conventional 2D image/video sequences.

As such, the problem of event signal restoration and

enhancement has strong deviation from its image-based

counterpart, and requires deliberate modifications when

applying image-based models. A particular body of the

past literature has attended to event-to-image reconstruc-

tion [2, 7, 20, 37, 38, 45, 46], and shown that image-based

visual algorithms can perform comfortably well on event-

reconstructed images [37]. An extended branch explored

the benefit events could bring to low-level vision. Such

tasks take hybrid inputs of events and images, and perform

image/video enhancement in HDR and low-light imaging

[15, 50], video synthesis [49], motion deblur [18, 31], and

super resolution [44]. Nonetheless, executing visual tasks
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by means of event-to-image conversion consumes heavy

computational power and time, calling for compact event-

to-event restoration and enhancement.

SOTA event restoration and enhancement solutions rely

on the intensity signal [1, 48]. Same-resolution images

could be employed to label events and a classification net-

work is further leveraged for event denoising [1]. However,

the labeling of captured events can only identify and remove

wrongly-fired events, while it cannot retrieve unfired events

along with previous noisy event removal filters [4, 19, 27].

Guided Event Filtering (GEF) [48] enables retrieving miss-

ing events as well as 8× super resolution (SR). However,

GEF’s performance relies heavily on 1) the quality of high-

resolution (HR) images; 2) the accuracy of optical flow esti-

mation, which is computationally expensive. When the HR

images are blurry or in lack of spatial features, or when the

optical flow fails to register events onto image edges, the

filtering output will yield compromised quality.

We propose EventZoom, an end-to-end neural network

approach for event denoising and super resolution (EDSR).

EventZoom performs event-to-event transformation based

on a backbone of 3D U-Net [52]. Although the network

does not require image supervision, an event-to-image (E2I)

module was designed to study the benefit from image sig-

nals. The E2I module is a combination of a same-resolution

event-to-image reconstruction network E2VID [36] and an

image SR network FSRCNN [9]. The last layer features

from the two networks are used as low-resolution (LR) and

HR features to be concatenated with the corresponding lay-

ers of the 3D U-Net. The input and output are 3D tensors.

Two processing steps are involved for converting the raw

events to a 3D tensor (event stacking) and reverting the out-

put 3D tensor to events (event re-distributing). Overall, this

paper makes the following contributions:

• EventZoom is the first network approach to solve

EDSR. EventZoom was built upon 3D U-Net and in-

corporated an E2I module to leverage HR image infor-

mation, while preserving computational efficiency.

• We implemented a display-camera system to collect

a multi-resolution event dataset (Fig. 1a), and trained

the network in a noise-to-noise fashion without ground

truth annotation (Fig. 1b).

• EventZoom was applied to event-based visual object

tracking and image reconstruction, and achieved sig-

nificant performance improvement.

2. Related work

This section reviews existing work in event denoising

and super resolution (EDSR), event camera systems and

datasets, and related neural models for event processing.

EDSR. Existing works were mainly concerned with back-

ground activity noise produced by temporal noise and junc-

tion leakage currents [1, 4, 19, 24, 27]. Liu et al. [27] pro-

posed a denoising filter based on spatiotemporal correla-

tion. Wang et al. [47] proposed to filter events by their mo-

tion association likelihood. This is based on an assumption

that events are triggered by edge motion and therefore shall

follow the same spatiotemporal motion projection within

a local window if valid [11, 40, 48]. Recently, GEF [48]

has further made use of the motion compensation (MC) be-

tween the image and event signals, and solved the problem

by using guided image filtering techniques. The optimiza-

tion is performed by maximizing the mutual structures be-

tween the LR event and HR image signals. When the image

signal has higher spatial resolution than the event signal,

GEF enables super resolving the event signal up to the im-

age resolution. Although MC is highly useful for event pro-

cessing [11,25,34], the computational complexity is beyond

practical for downstream visual tasks.

