
Compatibility-aware Heterogeneous Visual Search

Rahul Duggal∗ Hao Zhou Shuo Yang Yuanjun Xiong

Wei Xia† Zhuowen Tu Stefano Soatto

AWS/Amazon AI

rduggal7@gatech.edu {zhouho, shuoy, yuanjx, wxia, ztu, soattos}@amazon.com

Abstract

We tackle the problem of visual search under resource

constraints. Existing systems use the same embedding

model to compute representations (embeddings) for the

query and gallery images. Such systems inherently face a

hard accuracy-efficiency trade-off: the embedding model

needs to be large enough to ensure high accuracy, yet

small enough to enable query-embedding computation on

resource-constrained platforms. This trade-off could be

mitigated if gallery embeddings are generated from a large

model and query embeddings are extracted using a com-

pact model. The key to building such a system is to ensure

representation compatibility between the query and gallery

models. In this paper, we address two forms of compati-

bility: One enforced by modifying the parameters of each

model that computes the embeddings. The other by modify-

ing the architectures that compute the embeddings, leading

to compatibility-aware neural architecture search (CMP-

NAS). We test CMP-NAS on challenging retrieval tasks

for fashion images (DeepFashion2), and face images (IJB-

C). Compared to ordinary (homogeneous) visual search us-

ing the largest embedding model (paragon), CMP-NAS

achieves 80-fold and 23-fold cost reduction while main-

taining accuracy within 0.3% and 1.6% of the paragon on

DeepFashion2 and IJB-C respectively.

1. Introduction

A visual search system in an “open universe” setting is

often composed of a gallery model φg and a query model

φq , both mapping an input image to a vector representa-

tion known as embedding. The gallery model φg is typi-

cally used to map a set of gallery images onto their embed-

ding vectors, a process known as indexing, while the query

∗Currently at the Georgia Institute of Technology. Work conducted

during an internship with Amazon AI.
†Corresponding author

Gallery Set

Query Image

Model 𝜙!

Model 𝜙"

Embedding

space of𝜙!

Embedding

space of𝜙"

EfficiencyAccuracy

Compatible √

Compatible √

Compatible ?

Homogeneous 

(𝜙!, 𝜙!)

Heterogeneous 

(𝜙", 𝜙!)

Homogeneous 

(𝜙", 𝜙")

Figure 1: Homogeneous visual search uses the same embedding

model, either large (orange) to meet performance specifications, or

small (green) to meet cost constraints, forcing a dichotomy. Het-

erogeneous Visual Search (blue) uses a large model to compute

embeddings for the gallery, and a small model for the query im-

ages. This allows high efficiency without sacrificing accuracy, pro-

vided that the green and orange embedding models are designed

and trained to be compatible.

model extracts embeddings from query images to perform

search against the indexed gallery. Most existing visual

search approaches [24, 26, 38, 2, 31] use the same model

architecture for both φq and φg . We refer to this setup as

homogeneous visual search. An approach that uses differ-

ent model architectures for φq and φg is referred to as het-

erogeneous visual search (HVS).

The use of the same φg = φq trivially ensures that

gallery and query images are mapped to the same vec-

tor space where the search is conducted. However, this

engenders a hard accuracy-efficiency trade-off (Fig. 1)—

choosing a large architecture φg for both query and gallery

achieves high-accuracy at a loss of efficiency; choosing a

small architecture φq improves efficiency to the detriment

of accuracy, which is compounded since in practice, index-

ing only happens sporadically while querying is performed

continuously. This leads to efficiency being driven mainly

by the query model. HVS allows the use of a small model

φq for querying, and a large model φg for indexing, partly

10723



73.1
ResNet-101

Accuracy vs Flops

80

80

85

90

78.878.8

75.8 77.0

62.7

73.0

86.7

81.880.4

84.1 85.1

60

65

70

75

160 320 640 1280 51202560

Million Flops

1:
N

Fa
ce

R
et

rie
va

lA
cc

ur
ac

y

MobileNetV1
MobileNetV2
MobileNetV3
ShuffleNetV2
ProxyLessNAS
CMP-NAS(our)

Figure 2: The trade-off between accuracy and efficiency for a het-

erogeneous system performing 1:N Face retrieval on DeepFash-

ion2. We use a ResNet-101 as the gallery model and compare dif-

ferent architectures as query models. For MobileNetV1 and V2,

we provide results with width 0.5× and 1×.

mitigating the accuracy-complexity trade-off by enlarging

the trade space. The challenge in HVS is to ensure that φg

and φq live in the same metric (vector) space. This can be

done for given architectures φg, φq , by training the weights

so the resulting embeddings are metrically compatible [28].

However, one can also enlarge the trade space by including

the architecture in the design of metrically compatible mod-

els. Typically, φg is chosen to match the best current state-

of-the-art (paragon) while the designer can search among

query architectures φq to maximize efficiency while ensur-

ing that performance remains close to the paragon.

In this work, we pursue compatibility by optimizing both

the model parameters (weights) as well as the model ar-

chitecture. We show that (1) weight inheritance [19] and

(2) backward-compatible training (BCT) [28] can achieve

compatibility through weight optimization. Among these,

the latter is more general in that it works with arbitrary em-

bedding functions φg and φq . We expand beyond BCT to

neural architecture search (NAS) [43, 4, 8, 30] with our

proposed compatibility-aware NAS (CMP-NAS) strategy

that searches for a query model φq that is maximally ef-

ficient while being compatible with φg . We hypothesize

that CMP-NAS can simultaneously find the architecture of

query model and its weights that achieve efficiency similar

to that of the smallest (query) model, and accuracy close

to that of the paragon (gallery model). Indeed the results in

Fig. 2 shows that CMP-NAS outperforms all of the state-of-

the-art off-the-shelf architectures designed for mobile plat-

forms with resource constraints. Compared with paragon

(state-of-the-art high-compute homogeneous visual search)

methods, HVS reduce query model flops by 23× with only

1.6% in loss of search accuracy for the task of face retrieval.

