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Figure 1: We propose a single-stage model for realistic multi-object 3D reconstruction from a single RGB image. The model detects object

center-points and performs reconstruction by jointly estimating 9-DoF bounding boxes and representation-agnostic 3D shape exemplars.

Abstract

We propose a method to detect and reconstruct multi-

ple 3D objects from a single RGB image. The key idea is

to optimize for detection, alignment and shape jointly over

all objects in the RGB image, while focusing on realistic

and physically plausible reconstructions. To this end, we

propose a key-point detector that localizes objects as cen-

ter points and directly predicts all object properties, in-

cluding 9-DoF bounding boxes and 3D shapes – all in a

single forward pass. The proposed method formulates 3D

shape reconstruction as a shape selection problem, i.e. it

selects among exemplar shapes from a given database. This

makes it agnostic to shape representations, which enables a

lightweight reconstruction of realistic and visually-pleasing

shapes based on CAD-models, while the training objective

is formulated around point clouds and voxel representa-

tions. A collision-loss promotes non-intersecting objects,

further increasing the reconstruction realism. Given the

RGB image, the presented approach performs lightweight

reconstruction in a single-stage, it is real-time capable, fully

differentiable and end-to-end trainable. Our experiments

compare multiple approaches for 9-DoF bounding box esti-

mation, evaluate the novel shape-selection mechanism and

compare to recent methods in terms of 3D bounding box

estimation and 3D shape reconstruction quality.

† Work performed during internship at Google Research, Zurich.

1. Introduction

Extracting 3D information from a single image has mul-

tiple applications in computer vision, robotics and scene un-

derstanding, specifically on mobile AR/VR devices. Thus,

this field has gained great momentum in the computer vision

community [10, 23, 31, 36, 46]. 3D information can come

in many forms: 3D bounding boxes, point clouds, meshes,

voxels or distance fields. The choice of the representation

often depends on the task. In this paper, we aim to extract

all the above information in an efficient and scalable way,

all from just a single view and in a single pass.

Recent methods [10, 23] perform multi-object recon-

struction by independently processing detections from

state-of-the-art object detectors [15, 24] or jointly predict

multiple objects in a dense voxel grid [36], which can be

computationally expensive due to scalability issues. In-

stead, inspired by CenterNet [51], a framework for accurate

and efficient 2D object detection, we propose to use a key-

point detector to localize objects as sparse center-points and

directly predict 9-DoF bounding boxes and shapes jointly

for all objects in the scene. The CenterNet architecture is

modular and can easily be extended to solve varying tasks

such as 2D detection, 3D detection, human body pose es-

timation and tracking [47, 50]. In this paper, we argue for

a complete and coherent 3D reconstruction of multiple ob-

jects using CenterNet where each pixel votes for a class la-

bel, a 3D bounding box, and a 3D shape exemplar to place

objects into the world coordinate frame.
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Figure 2: Overview of the proposed approach. Given a single RGB image, our model detects object centers as key-points in a heatmap Y .

The network directly predicts shape exemplars z and 9-DoF bounding boxes jointly for all objects in the scene. The collision loss Lcoll

favors non-intersecting reconstructions. Our method predicts lightweight, realistic and physically plausible reconstructions in a single pass.

Another key question is the best shape representation.

While numerous representations have been proposed, e.g.

Signed Distance Functions (SDF) [33], meshes [10, 13],

voxel grids [36], point clouds [7, 19], and even hybrid ap-

proaches [39], all have their task-dependent advantages and

disadvantages. In this work, we propose a representation-

independent shape selection mechanism. That is, shape ex-

emplars are selected from a given shape database that can

implement different (or multiple) representations. The most

convenient representation is chosen depending on the task

at hand, be it for defining objective functions or for visual-

ization purposes (see Fig. 1).