Another pathway for EDSR is first by means of event-

to-intensity conversion [29, 46]. The generated high qual-

ity images can then be converted back to events via video-

to-events simulators [8, 12, 16]. The runtime and the

simulation-to-real gap [41] are the main limitations.

Event camera systems and datasets. While the major-

ity of existing datasets have addressed various visual tasks,

very few of them focused on EDSR. DVSNOISE20 [1] pro-

posed a noise annotation approach by deriving an event

probability mask using APS frames and IMU motion data.

In the dataset proposed in [37], HR smartphone videos were

provided as reference but were not reversed to raw data form

to retrieve intensity information for the need of EDSR. Both

MVSEC [51] and RGB-DAVIS [48] have provided HR ma-

chine vision images up to 2× and 8× respectively. Partic-

ularly, RGB-DAVIS leveraged a beamsplitter to collocate

an HR RGB camera and LR DAVIS240 event camera [48].

There has not been a multi-resolution event dataset provided

in the literature due to the significant challenges in camera

calibration and the lack of HR event camera prototypes. In

the benchmark event datasets collected in [17], a display-

camera system has been implemented to convert existing

video datasets, e.g. action recognition, to event datasets. We

implement a similar setup with hardware upgrades in both

the display and the event camera. To minimize the temporal

aliasing induced by large motion, we chose a high frame-

rate video dataset Need-for-Speed (NFS) [14].

Event neural models. Events are bio-inspired visual sig-

nals resembling the form of asynchronous neural spike

trains. Therefore, several bio-inspired learning architec-

tures have been proposed for event-based learning, includ-

ing SNNs [21, 32], LSTM/RNNs [5, 30, 36], and MLPs

[39,43]. CNNs are widely adopted for EDSR-related tasks,
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particularly when the output is in image form. Wang et al.

[49] proposed to use the sigmoid function to approximate

the intensity-event relation, and employed a residual net for

image enhancement. Before performing convolutions, the

input events were first binned or stacked into event frames

which induced temporal interruptions [29, 45, 49]. This is-

sue was alleviated by explicitly incorporating inter-stack

flow estimation modules [18, 29]. As shown in GEF [48],

convolutional SR nets did not perform well on binned event

frames as the activation sites are sparse. Messikommer et

al. [28] adopted sparse convolutions with asynchronous ac-

tivation mechanism for high-level visual tasks. Gehrig et al.

[13] proposed volumetric spatio-temporal tensors to form

an event feature space that is trained w.r.t. specific tasks.

For EDSR, we employ the 3D U-Net [52] architecture as

it has a volumetric encoder-decoder structure and performs

third dimension convolutions. Moreover, our work explores

the benefit of incorporating the learned event-to-intensity

network features.

3. Approach

Here we describe our proposed approach, EventZoom.

We first demonstrate the event formation model and its re-

lationship to the image-based counterpart.

3.1. Event formation

In image denoising and super resolution, the basic image

formation model assumes that the LR image ÎLR is the result

of a downscaling operation from a degraded HR image IHR

added by the noise:

ÎLR = (IHR ∗ k) ↓s +nimage, (1)

where k denotes an unknown image degradation kernel, ↓s

denotes a downscaling operation with a scale factor of s,

and nimage represents the additive image noise. We use ÎLR

to denote ILR has been noise corrupted.

For the case of an event camera, the event sensor output

can be described as:

Et = Γ
{

log(
It + b

It-1 + b
), ǫ

}

, (2)

where Γ{θ, ǫ} represents the conversion function from log-

intensity to event, and b is an offset value to prevent log(0).
Γ{θ, ǫ} = 1 when θ >= ǫ, indicating a positive event;

Γ{θ, ǫ} = −1 when θ <= −ǫ, indicating a negative event;

and Γ{θ, ǫ} = 0 when |θ| < ǫ, indicating that no event

has been fired. The hot pixels can be interpreted as ǫ being

significantly low, and the cold pixels as the opposite.