Our contributions can be summarized as follows: 1) we

demonstrate that an HVS system allows to better trade off

accuracy and complexity, by optimizing over both model

parameters and architecture. 2) We propose a novel CMP-

NAS method combining weight-based compatibility with a

novel reward function to achieve compatibility-aware archi-

tecture search for HVS. 3) We show that our CMP-NAS can

reduce model complexity many-fold with only a marginal

drop in accuracy. For instance, we achieve 23× reduction

in flops with only 1.6% drop in retrieval accuracy on face

retrieval using standard benchmarks.

2. Related Work

Visual search: Most prior visual search systems con-

struct embedding vectors either by aggregating hand-crafted

features [37, 23, 29, 1, 40, 42], or through feature maps ex-

tracted from a convolutional neural network [26, 41, 38, 32,

26, 2, 14, 31, 25]. The latter, being more prevalent in recent

times, differ from us in that they follow the homogeneous

visual search setting and suffer from a hard accuracy and

efficiency trade-off. Recently, [3] discusses the asymmetric

testing task which is similar to our heterogeneous setting.

However, their method is unable to ensure that the heteroge-

neous accuracy supersedes the homogeneous one (compat-

ibility rule in Sec. 3.1.1). Such a system is not practically

useful since the homogeneous deployment achieves both a

higher accuracy and a higher efficiency.

Cross-model compatibility: The broad goal of this

area is to ensure embeddings generated by different mod-

els are compatible. Some recent works ensure cross-model

compatibility by learning transformation functions from the

query embedding space to the gallery one [33, 5, 13]. Dif-

ferent from these works, our approach directly optimizes

the query model such that its metric space aligns with that

of the gallery. This leads to more flexibility in designing the

query model and allows us to introduce architecture search

in the metric space alignment process. Our idea of model

compatibility, as metric space alignment, is similar to the

one in backward-compatible training (BCT) [28]. However,

[28] only considers compatibility through model weights,

whereas, we generalize this concept to the model architec-

ture. Additionally, [28] targets for compatibility between an

updated model and its previous (less powerful) version, the

application scenarios of which are different from this work.

Architecture Optimization: Recent progress demon-

strates the advantages of automated architecture design over

manual design through techniques such as neural architec-

ture search (NAS) [43, 30, 8, 4]. Most existing NAS al-

gorithms however, search for architectures that achieve the

best accuracy when used independently. In contrast, our

task necessitates a deployment scenario with two models:

one for processing the query images and another for pro-

cessing the gallery. Recently, [18, 15] propose to use a large

teacher model to guide the architecture search process for

a smaller student which is essentially knowledge distilla-

tion in architecture space. However, our experiments show

10724



that knowledge distillation cannot guarantee compatibility

and thus these methods may not succeed in optimizing the

architecture in that aspect. To the best of our knowledge,

CMP-NAS is the first to consider the notion of compatibil-

ity during architecture optimization.

3. Methodology

We use φ to denote an embedding model in a visual

search system and κ to denote the classifier that is used to

train φ. We further assume φ is determined by its archi-

tecture a and weights w. For our visual search system, a

gallery model is first trained on a training set T and then

used to map each image x in the gallery set G onto an em-

bedding vector φg(x) ∈ R
K . Note this mapping process

only uses the embedding portion φg . During test time, we

use the query model (trained previously on T ) to map the

query image x′ onto an embedding vector φq(x
′) ∈ R

K .

The closest match is then obtained through a nearest neigh-

bor search in the embedding space. Typically, visual search

accuracy is measured through some metric, such as top-10

accuracy, which we denote by M(φq, φg;Q,G). This is cal-

culated by processing query image set Q with φq and pro-

cessing the gallery set G with φg . For simplification, we

omit the image sets and adopt the notation M(φq, φg) to

denote our accuracy metric.

3.1. Homogeneous vs. heterogeneous visual search

Assuming φq and φg are different models and φq is

smaller than φg , we define two kinds of visual search:

• Homogeneous visual search uses the same embed-

ding model to process the gallery and query images,

and is denoted by (φq , φq) or (φg , φg).

• Heterogeneous visual search uses different embed-

ding models to process the query and gallery images,

respectively, and is denoted by (φq , φg).

We illustrate the accuracy-efficiency trade-off faced by

visual search systems in Fig. 3. A homogeneous system

with a larger embedding model (e.g. ResNet-101 [9], de-

noted as paragon) achieves a higher accuracy due to bet-

ter embeddings (orange bar in Fig. 3(a)) but also consumes

more flops during query time (orange line in Fig. 3(b)).

On the other hand, a smaller embedding model (e.g. Mo-

bileNetV2 [27], denoted as baseline) in the homogeneous

setting achieves the opposite end of the trade-off (green bar

and line in Fig. 3(a),(b)). Our heterogeneous system (blue

bar and line in Fig. 3(a),(b)) achieves accuracy within 1.6%
of the paragon and efficiency of the baseline.

When computing the cost of a visual search method, one

has to take into account both the cost of indexing, which

happens sporadically, and the cost of querying, which oc-

curs continuously. While large, the indexing cost is amor-

tized through the lifetime of the system. To capture both,

86.7%
85.1%

77.1%

70%

75%

80%

85%

90%

Paragon Ours Baseline

1:
N
Se
ar
ch
A
cc
.