Additionally, we take extra provisions for a realistic and

physically plausible reconstruction. In particular, objects

should be properly placed in the world frame and should

not intersect with each other. Inspired by recent methods on

human body pose estimation in 3D scenes [14, 20, 49], we

add a collision loss that supports plausible reconstructions

such that reconstructed objects do not intersect. To summa-

rize, given a RGB image, our single-stage method performs

lightweight reconstruction, it is real-time capable, fully dif-

ferentiable and end-to-end trainable. In our experiments,

we compare different 9-DoF bounding box formulations,

we evaluate our shape selection mechanism using soft labels

and compare with the current state-of-the-art CoReNet [36].

Contributions. Our key contributions are:

• We propose a method for multi-object 3D reconstruc-

tion that extends the CenterNet [51] framework to per-

form fully holistic 3D scene reconstruction in a single-

stage network and from a single RGB image.

• We present a shape-selection mechanism to perform

3D object reconstruction, where we reformulate the

1-of-K classification task using soft target labels

based on geometric similarities between exemplar 3D

shapes: this significantly improves over hard-labels as

used in previous baselines [42].

• We obtain physically plausible reconstructions by

leveraging a collision loss that encourages non-

intersecting reconstructions. Further, CAD based rep-

resentations guarantee valid and realistic shapes.

• Our approach is agnostic to different shape represen-

tations. Since we formulate the shape reconstruction

problem as selecting a shape exemplar (i.e., index in a

precomputed database of shapes), we can choose from

any representation given the estimated shape exemplar.

2. Related Work

3D from a single image. Single image 3D reconstruc-

tion has seen tremendous progress over the last years, with

various shape representations being examined. Works like

[6, 9, 16, 38, 45, 46] operate on voxel grids, a representa-

tion that fits very well with convolutional neural networks.

Other methods output point clouds [7, 19], taking advantage

of their compactness. One line of work [4, 13, 21, 28, 44]

outputs meshes, a powerful representation that provides

neighborhood structure to the 3D shape. Recently, implicit

representations [5, 29, 32, 34] have gained popularity for

their ability to represent fine details at arbitrary resolutions.

An alternative to the 3D shape regression is the work of [42]

that poses the 3D reconstruction as a classification/retrieval

problem. However, all of these methods focus on the single

object case: the image contains a single object to be re-

constructed, often on a white background. By having every

pixel predict a 3D bounding box, a shape index similar to

[42], and the 9-DoF, we are able to handle arbitrary number

of objects in the scene and in a single forward pass.

Multi-object 3D reconstruction. Recently, multi-object

3D reconstruction made significant progress: Im2CAD [18]

performs object detection and room layout estimation in an

input image, and then retrieves 3D shapes from a database

and aligns them to match the detections. However, it in-

volves a secondary non-differentiable optimization step,

that renders and matches the estimations with the input im-

age. 3D-RCNN [22] estimates the 3D shape of each object

instance in an image through a render-and-compare learn-

ing approach, where the shape is represented as a linear ba-

sis from a dataset of 3D models. This shape representation

though is accurate for classes with low intra-class variabil-

ity such as cars and humans. Given an image and a set of

object proposals, [43] decompose the underlying 3D scene
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into a room layout, a set of voxels grids for every object,

together with their rotation/translation/scaling parameters.

Similarly, [31, 48] propose to estimate the room layout, 3D

object bounding boxes and shape for every object. How-

ever, the 3D estimates depend on the initial 2D bounding

boxes. [2, 12] make use of center predictions but require 3D

reconstructions as input. In the work of [17], the 3D scene

is represented as a graph that is being optimized so the con-

figuration of objects and room layout matches the seman-

tic and geometric properties of the input image. Mesh R-

CNN [10] can be seen as an extension of Mask-RCNN [15]

to estimate 3D meshes for every object instance in an image,

but without resolving their scale/depth ambiguity.

Mask2CAD [23] shares with our work the elements of

center prediction and CAD model retrieval. The main dif-

ferences are: (1) we base our architecture on CenterNet (vs.

ShapeMask) leading to a simpler model that can be trained

end-to-end more easily; (2) we predict a complete 9-DoF

pose, whereas [23] requires given object depth at test time,

and returns the object scaled as in the database (instead, we

can stretch it along each of the 3 dimensions); (3) we in-

clude a collision loss dedicated to improving estimation of

nearby objects. (4) we directly predict pose as a valid rota-

tion matrix (vs. two-stage approach).