Equation (2) is the noise-free model of the intensity-to-

event conversion. The event formation model considering

both the downscaling and noise operation can be repre-

sented as:

ÊLR
t = Γ

{

log
( (IHR

t ∗ k) ↓s +b

(IHR
t-1 ∗ k) ↓s +b

)

, ǫ+ nevent

}

, (3)

where nevent represents the perturbation noise pivoted at the

firing threshold. According to previous studies [24, 42],

nevent can be viewed as a Gaussian random process with a

mean value of 0. Note that this model does not consider all

the event sensor noise types but can be used to explain sev-

eral experimental observations [24] and has been adopted

in previous event simulator for generating noise-corrupted

events [16]. Our goal is to recover the latent HR event signal

EHR
t = Γ{log(

I
HR
t +b

IHR
t-1

+b
), ǫ} from the LR noisy signal ÊLR

t .

3.2. A display­camera system for EDSR

The recovery from ÊLR
t to EHR

t is an ill-posed prob-

lem as there are many unknown parameters need to be esti-

mated, including the image degradation kernel k, the thresh-

old value ǫ and the event noise nevent. Even when all the

unknown parameters are correctly estimated, the surjective

property of Γ(·) mapping from intensity to event makes

EDSR elusive and intractable.

To approach EDSR, we developed a display-camera sys-

tem to observe real-scenario event data at multiple scales.

The system setup is presented in Fig. 2a. We used a dis-

play (AUO80ed, resolution 1920 × 1080, 144Hz) and the

DAVIS346 monochromatic camera (resolution 346 × 260)

[42]. An F/1.4 lens was mounted on the event camera. The

camera was placed at a distance of ∼ 180cm away from the

display to minimize lens distortion, as shown in Fig. 2a. To

calibrate between the camera plane and the display plane,

we used a gradienter to limit one rotational degree of free-

dom. The other two degrees of freedom were limited by

the collinearity of the camera view center, aiming device

and the crosshair on display center. We chose the Need-for-

Speed (NFS) dataset [14] as the source material because it is

Monitor 
and

Crosshair

Aiming 
device

Gradienter

DAVIS346

×

× ×

×

×

(a) Setup

Event camera view (346×260)

56×31 56×31

222×124

111×62

111×62

(b) Calibrated views

Figure 2: We implemented a display-camera system to

study event formation and degradation. The display has

been divided into 5 segments with two 1×, two 2× and one

4× resolution scales.
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HR LR LR

Figure 3: Visualization of an NFS [14] video frame (up-

per panel), recorded events for the HR video (lower left),

and two repeated event recordings of the 2× downsized LR

video (lower middle & right).

a high frame-rate visual tracking dataset with all 100 video

clips shot using 240FPS video cameras. The original reso-

lution of NFS is 1280 × 720 but three scales (1×, 2× and

4×) were displayed, as shown in Fig. 2b. The original NFS

frames were bicubically downsized to avoid spatial alias-

ing. The new videos were played at 90FPS to avoid frame

drop. The display frame-rate imposed a limitation for the

temporal resolution of our recorded events. Influence from

other light sources was minimized during recording. Even-

tually we successfully obtained 70 multi-resolution event

clips with a total length of about 60 minutes. We refer to

the multi-resolution event dataset as “EventNFS”.

3.3. Noise­corrupted HR­LR event correspondence

Figure 3 shows an example frame from NFS [14] and

its corresponding event patches at two scales. In Fig. 3, the

HR patches were recorded at 4× scale while the LR patches

were 2×. Although representing the same motion, the two

LR patches have different appearance due to noise. Some

edge signals were missing due to the increase of the event

firing threshold caused by nevent, while some noisy events

were fired at non-edge positions. Such randomness has

made the ground truth data annotation difficult because both

the HR and LR event signals have been noise-corrupted.