(a) Accuracy on IJB-C.

Baseline
329 Mflops

Paragon

Ours

0

7k
6k
5k
4k
3k

0

2k
1k

20 40 60 80 100
#Query/#galleryA

m
or
tiz
ed
C
os
t(
M
flo
ps
)

7597 Mflops

(b) Amortized cost analysis

Figure 3: Accuracy-efficiency trade-off for visual search. In (a)

we compare the 1:N face retrieval accuracy (TPIR@FPIR=10−1)

on IJB-C. We denote the homogeneous system with ResNet-101

and MobileNetV2 as the paragon and baseline respectively. In (b)

we observe that, as the size of the query set increases, the complex-

ity of our heterogeneous system converges to that of the baseline.

in Fig. 3(b) we report the amortized cost of embedding

the query and gallery images, as a function of the ratio of

queries to gallery images processed. In most practical sys-

tems, the number of queries exceeds the number of indexed

images by orders of magnitude, so the relevant cost is the

asymptote, but we report the entire curve for completeness.

The initial condition for that curve is the cost of the paragon.

Our goal is to design a system that has a cost approach-

ing the asymptote (b), with performance approaching the

paragon (a).

3.1.1 Notion of Compatibility

A key requirement of a heterogeneous system is that the

query and gallery models should be compatible. We define

this notion through the compatibility rule which states that:

A smaller model φq is compatible with a larger

model φg if it satisfies the inequality M(φq, φg) >

M(φq, φq).

We note that satisfying this rule is a necessary condition for

heterogeneous search. A heterogeneous system violating

this condition, i.e. M(φq, φg) < M(φq, φq), is not prac-

tically useful since the homogeneous system M(φq, φq)
achieves both higher efficiency and accuracy. Additionally,

a practically useful heterogeneous system should also sat-

isfy M(φq, φg) ≈ M(φg, φg). In subsequent sections, we

study how to achieve both these goals through weight and

architecture compatibility.

3.2. Compatibility for Heterogeneous Models

In this section, we discuss different ways to obtain com-

patible query and gallery models φq , φg that satisfy the

compatibility rule. While a general treatment may optimize

φq and φg jointly, in this paper, we consider the simpler case

when φg is fixed to a standard large model (ResNet-101)

while we optimize the query model φq . For the subsequent

discussion, we assume the gallery model φg has an architec-

ture ag and is parameterized by weights wg . Corresponding

10725



260 280 300 320 340
Mega Flops

Same flops,
different acc.

83.5%
83.7%
83.9%
84.1%
84.3%
84.5%
84.7%
84.9%
85.1%
85.3%

H
et
er
og

en
eo
us

A
cc
.(
B
C
T)

(a)

83.5%
83.7%
83.9%
84.1%
84.3%
84.5%
84.7%
84.9%
85.1%
85.3%

74% 75% 76% 77% 78% 79%

H
et
er
og

en
eo
us

A
cc
.(
B
C
T)

HomogeneousAcc. (Vanilla)

HighHomogeneous Acc.

High Heterogeneous Acc.

⟺

Kendall’s correlation : 0.33 (p-val : 0.003)
Spearman rank correlation : 0.45 (p-val : 0.005)

(b)

79% 80% 81% 82%
Homogeneous Acc. (BCT)

Kendall’s correlation : 0.60 (p-val : 1e-7)
Spearman rank correlation : 0.77 (p-val : 1e-8)

High Homogeneous Acc.

High Heterogeneous Acc.

⟺

83.5%
83.7%
83.9%
84.1%
84.3%
84.5%
84.7%
84.9%
85.1%
85.3%

H
et

er
og

en
eo

us
A

cc
.(

B
C

T)

(c)

Figure 4: NAS Motivation. We randomly sample 40 architectures from the ShuffleNet search space of [8] and train them from scratch.

Observe that (a) Architectures with same flops (shown with red circles) can have different heterogeneous accuracies proving that archi-

tecture has a measurable impact on compatibility. (b) Architectures (shown in red) achieving the highest heterogeneous accuracy with

BCT training are not the ones achieving the highest homogeneous accuracy with vanilla training. This means that traditional NAS (which

optimizes for homogeneous accuracy while using vanilla training) may fail to find the most compatible models. (c) When trained with

BCT, the architectures achieving the highest heterogeneous accuracy also achieve the highest homogeneous accuracy. This means simply

equipping traditional NAS with BCT will aid the search for compatible architectures.

quantities for the query model are φq with architecture aq
and parameterized by weights wq . To train the query and

gallery models φq , φg we use the classification-based train-

ing [28, 39] with the query and gallery classifiers denoted

by κq and κg respectively. In what follows, we discuss two

levels of compatibility—weight level and architecture level.

3.2.1 Weight-level compatibility

Given the gallery model φg and its classifier κg , weight-

level compatibility aims to learn the weights wq of query

model φq such that the compatibility rule is satisfied. To this

end, the optimal query weights w∗

q , and its corresponding

classifier κ∗

q can be learned by minimizing a composite loss

over the training set T .

w∗

q , κ
∗

q = argmin
wq,κq

{λ1L1(wq, κq; T )+

λ2L2(wq, κq, wg, κg; T )}, (1)

where L1 is a classification loss such as the Cosine mar-

gin [36], Norm-Softmax [35] and L2 is the additional term

which promotes compatibility. We consider four training

methods which can be described using Eq.1 as follows:

1. Vanilla training: Considers λ2 = 0.

2. Knowledge Distillation [11]: L2 is the temperature

smoothed cross-entropy loss between the logits of

query and gallery model.