The above works are based on complex, two-step ar-

chitectures, first detecting objects and then estimating their

shape. In contrast, our method is single-step, scales well

with the number of objects in an image, and does not in-

volve post-processing mechanisms.

CoReNet [36] performs dense shape prediction in a fixed

1283 voxel grid, which does not scale with the size of the re-

constructed world. Moreover, it bakes all scene information

into one model during training (number of objects, class

combinations). Instead, our approach is more modular, it

can detect and reconstruct a variable number of objects, as

well as new combinations of classes not seen during train-

ing. Our approach predicts both a 9-DoF oriented bounding

box and shape. Additionally, our shape representation is

independent of the actual representation. We can predict

signed distance functions, point clouds, occupancy grids

and meshes, which naturally leads to realistic scene recon-

structions, whereas CoReNet tends to predict holes/errors,

especially in multi-object scenes.

3. Method Overview

This section introduces each module and the correspond-

ing losses of our full model shown in Fig. 2. We formulate

object detection as a key-point detection problem similar

to CenterNet [51], where each object is represented by its

center point in the 2D image (Sec. 3.1). From the detected

center points, we directly estimate realistic shapes (Sec. 3.2)

and oriented 3D object bounding boxes (Sec. 3.3). To fur-

Figure 3: Object detection as key-point detection. Left: Pre-

dicted heatmaps Ŷ visualizing the per-pixel probability for being

an object center. The heatmap Ŷc of each class c is shown in a

different color. The peaks of the distributions are shown as white

circles ◦, they correspond to the detected object centers p̂ from

which the object properties are predicted. Right: Predicted object

properties. We show the estimated 9-DoF bounding boxes and the

3D shapes using the point cloud representation.

ther promote physically plausible reconstructions, we pro-

pose a collision loss to avoid intersecting objects (Sec. 3.4).

3.1. Object Detection as KeyPoint Detection

The first part of our method is a key-point detector that

follows the setup of CenterNet [51]. Given a single RGB

image I ∈ R
W×H×3, the detector localizes key-points

(here: object centers) by predicting class-specific heatmaps

Ŷ ∈ [0, 1]
W

R
×H

R
×C (Fig. 3, left) where C is the number

of object classes and R = 4 is a down-sampling factor. The

detected center points {p̂i ∈ R
2} (shown as ◦ in Fig. 3) cor-

respond to the local maxima in the predicted heatmaps Ŷ .

They are obtained using non-maximum-suppression, which

is implemented as a 3×3 max pooling. We associate a con-

fidence score si = Ŷp̂i
to each detected key-point p̂. The

feature backbone – which takes the input image I and gen-

erates the output heatmaps Ŷ – is implemented as a stacked

hourglass model [30].

During training, we follow [25, 51] and generate the tar-

get heatmaps Y by splatting the ground truth center points

pi using Gaussian kernels N (pi, σi) with σi depending on

the projected size of the object i. Training the key-point de-

tector relies on the focal loss [27] and is computed over all

pixels (x, y) and classes c ∈ {1, . . . , C} in the heatmaps:

Lkey =
−1

N

∑

xyc

{
(1 - Ŷxyc)

α · log(Ŷxyc) if Yxyc = 1

(1 -Yxyc)
β · (Ŷxyc)

α · log(1 - Ŷxyc) else

(1)

where N is the number of ground truth objects, α = 2 and

β = 4 are the hyper-parameters of the focal loss. After de-

tecting the object instances as center points, the network

jointly selects 3D shapes (Sec. 3.2) and estimates 3D bound-

ing boxes (Sec. 3.3) for each object in the scene.
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Figure 4: Shape selection. We compare one-hot encoding (hard

labels, left) for supervising the shape selection problem with soft

labels (right) which allow for multiple shape predictions at the

same time and are based on geometric similarity, specifically the

Euclidian distance between SDF shape representations.

3.2. Shape Selection

Instead of directly reconstructing shape representations

such as meshes, voxel grids or point clouds [7, 13, 36], our

method operates indirectly, by selecting shape exemplars.