Now we have obtained a series of noise-corrupted HR-

LR event signal pairs, i.e. (ÊLR
(i) , Ê

HR
(i) ). Here, the timestamp

t is omitted and replaced by the sample index i. According

to our noise model in Eq. (3), the event data has an expec-

tation of E
[

ÊHR
(i) |Ê

LR
(i)

]

= EHR
(i) as the noise-corrupted event

signal has a zero-mean noise model [22]. This enables us to

train a neural regressor Ω that learns to capture a mapping

conv2D

conv3D

deconv3D 

concat

conv3D twice

+max pool

deconv3D

+conv3D twice

event stack

event redistribution

c=4
c=8

c=32

c=64
c=4 c=8 c=32

c=96c=24c=20

c=4

(h, w, 16)

LR feature

HR feature

Input

Output
(2×h, 2×w, 16)

×2

×2

FSRCNN

E2VID

E2I

Figure 4: EventZoom-2× network architecture. The input

LR events are first binned into a 16-channel event stack.

The event stack is then fed into two branches, i.e. a 3D U-

Net and an E2I module which consists of E2VID [36] and

FSRCNN [9]. The LR and HR features from the last layer

of E2VID and FSRCNN are concatenated with the begin-

ning and second last layers of the U-Net. Finally, the HR

event stack is redistributed to spatiotemporal point clouds.

from noise-corrupted LR event data ÊLR to noise-free HR

event data EHR without ground truth supervision:

argmin
Ω

L
{

Ω(ÊLR
(i)), Ê

HR
(i)

}

, (4)

where L denotes a loss function. In our case, we use the

mean squared error loss. Note that the hot/cold pixels do not

follow this stochastic process and require pre-processing.

3.4. EventZoom neural framework

The network takes as input a spatiotemporal 3D point

cloud and outputs its HR enhanced version. The cap-

tured events are mostly sparse in space but dense over

time. Inspired by previous study [48] where quantitative

results showed 2D-CNN-based SR networks are not suit-

able for EDSR, we employ 3D convolutions for the purpose

of learning spatiotemporal features. The neural network

is built upon 3D U-Net [52], as shown in Fig. 4 for 2×
SR. Compared to other multi-channel 2D-CNN-based ap-

proaches, 3D U-Net takes more channels in the time dimen-

sion to better exploit temporal coherence. Meanwhile, the

limitations of 3D convolution include large network size,

more data required for training, and longer inference time.

Both the LR and HR events are binned into a 16-channel

event stack to perform supervision. The events are summed
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per pixel within each event frame. We have also tried dif-

ferent channel numbers and found 16 achieves the best per-

formance. Since EventNFS has a refresh rate of 90FPS, we

chose the time interval of 10ms to enforce each event frame

roughly covering one image frame. An event stack then

covers a time duration of 160ms.

There are two modules in the network. The main mod-

ule is the 3D U-Net. The other complementary module per-

forms event-to-image (E2I) conversion, and is composed of

two sub-models, i.e. E2VID [36] and FSRCNN [9]. E2VID

performs event-to-image reconstruction at same resolution.

FSRCNN performs 2× image SR. The last layer of features

from E2VID is concatenated with the first feature layer of

the 3D U-Net. The last layer of features from FSRCNN is

concatenated with the second last output layer of the 3D U-

Net. Both E2VID and FSRCNN were re-trained with the

new NFS data. The 16-channel event stack is binned into a

single frame to feed into E2VID. The purpose of E2I is to

take advantage of the features learned from event-to-image

conversion. E2VID and FSRCNN were chosen on a balance

of performance and complexity. There are other alternative

network architectures for such purpose.

In 2× SR, the network incorporates additional 3D de-

convolution layers for each scale of skip connections, indi-

cated by the light blue arrows in Fig. 4. The output event

stack is rounded to integer values and then redistributed

by assigning a timestamp for each event. We have exper-

imented with different strategies for timestamp assignment

such as random assignment or equal interval, and we found

the difference is minimal.

During training, we randomly selected 10 multi-

resolution event clips from the EventNFS and generated

2800 LR-HR event pairs as the training set. The valida-

tion set has 450 LR-HR pairs extracted from 3 event clips.