3. Fine-tuning: Initializes wq using wg and κq using κg

and considers λ2 = 0.

4. Backward-compatible training (BCT) [28]: Uses L2 =
L1(wq, κg; T ). This ensures that the query embedding

model learns a representation that is compatible with

the gallery classifier.

We compare these methods in Tab. 4, and find that only

the last two succeed in ensuring compatibility. Among these

two, fine-tuning is more restrictive since it makes a stronger

assumption about the query architecture—it requires the

query model to have a similar network structure, kernel size,

layer configuration as the gallery model. In contrast, BCT

poses no such restriction and can be used to train any query

architecture. Thus we use [28] as our default method to en-

sure weight-level compatibility. Recently [3] proposed to

learn the weights of a query model by minimizing the L2

distance between query and gallery embeddings, however,

both [3] and [28] observe that the resulting query model

does not satisfy the compatibility rule.

3.2.2 Architecture-level compatibility

Given the gallery model φg and classifier κg , the problem of

architecture-level compatibility aims to search for an archi-

tecture aq for the query model φq that is most compatible

with a fixed gallery model. The need of architecture level

compatibility is motivated by two questions:

Q1 How much does architecture impact compatibility?

Q2 Can traditional NAS find compatible architectures?

To answer these questions, we randomly sample 40 archi-

tectures from the ShuffleNet search space [8], with each

having roughly 300 Million flops.

A1 We train these architectures with BCT (λ1 = 1, λ2 = 1
in Eq. 1) and plot the heterogeneous accuracy vs. flops

10726



in Fig. 4(a). There are two observations: (1) heteroge-

neous accuracy is not correlated with flops and (2) ar-

chitectures with similar flops can achieve different ac-

curacy, which indicates architecture indeed has a mea-

surable impact on accuracy.

A2 We plot the homogeneous accuracy of models with

vanilla training (target of traditional NAS) vs. hetero-

geneous accuracy of the same models trained with

BCT (our target) in Fig. 4(b). We observe that: (1)

The correlation between the two accuracy is low and

(2) The architectures with the highest heterogeneous

accuracy are not those with highest homogeneous ac-

curacy. This indicates traditional NAS may not be suc-

cessful in searching for compatible architectures.

We further investigate the correlation between homoge-

neous (with BCT) and heterogeneous accuracy (with BCT)

in Fig. 4(c) and discover that the correlation of these two

accuracies is much higher than that in Fig. 4(b). This offers

a key insight that equipping traditional NAS with BCT may

help in searching compatible architectures.

Architecture optimization with CMP-NAS Based on the

intuition developed previously, we develop CMP-NAS us-

ing the following notation. Denote by φq(aq, wq) a can-

didate query embedding model with architecture aq and

weights wq . We further denote κq as its corresponding clas-

sifier. With CMP-NAS, we solve a two-step optimization

problem where the first step amounts to learning the best

set of weights— w∗

q (for the embedding model φq) and κ∗

q

(for the common classifier)–by minimizing a classification

loss L over the training set T as below

w∗

q , κ
∗

q = argmin
wq,κq

{λ1L(φq(aq, wq), κq; T )

+ λ2L(φq(aq, wq), κg; T )}, (2)

where L can be any classification loss such as Cosine mar-

gin [36], Norm-Softmax [35]. Similar to BCT, the second

term L(φq(aq, wq), κg; T ) ensures that the candidate query

embedding model φq(aq, w
∗

q ) learns a representation that is

compatible with the gallery classifier.

Using weights w∗

q and κ∗

q from above, the second step

amounts to finding the best query architecture a∗q in a search

space Ω, by maximizing a reward R evaluated on the vali-

dation set as below

a∗q = argmax
aq∈Ω

R
(

φq(aq, w
∗

q ), κ
∗

q

)

. (3)

We consider three candidate rewards presented in Tab 1.

Similar to traditional NAS, homogeneous accuracy

M(φq(aq, wq), φq(aq, wq)) is our baseline reward R1.

Recall that however, we are interested in searching for the

Reward Formulation

R1 M(φq(aq, wq), φq(aq, wq)
R2 M(φq(aq, wq), φg)
R3 M(φq(aq, wq), φq(aq, wq))×M(φq(aq, wq), φg)

Table 1: Different rewards considered with CMP-NAS. The re-

wards R1, R2 prioritize either the symmetric or asymmetric accu-

racy while ignoring the other. R3 prioritizes both accuracies and

consistently outperforms other rewards.

architecture which achieves the best heterogeneous accu-

racy. With this aim, we design rewards R2 and R3 which

include the heterogeneous accuracy in their formulation.

Our CMP-NAS formulation in Eq. 2 and rewards in

Tab. 1 is general and can work with any NAS method. For

demonstration, we test our idea with the single path one shot

NAS [8] and consists of the following two components:

Search Space: Similar to popular weight sharing methods

[4, 8, 17], the search space of our query model consists of

a shufflenet-based super-network. The super-network con-

sists of 20 sequentially stacked choice blocks. Each choice

block can select one of four operations: k × k convolu-

tional blocks (k ∈ 3, 5, 7) inspired by ShuffleNetV2 [21]

and a 3×3 Xception [6] inspired convolutional block. Addi-

tionally, each choice block can also select from 10 different

channel choices 0.2−2.0×. During training we use the loss

formulation in Eq. 2 to train this super-network whereby, in

each batch a new architecture is sampled uniformly [8] and

only the weights corresponding to it are updated.

Search Strategy: To search for the most compatible ar-

chitecture, CMP-NAS uses evolutionary search [8] fitted

with the different rewards outlined in Tab. 1. The search

is fast because each architecture inherits the weights from

the super-network. In the end, we obtain the five best archi-

tectures and re-train them from scratch with BCT.