More precisely, the network is trained to select for each

detection one shape exemplar z among a set of K shape

exemplars from a given shape database. This choice is mo-

tivated by our goal to reconstruct realistic scenes, since it

guarantees valid shapes from the object database unlike re-

cent reconstruction methods which can produce incomplete,

noisy or over-smoothed reconstructions. Similarly, the re-

cent work of Tatarchenko et al. [42] concludes that current

methods for single-view 3D reconstruction primarily work

because of recognizing the type of shape depicted in the

image, rather than truly recovering the geometric details

unique to that particular instance.

To reiterate, in this work, the shape estimation problem

is formulated as a shape selection problem which chooses

one shape exemplar ẑ from a given shape database Z of

K shape exemplars. After predicting an exemplar ẑ, an

explicit shape representation X (voxel-grid, point cloud,

CAD model etc.) can be chosen freely from the precom-

puted databases ZX (described next) depending on the task

or loss function at hand. As such, the presented model is

agnostic towards any particular shape representation.

Building the shape database Z . The presented shape

database is a set of representative shape exemplars selected

from a given set of CAD models. Once our shape database

is built, the full set of the original CAD models is no longer

required. We now describe how those exemplary shapes

are selected. First, the CAD models are transformed into

a canonical orientation, position and scale. Specifically,

all models are facing down the negative Z-axis, the cen-

troids are translated to the origin, and we apply anisotropic

scaling such that the models fit into the unit cube. Then,

for each object i, we compute the signed distance func-

tion (SDF) representation φi of the corresponding CAD

model. After discretization, downsampling to 323 grids

and flattening to vectors, we cluster the objects using k-

Means++ [1] with k = 50, for each object class separately.

The total number K of shape exemplars in the database Z
is K = k ·C where C is the number of object types (chairs,

bottle, etc.). The objects appearing in the training images

are already annotated by their corresponding CAD model.

Hence, we can re-label each object with their nearest shape

exemplar zk. Additionally, the shape database can be ex-

tended to store explicit shape representations such as SDFs

Zφ = {φk}Kk=1
, point clouds ZP = {Pk}Kk=1

or CAD mod-

els ZCAD = {CADk}Kk=1
. In each case, the stored represen-

tation corresponds to the model that is closest to the cluster

center under the clustering metric (L2 distance over φ).

Training the shape selection network module. One

straightforward approach consists in training a 1-of-K clas-

sifier. Specifically, for each object i in the input image, the

network predicts a vector ẑi ∈ R
K scoring it against each

of the K exemplar shapes in the shape database Z . We can

then place a cross-entropy loss CE(·, ·) on this output and

supervise it with the ground truth one-hot encoding of the

target shape zi ∈ {0, 1}K (Fig. 4, left):

L′
z =

1

M

M∑

i=1

CE
(
zi, σ(ẑi)

)
(2)

= −
1

M

M∑

i=1

K∑

k=1

zik · log
(
σ(ẑi)k

)
(3)

where M is the number of detections in the image, σ is the

softmax function (c.f . next paragraph, where we use sig-

moid S instead), and zik is the k-th entry in vector zi. At

test time, the predicted shape exemplar ẑi is computed as

ẑi = argmaxk(ẑ
i). This approach corresponds to the clus-

tering baseline presented by Tatarchenko et al. in [42].

The issue with this approach is that two objects {i, j}
that are geometrically similar (i.e. φi ≈ φj) can have dis-

agreeing supervision signals {zi, zj}. This can have a nega-

tive impact on the network training, as the network is asked

to simultaneously predict a high value for one of the K

database shapes, while also predicting a low value for an-

other, very similar shape. Instead, we propose as alterna-

tive formulation a soft relaxation of the binary target la-

bels z ∈ {0, 1}K which takes the geometric similarity of

shapes into account. Specifically, we allow to predict multi-

ple shape exemplars simultaneously, they are no longer mu-

tually exclusive as before.