We used a batch size of 5 and trained EventZoom for 50

epochs. The Adam optimizer is used for minizing the MSE

loss with an initial learning rate of 0.01, decayed by a factor

of 0.5 every 10 epochs. EventZoom was implemented using

PyTorch 1.6 with an NVIDIA 2080 Ti GPU. The training

totally took around 2 hours.

4. Results

The experimental results are organized as follows:

1. EventZoom was compared with SOTA event denoisers

on the benchmark dataset DVSNOISE20 [1].

2. For event-to-event SR, EventZoom was compared with

GEF [48] up to 4× SR.

3. Ablation studies were conducted to evaluate the effec-

tiveness and tradeoff of the proposed E2I module.

Denoising. EventZoom was compared with four event de-

noisers, i.e., Liu et al. [27], EV-gait [47], GEF [48] and

EDnCNN [1]. The DVSNOISE20 [1] dataset is used as

the benchmark dataset. DVSNOISE20 contains 16 differ-

ent scenes mostly under static conditions. In this case,

the EventZoom-1× was trained with same-resolution input-

output pairs. The 3D de-convolution layers for skip connec-

tions shown in Fig. 4 were not used so that the output can

keep the original size. We tested 14 out of 16 sequences ex-

cept Scene-1 and Scene-16 as we found these two sequences

(a) APS frame (b) Raw event data (c) Liu et al. [27] (d) EV-gait [47] (e) GEF [48] (f) EDnCNN [1] (g) Ours

Figure 5: Same-resolution denoising results on the DVSNOISE20 [1] dataset. (a) an APS frame captured by a DAVIS346.

(b) the event frame accumulating events fired within the exposure time of (a). (c)-(g) the denoising results based on (b).
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(a) APS frame (b) Raw event data (c) 2× w/ GEF (d) 2× w/ ours (e) 4× w/ GEF (f) 4× w/ ours

Figure 6: Comparison of 2× and 4× event SR performance between GEF [48] and our method.

Table 1: Denoising runtime comparison on DVSNOISE20

[1]. (unit: second)

Liu et al. [27] EV-gait [47] GEF [48] EDnCNN [1] Ours

benches 106.86 498.55 5114.73 696.41 10.62

bigChecker 1817.88 7790.69 11233.24 907.49 13.68

bike 8.23 32.91 1007.05 193.54 8.53

bricks 11.06 48.24 1833.77 222.13 8.47

checkerFast 968.70 3730.56 7084.50 1077.21 13.25

checkerSlow 42.68 142.95 2792.85 526.28 9.78

classroom 614.14 2271.18 6337.69 667.74 10.79

conference 304.18 1457.25 5427.41 690.29 11.30

labFast 228.15 1016.37 5275.22 805.43 10.78

labSlow 51.33 209.52 2587.21 586.69 9.58

pavers 87.14 281.20 2528.94 355.64 8.93

soccer 14.93 52.20 3510.58 352.08 8.98

stairs 54.59 225.43 3538.54 631.18 10.50

toys 1789.15 6132.71 13049.88 1063.56 13.92

average 435.64 1706.41 5094.40 626.83 10.65

were severely corrupted by dead pixels. The denoising re-

sults are shown in Fig. 5. As can be seen that EventZoom

is able to reveal and enhance the scene structures and effec-

tively remove noisy events. Note that EventZoom did not

outperform other methods by the metric proposed in ED-

nCNN [1] as the Event Probablity Mask (EPM) only identi-

fies wrongly-fired events while our EventZoom resulted in

additional events which is treated as false positive events by

the EPM.

The runtime of all the denoisers was benchmarked in Ta-

ble 1. GEF [48] was implemented using a coarse-to-fine

grid search method for estimating the optical flow for op-

timal accuracy. All filters were tested on the middle 2%
temporal window of the 14 sequences as both GEF and ED-

nCNN require long run time compared to others. On aver-

age, EventZoom takes at least 40× less time than others.

Super resolution. EventZoom was compared with GEF

[48] for 2× and 4× event-to-event SR. EventZoom

achieved 4× SR by performing EventZoom-2× SR twice.