4. Experiments

We evaluate the efficacy of our heterogeneous system on

two tasks: face retrieval, as it is one of the “open-universe”

problems with the largest publicly available datasets; and

fashion retrieval which necessitates an open-set treatment

due to the constant evolution of fashion items. We use face

retrieval as the main benchmark for our ablation studies.

4.1. Datasets, Metrics and Gallery Model

Face Retrieval: We use the IMDB-Face dataset [34] to

train the embedding model for the face retrieval task. The

IMDB-Face dataset contains over 1.7M images of about

59k celebrities. If not otherwise specified, we use 95% of

the data as training set to train our embedding model and

use the remaining 5% as a validation dataset to compute

the rewards for architecture search. For testing, we use the

widely used IJB-C face recognition benchmark dataset [22].

10727



The performance is evaluated using the true positive iden-

tification rate at a false positive identification rate of 10−1

(TPIR@FPIR=10−1). Throughout the evaluation, we use a

ResNet-101 as the fixed gallery model φg .

Fashion Retrieval: We evaluate the proposed method

on Commercial-Consumer Clothes Retrieval task on Deep-

Fashion2 dataset [7]. It contains 337K commercial-

consumer clothes pairs in the training set, from which 90%
of the data is used for training the embedding and the

rest 10% is used for computing the rewards in architec-

ture search. We report the test accuracy using Top-10 re-

trieval accuracy on the original validation set, which con-

tains 10,844 consumer images with 12,377 query items, and

21,309 commercial images with 36,961 items in the gallery.

ResNet-101 is used as the fixed gallery model φg .

4.2. Implementation Details

Our query and gallery models take a 112× 112 image as

input and output an embedding vector of 128 dimensions.

Face retrieval: We use mis-alignment and color distortion

for data augmentation [28]. Following recent state-of-the-

art [36], we train our gallery ResNet-101 model using the

cosine margin loss [36] with margin set to 0.4. We use the

SGD optimizer with weight decay 5 × 10−4. The initial

learning rate is set to 0.1 which decreases to 0.01, 0.001
and 0.0001 after 8, 12 and 14 epochs. Our gallery model

is trained for 16 epochs with a batch size 320. We train

the query models for 32 epochs with a cosine learning rate

decay schedule [20]. The initial learning rate is set to 1.3
all query models except MobileNetV1(1×) which uses 0.1.

Fashion retrieval: The original fashion retrieval task with

DeepFashion2 [7] requires to first detect and then retrieve

fashion items. Since we only tackle the retrieval task, we

construct our retrieval-only dataset by using ground truth

bounding box annotations to extract the fashion items. To

train the gallery model, we follow [39] in using normalized

cross entropy loss with temperature 0.5. The gallery model

is trained for 40 epochs using an initial learning rate of 3.0
with cosine decay. The weight decay is set to 10−4. Our

query models are trained with BCT for 80 epochs using an

initial learning rate of 10 with cosine decay.

Runtime: On a system containing 8 Tesla V100 GPUs,

the entire pipeline for the face (and fashion) retrieval takes

roughly 100 (45) hours. This includes roughly 8 (8) hours

to train the gallery model, 32 (14) hours to train the query

super-network, 48 (20) hours for evolutionary search and 2

(2) hours to train the final query architecture.

For additional implementation details specific to CMP-

NAS, please refer to the supplementary material.

4.3. Baseline and paragon for visual search

Since gallery features can be pre-computed and there

is no computational constraint on the gallery side, we fix

Gallery Query Acc. Query

Model Model (%) Flops (M)

Paragon ResNet-101 ResNet-101 86.7 7597

Proposed ResNet-101 CMP-NAS 85.1 327

Baseline MobileNetV2 MobileNetV2 77.1 329

Table 2: Comparison with baseline and paragon for 1:N face re-

trieval on IJB-C. Accuracy is reported as TPIR(%)@FPIR=10−1.

All the models except the paragon are trained with BCT loss using

ResNet-101 as the “teacher”.

Gallery Query Acc. Query

Model Model (%) Flops (M)

Paragon ResNet-101 ResNet-101 65.2 7597

Proposed ResNet-101 CMP-NAS 64.9 211

Baseline MobileNetV3 MobileNetV3 62.7 226

Table 3: Comparison with baseline and paragon for fashion re-

trieval on DeepFashion2. Accuracy is reported as Top-10 retrieval

accuracy. All the models except the paragon are trained with BCT

loss using ResNet-101 as the “teacher”.

the gallery model to a ResNet-101. In terms of visual

search accuracy, the paragon is achieved by the (ResNet-

101, ResNet-101) system on both the face and fashion re-

trieval tasks. On the other hand, we use (MobileNetV2, Mo-

bileNetV2) and (MobileNetV3, MobileNetV3) as the base-

line for face and fashion retrieval respectively, since they

achieve the highest accuracy among the MobileNet family.

Tab. 2 shows almost a 10% gap in accuracy between

the paragon and baseline for face retrieval. On the other

end, the baseline consumes 23× fewer query flops than the

paragon. This establishes the goal of our heterogeneous

system: To achieve accuracy similar to the paragon while

consuming query flops similar to the baseline. Indeed, the

middle rows of Tab. 2 shows this goal is achieved by our

proposed heterogeneous system (ResNet-101, CMP-NAS)

which consumes similar query flops as the baseline with

only 1.6% accuracy drop compared to the paragon. Tab. 3

reveals a similar observation on DeepFashion2.

4.4. Dissecting the performance of CMP-NAS

In this subsection, we break down the accuracy achieved

by our heterogeneous system in terms of the improvement

due to (1) weights and (2) architecture compatibility.