Formally, we redefine the target labels z using a shape

similarity function d(·, ·) (Fig. 4, right) such that:

Lz = −
1

M

M∑

i=1

K∑

k=1

d(i, k) · log
(
S(ẑk)

)
(4)

where S is the sigmoid function and

d(i, k) = [1− ‖φi − φk‖2]+ (5)
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where [ · ]+ = max( · , 0) and ‖·‖2 is the Euclidean dis-

tance between the shape exemplars’ SDFs φk in the shape

database Zφ, and φi is the ground truth SDF of object i.

In the following, we will refer to these labels as soft-

labels, and when using the one-hot encoding as hard-labels.

In Sec. 4, we show that this alternative soft formulation is

key to improve shape selection. At test time, we simply se-

lect the shape exemplar with the highest output value by the

network. Next, we describe our approach to estimate the 3D

bounding boxes, which are subsequently used to transform

the estimated object shapes from their canonical database

pose into the scene coordinate frame.

3.3. 3D Bounding Box Estimation (9DoF Poses)

Along with the realistic shape representation we aim at

finding a 9-DoF bounding box for each object in the in-

put image I . We describe now the estimation of the 9-DoF

bounding box parameters, capturing the object pose in the

scene. They include a 3D rotation R̂ ∈ SO(3), a 3D trans-

lation t̂ ∈ R
3 and a 3D scale ŝ ∈ R

3. These parameters

are used to transform the estimated object shape from its

canonical database pose to the scene coordinate frame.

In CenterNet, Zhou et al. [51] formulate the rotation es-

timation as a combination of classification over quantized

bins followed by regression to a continuous offset. That for-

mulation requires the definition of multiple loss functions

along with carefully tuned loss weights. Instead, we directly

parameterize the object rotation as a 3D rotation matrix R̂ ∈
SO(3). Specifically, our network predicts a 9-dimensional

output interpreted as a 3×3 rotation matrix M with (differ-

entiable) SVD decomposition [11] M=UΣV⊤. The cor-

responding symmetric orthogonal rotation matrix R̂ is then

obtained by projecting M into SO(3) [26]:

R̂ = UΣ′V⊤, where Σ′ = diag
(
[1, 1, det(UV⊤)]

)
(6)

While more straightforward, this formulation can directly

be optimized using, e.g., the Frobenius norm [11]: ‖R −

R̂‖F . The translation t̂ ∈ R
3 is defined as the vector

from the scene origin to the 3D bounding box centroid, and

can be optimized, e.g., with the Huber loss (smooth-L1):

‖t − t̂‖H . Instead, we propose to jointly optimize both

the rotation R̂ and the translation t̂ using the concatenated

transformation T = [R | t]. Specifically, we minimize the

squared Euclidean distance between the point cloud Pi of

the object under the estimated T̂ and ground truth transfor-

mation T. Formally, we have:

LRt =

M∑

i=1

∑

x∈Pi

‖Ti x− T̂i x‖22 (7)

where M is the number of objects in the image, x ∈ R
3 is a

point in the point cloud Pi sampled from the surface of the

ground truth object i in the input image.

CADi

CADj

Pi

φ̃j

Figure 5: Visualization of the collision loss. The collision loss

penalizes colliding objects, contributing to an improved realism of

the reconstructed scene. Left: Physically implausible reconstruc-

tion of two colliding objects. Right: The colors represent the SDF

values sampled at the point positions Pi of the cup in the SDF φ̃j

of the bottle. Outside the object the sampled values are zero (blue)

and increase with the distance to the surface (from blue to red).

Finally, the scale loss Ls is implemented as the L1 dis-

tance between predicted and ground truth 3D scale averaged

over all objects in the input image. Similar to [51], the neu-

ral network branch that predicts the bounding box parame-

ters is class-agnostic (i.e. the same for all classes c) and only

receives supervision at the ground truth center locations. In

summary, the loss for the 9-DoF bounding box estimation

consists of two terms: λRtLRt + λsLs.

3.4. Collision Loss

Towards our goal of realistic multi-object reconstruction,

it is not only important that the individual objects exhibit

realistic shapes, but also that their poses form a physically

plausible spatial configuration in the scene. One specific

concern is that reconstructed objects should not intersect or

collide with each other. However, the model we just pre-

sented in practice often predicts colliding shapes, especially

for nearby objects.