We have also experimented with a single EventZoom-4×
network but found the resolution for the 1×-scale data was

too low to train. Both DVSNOISE20 [1] and our EventNFS

datasets were used for testing. The SR results are shown in

Fig. 6. EventZoom filled missing information even within

Table 2: Ablation on the E2I module.

Settings LR feat. HR feat. MSE

Baseline #0 × × 0.0608

Baseline #1 X × 0.0575

Baseline #2 × X 0.0580

EventZoom X X 0.0568

large empty area. This is likely due to the relatively longer

time window it processed. On the contrary, GEF was unable

to fill large area of missing information as it only extracted

mutual information from the image and events.

Ablation on the E2I module. We evaluated the effec-

tiveness of the proposed E2I module. Since our E2I is a

combination of E2VID and FSRCNN, corresponding to LR

and HR image features, we considered three baseline mod-

els each disabling one/two image feature(s). The minimal

loss values during training were used as the evaluation met-

ric, summarized in Table 2. The qualitative results are pre-

sented in the supplementary document. In addition, we ex-

perimented with other architectural variants, including the

partial convolutions [26] and the stacked dilated SPatially-

Adaptive DEnormalization mechanism [33]. The results are

appended in the supplementary document.

5. Applications

5.1. Event­based visual object tracking

We evaluated the performance improvement that Event-

Zoom can bring to the task of event-based visual object

tracking. The original NFS dataset has provided ground

truth bounding boxes for each video sequence [14]. The

same bounding boxes were copied to the event data. We

chose E-MS [3] as the benchmark tracker. E-MS is an

efficient event-based tracking method that uses mean-shift

clustering and Kalman filters to classify the objects in the

scene. In order to calculate the coincidence with bound-

ing box ground truth, we employed the minimum enclosing

rectangle of event clusters, and selected the rectangle clos-
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(a) 1× raw data (b) 1×, ours (denoised) (c) 2× raw data (d) 1×, E2SRI+V2E (e) 2×, ours (denoised) (f) 1×, ours (SR)

Figure 7: Examples for the tracking results. Red/Green bounding boxes represent the ground truth/prediction. (a) & (b) are

1× resolution scale while (c-f) are 2×. (d) takes 1× data and performs 2× SR by E2SRI [29] and V2E [8]. (e) performs

same-resolution event denoising for the 2× data before tracking. (f) directly performs 2× SR before tracking.

Table 3: Visual object tracking performance comparison on 12 samples of EventNFS dataset (greener blocks represent better

performance with higher IoU index).

biker

all 1

biker

up

body

car ca-

maro

car

jump-

ing

car rc

rotat-

ing

first

horse

run-

ning

jelly

fish 5

motor-

cross
rubber

running

100 m 2

soccer

ball

1×
Raw data 0.271 0.194 0.159 0.221 0.381 0.126 0.176 0.151 0.237 0.094 0.109 0.088

Ours (denoise) 0.286 0.222 0.277 0.311 0.454 0.199 0.197 0.190 0.248 0.100 0.136 0.246

2×

Raw data 0.250 0.173 0.144 0.131 0.353 0.102 0.171 0.078 0.253 0.065 0.120 0.056

1×, E2SRI&V2E 0.251 0.205 0.112 0.104 0.367 0.108 0.116 0.070 0.251 0.041 0.086 0.060

Ours (denoise) 0.335 0.239 0.231 0.367 0.503 0.175 0.202 0.192 0.267 0.200 0.135 0.206

Ours (1× w/ SR) 0.353 0.241 0.220 0.270 0.529 0.146 0.178 0.200 0.254 0.228 0.159 0.248

est to the target object as the predicted bounding box. Inter-

section over Union (IoU) was used as the evaluation metric

between predicted bounding boxes and the ground truth.