Improvement due to weight-compatibility: To observe

the improvement due to weight compatibility, Fig. 5 (a),(b)

shows the homogeneous and heterogeneous accuracy ob-

tained by three state-of-the-art query models with static ar-

chitectures in the 300 Million flops range trained with BCT

(Eq. 1). We observe that heterogeneous system outperforms

homogeneous system on average by 3.95% and 1.45% for

face and fashion retrieval respectively. This indicates that

considering weight-compatibility alone is beneficial.

10728



MobileN
etV1

MobileN
etV2

Proxy
Less(M

obile)

CMP-NAS

Homogeneous Acc.
1:
N
Fa
ce

R
et
.A

cc
. Heterogeneous Acc.

Paragon (86.7%)

68.2%

77.1% 77.1%

82.9%

73.0%

81.2% 81.8%

85.1%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

(a) 1:N Face retrieval accuracy (TPIR@FPIR=10−1) on IJB-C.

60.5%

58.0%

60.8%

65.4%

62.3%

60.4%

62.1%

65.7%

56.0%

58.0%

60.0%

62.0%

64.0%

66.0%

68.0% Homogeneous Acc.

Fa
sh
io
n
R
et
.A
cc
.

Heterogeneous Acc.

Mobile
NetV1

Mobile
NetV2

ProxyL
ess(Mo

bile)
CMP-N

AS

Paragon (65.2%)

(b) Fashion retrieval accuracy (top-10) on DeepFashion2.

Figure 5: Evaluating the heterogeneous and homogeneous search

accuracy for face and fashion retrieval tasks using different query

models. CMP-NAS outperforms other baselines and achieves ac-

curacy close to the paragon.

Improvement due to architecture compatibility: To see

the additional benefits due to architecture compatibility, in

Fig. 5 we compare the heterogeneous accuracy achieved by

the query models obtained via CMP-NAS and trained with

BCT. On IJB-C and DeepFashion2 datasets, CMP-NAS

outperforms the second-best model ProxyLess(Mobile) by

3.3%, 3.6% in terms of heterogeneous accuracy. This shows

architecture compatibility can improve accuracy by a large

margin. Additionally, we also observe gains of 5.8% and

4.8% in terms of homogeneous accuracy.

Comparing different methods for weight-compatibility:

In Sec. 3.2, we discussed four ways to achieve weight-

compatibility; (1) vanilla training, (2) knowledge distilla-

tion [11], (3) fine-tuning, and (4) BCT [28]. To quanti-

tatively compare these methods, we obtain the query net-

work by pruning the gallery ResNet-101 model using mag-

nitude pruning [16] and channel pruning [10]. To obtain

the (pruned) query model, we prune 90% of filters from the

first two layers in each residual block of the gallery net-

work. The query model obtained is trained with each of

the four methods and Tab. 4 shows both the homogeneous

and heterogeneous search accuracy. We observe only fine-

tuning and BCT can achieve weight-compatibility wherein

accuracy of the heterogeneous system supersedes that of the

Gallery Query Train Finetune BCT KD

model model Scratch

Magnitude prune Magnitude prune 84.4 84.9 86.4 86.8

ResNet-101 Magnitude prune 0.0 86.5 87.2 0.0

Channel prune Channel prune 84.2 85.2 86.5 87.0

ResNet-101 Channel prune 0.0 86.3 87.4 0.0

Table 4: Comparing techniques for achieving weight-level com-

patibility on the 1:N face retrieval task. The query model φq is

obtain by pruning 90% of filters in the first two layers of each

residual block of the gallery model. We see that for both prun-

ing methods, training the query model with BCT loss leads to the

highest heterogeneous accuracy.

Vanilla training

Trained with BCT

R1

R1 R2 R3

75%
74%

76%
77%
78%
79%

A
cc
ur
ac
y

(a) 1:N search on IJB-C.

R1

R1
R2

R3

Trained with BCT

Vanilla training

63%

64%

65%

62%

A
cc
ur
ac
y

(b) Top-10 on DeepFashion2.

Figure 6: Ablating on training strategies (vanilla, BCT) and re-

wards (R1 − R3) for CMP-NAS These plots show the heteroge-

neous accuracy of the best 5 models (under 100 Mflops) discov-

ered by each method and trained from scratch with BCT. Observe

that the ingredients of CMP-NAS i.e. BCT training + reward R3

perform the best.

homogeneous system. Training from scratch and knowl-

edge distillation on the other hand, cannot ensure compat-

ibility and obtain 0.0% accuracy for heterogeneous search.

Among fine-tuning and BCT, we prefer BCT to ensure

weight compatibility for two reasons: (1) fine-tuning is re-

strictive: it poses a strong requirement on the query archi-

tecture e.g. query model is obtained by pruning the gallery

model and (2) the model trained with BCT performs better.

Comparing CMP-NAS with baseline NAS[8]: To mea-

sure the gains relative to baseline NAS, in Fig. 6, we present

a barplot of the heterogeneous accuracy achieved by the

best 5 architectures obtained by vanilla NAS (yellow bar)

and CMP-NAS (blue bars) when trained from scratch us-

ing BCT. The baseline considers the vanilla loss (λ2 = 0
in Eq. 1) to train the super-network and searches using re-

ward R1 while CMP-NAS uses BCT to train the super-

network and can search using rewards R1, R2, R3. On both

datasets, CMP-NAS outperforms the baseline by 2− 2.5%.