We chose 12 sequences from EventNFS for testing. Each

sequence was tested on two resolution scales. The 1× scale

represents a resolution of 111 × 62, and the 2× represents

222× 124. There were 6 cases tested: (a) perform tracking

on 1× raw event data; (b) perform same-resolution denois-

ing on 1× data by our EventZoom, then perform tracking;

(c) perform tracking on 2× raw data; (d) perform E2I SR by

E2SRI [29], convert the 2× video to 2× events by V2E [8],

perform tracking; (e) perform same-resolution denoising on

2× data by our EventZoom, then perform tracking; (f) per-

form 2× EDSR by our EventZoom, then perform tracking.

Two examples with the tracking results are shown in

Fig. 7. The biker (first row) and the toy car (second row)

are better revealed at higher resolution and tracked more

accurately. The results for the accuracy of average IoU are

reported in Table 3. As shown in the table, both the 1× de-

noising and 2× SR have achieved improvements compared

to those from the raw data. Moreover, we found that the 2×
events obtained by {E2SRI+V2E} provided minimal track-

ing improvements.

Table 4: Image reconstruction performance

PSNR SSIM MSE runtime

E2SRI [29] 14.787 0.474 0.041 6.297s

Ours 15.510 0.505 0.036 0.605s

5.2. Image reconstruction

We used EventZoom for image reconstruction. The

E2VID was chosen as the benchmark 1× event-to-image re-

construction algorithm [36]. For 2× SR image reconstruc-

tion, we compared with 1) 1× E2VID + image SR using

SRFBN [23] and 2) E2SRI [29], one of the state-of-the-art

algorithms that performs super resolved image reconstruc-

tion. The results are shown in Fig. 8. As can be seen in the

figure, EventZoom achieves the best image reconstruction

quality at 2×. We also show 4× result in Fig. 8f which are

reconstructed from our 4× SR event data. For quantitative

analysis, we benchmarked the reconstruction performance

by randomly selecting 1000 images from the EventNFS

dataset and calculated several measures including PSNR,

SSIM and MSE between reconstructed images and corre-

sponding APS frames. We also recorded the run time and

all results are presented in Table 4. Our results showed that
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(a) APS frame (b) 1× w/ E2VID (c) 1× w/ E2VID+SRFBN (d) 2× w/ E2SRI (e) Ours (2×)

(f) Ours (4×)

Figure 8: Comparison of event-based image reconstruction performance on our EventNFS dataset. (a) an APS frame. (b)

reconstruct 1× image with E2VID [36]. (c) reconstruct 1× image with E2VID [36] and then 2× upsample image with

SRFBN [23]. (d) reconstruct 2× image directly with E2SRI [29]. (e) reconstruct 2× event with EventZoom and then

reconstruct 2× image with E2VID [36]. (f) reconstruct 4× event with EventZoom and then reconstruct 4× image with

E2VID [36].

EventZoom outperformed E2SRI across all metrics with

10× less time on average. Additional video reconstruction

results are included in the supplementary material.

6. Conclusion

This paper presented a novel neural framework for event

denoising and super resolution, referred as EventZoom.

EventZoom used a 3D U-Net as the backbone architecture

with an optional event-to-image (E2I) module. The E2I

module leveraged SOTA image reconstruction technique. In

order to learn the correspondence between the LR and HR

event data, we proposed a display-camera system for multi-

resolution event data collection. The system was used to

convert the high framerate object tracking dataset NFS [14]

to an event version (EventNFS) at three scales. By train-

ing with the provided noise-corrupted HR-LR pairs, the net-

work was able to effectively perform EDSR up to 4× SR.

EventZoom achieves state-of-the-art results with improved

time efficiency. The enhanced event streams by EventZoom

contribute to improved visual task performance. We have

presented two exemplary applications including visual ob-

ject tracking and SR image reconstruction.

There are several limitations for this work. The dataset

quality was compromised by the display, which has rela-

tively low refresh rate and dynamic range. This imposes

constraint for applying motion-based algorithms, e.g. GEF

[48]. Interestingly, we did not find much generalization is-

sue for the trained models after testing on external datasets.

A more accurate measure is in need to quantify the effec-

tiveness in event restoration and enhancement.
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