Comparing reward choices for CMP-NAS: In Fig. 6, the

performance of different reward choices (of Tab. 1) are

shown by blue plots. As expected, the baseline reward (R1)

performs worst since its target (homogeneous accuracy) is

misaligned with our target (heterogeneous accuracy). The

10729



Gallery Query Query Fashion retrieval Face retrieval

model model MFlops top-10 search 1:N search

ResNet-101 ResNet-101 7597 65.1 86.7

ResNet-101

MobileNetV1(1x) 579 62.3 73.0

MobileNetV2(1x) 329 60.4 77.0

ProxyLess(mobile) 332 62.1 81.8

CMP-NAS-a(Face) 327 65.4 85.1

CMP-NAS-a(Fashion) 314 65.7 84.2

ResNet-101
MobileNetV3 226 63.0 80.4

CMP-NAS-b(Face) 216 64.4 84.1

CMP-NAS-b(Fashion) 211 64.9 81.5

ResNet-101

MobileNetV1(0.5x) 155 60.3 62.7

ShuffleNetV2(1x) 149 63.3 75.8

ShuffleNetV1(1x,g=1) 148 62.6 76.0

MobileNetV2(0.5x) 100 62.0 73.1

CMP-NAS-c(Face) 94 62.4 78.8

CMP-NAS-c(Fashion) 93 64.8 77.8

Table 5: Evaluating architectures searched with CMP-NAS for

fashion retrieval (denoted as fashion) and face retrieval (denoted as

face) tasks. We search models for three different complexity tiers:

100, 230 and 330 Mflops and use the best architecture to report

the results. The searched models outperform other architectures

by 3 ∼ 5% on both the tasks.

second reward (R2) is much better since it directly opti-

mizes the target while the composite reward (R3) works

best with especially large gains observed on DeepFashion2.

4.5. Generalization performance of CMP-NAS

In this section, we investigate the performance of CMP-

NAS under different compute constraints, application sce-

narios and tasks. Inspired by state-of-the-art architectures

for mobile deployment we select three computational tiers:

330 million flops (similar to MobileNetV2), 230 Mflops

(similar to MobileNetV3), and 100 Mflops (similar to Shuf-

fleNetV2). For each computational tier, we implement a

heterogeneous system using the models searched by CMP-

NAS. These models are denoted by CMP-NAS-a (330

Mflops), CMP-NAS-b (230 Mflops), and CMP-NAS-c (100

Mflops). Additionally, we append “(Face)”/“(Fashion)” to

the model name, e.g. “CMP-NAS-a(Face)”/“CMP-NAS-

a(Fashion)”, to denote the architecture searched on the face

or fashion datasets respectively.

CMP-NAS for different resource constraints: We com-

pare the performance of architectures searched by CMP-

NAS for each computational tier in Tab. 5. For each task,

we look at the model searched on the same task e.g. for

face retrieval we look at CMP-NAS-a(Face) etc. On both

datasets the models searched by CMP-NAS consistently

outperform other state-of-the-art baselines. For 330 Mflops

tier, CMP-NAS-a outperforms the second best (Proxy-

Less(Mobile) [4]) by 3.6% and by 3.1% on the fashion and

face retrieval tasks respectively. Similarly, CMP-NAS-b

outperforms the second best network MobileNetV3 [12] by

1.9% and 3.7% on the corresponding tasks. Finally, for the

100M tier, CMP-NAS-c achieves 1.5% and 3.0% improve-

ment over the second best network ShuffleNetV2(1×) while

Gallery Query Query Homogeneous Heterogeneous

model model MFlops accuracy accuracy

ResNet-101 ResNet-101 7597 85.4 -

ResNet-101
ProxyLess(mobile) 332 75.5 80.3

CMP-NAS-a(Face) 327 81.6 84.5

ResNet-101
MobileNetV3 226 74.3 79.9

CMP-NAS-b(Face) 216 79.0 82.8

ResNet-101
ShuffleNetV2(1x) 149 66.8 74.8

CMP-NAS-c(Face) 94 71.5 78.3

Table 6: Evaluating the models CMP-NAS-a,b,c(Face) on

the 1:1 face verification task using IJB-C. Accuracy metric is

TAR@FAR=10−4. The searched models outperform the baselines

indicating they can generalize across tasks.

consuming 33% fewer flops. These results establish the

generalization ability of the CMP-NAS for different com-

putation constraints.

CMP-NAS across different applications: For this exper-

iment, we evaluate the architectures searched on the face

dataset for the fashion retrieval task and vice versa. The

results are shown in the Tab. 5. We observe that the archi-

tectures optimized for the face tasks CMP-NAS-a/b/c(Face)

also outperform the baselines for the fashion retrieval task.

Moreover, these models only lose 1 − 2% accuracy com-

pared to the best model searched on the fashion dataset. We

make similar observations for CMP-NAS-a/b/c/(Fashion)

evaluated on the face retrieval task. This shows that the

architectures searched by CMP-NAS can generalize across

application scenarios.

CMP-NAS for face verification: In table Tab. 6, we use

the CMP-NAS-a/b/c(Face) models for another “open uni-

verse” problem: 1:1 face verification. The results show that

the models searched by CMP-NAS outperform state-of-the

art architectures by 3−5% in the homogeneous and hetero-

geneous settings. Importantly, the compatibility rule is also

achieved. This indicates the searched models can generalize

across different tasks.

5. Discussion

We have presented a heterogeneous visual search sys-

tem that achieves high accuracy with low computational

cost. Key to building this system is ensuring the query and

gallery models are compatible. We achieve this through

joint weight and architecture compatibility optimization

with CMP-NAS. There are, however, some limitations of

our method: (1) Our method is limited to classification-

based embedding training and does not directly work with

metric learning based approaches; (2) We consider the sim-

plified use-case for architecture optimization wherein the

gallery model is fixed. A more general treatment of model

compatibility may optimize both the gallery and query mod-

els. These limitations show that there is scope for improving

our HVS system which can be tackled by future work.

10730



References

[1] Relja Arandjelović and Andrew Zisserman. Three things ev-

eryone should know to improve object retrieval. In CVPR,

2012.

[2] Artem Babenko and Victor Lempitsky. Aggregat-

ing deep convolutional features for image retrieval.

arXiv:1510.07493, 2015.

[3] Mateusz Budnik and Yannis Avrithis. Asymmetric metric

learning for knowledge transfer. arXiv:2006.16331, 2020.

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In

ICLR, 2019.

[5] Ken Chen, Yichao Wu, Haoyu Qin, Ding Liang, Xuebo Liu,

and Junjie Yan. R3 adversarial network for cross model face

recognition. In CVPR, 2019.

[6] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In CVPR, 2017.

[7] Yuying Ge, Ruimao Zhang, Xiaogang Wang, Xiaoou Tang,

and Ping Luo. Deepfashion2: A versatile benchmark for de-

tection, pose estimation, segmentation and re-identification

of clothing images. In CVPR, 2019.

[8] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot

neural architecture search with uniform sampling. In ECCV,

2020.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[10] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In ICCV, 2017.

[11] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. arXiv:1503.0253, 2015.

[12] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. In ICCV, 2019.

[13] Jie Hu, Rongrong Ji, Hong Liu, Shengchuan Zhang, Cheng

Deng, and Qi Tian. Towards visual feature translation. In

CVPR, 2019.

[14] Yannis Kalantidis, Clayton Mellina, and Simon Osindero.

Cross-dimensional weighting for aggregated deep convolu-

tional features. In ECCV, 2016.

[15] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,

Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-

wisely supervised neural architecture search with knowledge

distillation. In CVPR, 2020.

[16] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

ICLR, 2017.

[17] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In ICLR, 2019.

[18] Yu Liu, Xuhui Jia, Mingxing Tan, Raviteja Vemulapalli,

Yukun Zhu, Bradley Green, and Xiaogang Wang. Search

to distill: Pearls are everywhere but not the eyes. In CVPR,

2020.

[19] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning.

ICLR, 2019.

[20] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. In ICLR, 2017.

[21] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In ECCV, 2018.

[22] B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, C.

Otto, A. K. Jain, W. T. Niggel, J. Anderson, J. Cheney, and

P. Grother. Iarpa janus benchmark - c: Face dataset and pro-

tocol. In ICB, 2018.

[23] Mira Park, Jesse S Jin, and Laurence S Wilson. Fast content-

based image retrieval using quasi-gabor filter and reduction

of image feature dimension. In Proceedings fifth IEEE south-

west symposium on image analysis and interpretation, 2002.

[24] Adnan Qayyum, Syed Muhammad Anwar, Muhammad

Awais, and Muhammad Majid. Medical image retrieval us-

ing deep convolutional neural network. Neurocomputing,

266:8–20, 2017.

[25] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-

tuning cnn image retrieval with no human annotation.

TPAMI, 41(7):1655–1668, 2018.

[26] Ali S Razavian, Josephine Sullivan, Stefan Carlsson, and At-

suto Maki. Visual instance retrieval with deep convolutional

networks. TMTA, 4(3):251–258, 2016.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In CVPR, 2018.

[28] Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto.

Towards backward-compatible representation learning. In

CVPR, 2020.

[29] Christian Siagian and Laurent Itti. Rapid biologically-

inspired scene classification using features shared with visual

attention. TPAMI, 29(2):300–312, 2007.

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In ICLR, 2019.

[31] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular

object retrieval with integral max-pooling of cnn activations.

arXiv:1511.05879, 2015.

[32] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-

ers, and Arnold WM Smeulders. Selective search for object

recognition. IJCV, 104(2):154–171, 2013.

[33] Chien-Yi Wang, Ya-Liang Chang, Shang-Ta Yang, Dong

Chen, and Shang-Hong Lai. Unified representation learning

for cross model compatibility. In BMVC, 2020.

[34] Fei Wang, Liren Chen, Cheng Li, Shiyao Huang, Yanjie

Chen, Chen Qian, and Chen Change Loy. The devil of face

recognition is in the noise. In ECCV, 2018.

[35] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon

Yuille. Normface: L2 hypersphere embedding for face veri-

fication. In ACM Multimedia, 2017.

[36] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong

Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:

Large margin cosine loss for deep face recognition. In CVPR,

2018.

10731



[37] Christian Wengert, Matthijs Douze, and Hervé Jégou. Bag-

of-colors for improved image search. In ACM Multimedia,

2011.

[38] Lingxi Xie, Richang Hong, Bo Zhang, and Qi Tian. Image

classification and retrieval are one. In ICMR, 2015.

[39] Andrew Zhai and Hao-Yu Wu. Classification is a strong

baseline for deep metric learning. In BMVC, 2019.

[40] Liang Zheng, Shengjin Wang, Ziqiong Liu, and Qi Tian.

Packing and padding: Coupled multi-index for accurate im-

age retrieval. In CVPR, 2014.

[41] Liang Zheng, Shengjin Wang, Lu Tian, Fei He, Ziqiong Liu,

and Qi Tian. Query-adaptive late fusion for image search and

person re-identification. In CVPR, 2015.

[42] Wengang Zhou, Yijuan Lu, Houqiang Li, and Qi Tian. Scalar

quantization for large scale image search. In ACM Multime-

dia, 2012.

[43] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. In ICLR, 2017.

10732