As a remedy, we propose to add a collision loss that in-

flicts a penalty whenever two or more reconstructed objects

collide. In particular, we rely on the convenient property

of our model that it can choose from multiple shape repre-

sentations and use the SDF representation φj of an object j

and the point cloud Pi of another object i to compute the

point-to-surface distance. Specifically, the SDF reveals φj

the distance of a point to the nearest surface of object j. It is

negative inside the object and positive outside. Therefore,

we define φ̃ = min(−φ, 0) such that the values are positive

inside the object and zero outside. Formally, the collision

loss for one object i with all other objects j is:

Li
coll =

M∑

j=1

i 6=j

∑

x∈Pi

φ̃j(Tijx) (8)

where M is the total number of detections in the scene, Tij

is the transformation matrix placing the point cloud Pi of
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object i into the local coordinate system of object j. As

we store the SDFs values as discrete voxel grids, we per-

form differentiable trilinear interpolation when sampling φ̃j

at the continuous point positions TijPi. Fig. 5 provides a

visual interpretation of the loss. Inside object j, the SDF φ̃j

is positive and zero outside. Note that the SDF φ and point

clouds P can be pre-computed, as the shape reconstruction

task is formulated as an exemplar selection problem in our

model, so all possible output shapes are known beforehand.

The collision loss over all objects in a scene is:

Lcoll =

M∑

i=1

ρ(Li
coll) (9)

where ρ(x)=
x2/2
1+x2 is the robust Geman-McClure loss [8]

compensating for varying point densities among objects.

3.5. Training Details

The full model is optimized by minimizing the multi-

task loss L defined using the previously introduced losses:

L = Lkey + λRtLRt + λsLs + λzLz + λcollLcoll (10)

where λ are weighting coefficients with associated values

{10, 10, 0.1, 1.0} respectively. One important observa-

tion is that the collision loss can contradict the pose losses

LRt,Ls, especially in the beginning of the training process

when the initial object pose estimates are still quite far away

from the ground truth. Penalizing colliding objects at this

stage is not helpful and even has a negative impact on con-

vergence speed. Therefore, we enable the collision loss only

after 100 epochs; before that we set its weight λcoll = 0. We

train the entire network from scratch and end-to-end using

the Adam optimizer, and a batch size of 32 for 300 epochs

on four P100 GPUs. Training the model to convergence

takes about 48 hours. After 5 epochs of warm-up, we use

a constant learning rate of 10−3 and perform cosine-decay

after 200 epochs. We implemented our model in Tensor-

Flow 2. We found strong data augmentation to be critical for

training stability. Specifically, we perform HSV-color aug-

mentation and random horizontal image flipping (Fig. 6).

4. Experiments

We structure our quantitative evaluation in 3 parts, each

addressing a core contribution of the paper: (1) we compare

multiple 9-DoF bounding box estimation mechanisms and

report improved scores over the one used in CenterNet [51];

(2) the collision loss reduces the number of collisions which

increases the realism and physical plausibility of the recon-

structions; (3) we show that our shape selection mechanism

using soft-labels improves over hard-labels as used by [42].

Finally, we compare our method to the current state-of-the-

art approach for multi-object reconstruction CoReNet [36].

Fig. 7 and Fig. 8 show qualitative results.

Figure 6: Data augmentation examples. Strong data augmenta-

tion is essential. We perform HSV-color augmentation and random

horizontal flipping. For comparison, the top-left image shows an

example that is not augmented.

Datasets We evaluate multi-object reconstruction using

ShapeNet-pairs and ShapeNet-triplets datasets from [36].

They contain 256× 256 px photorealistic renderings of ei-

ther pairs or triplets of ShapeNet [3] objects placed on a

ground plane with full global illumination on an environ-

ment map background, using the PBRT [35] renderer. The

scenes are rendered from a random camera viewpoint (yaw

and pitch). Objects are placed at random locations on the

ground plane, with random scale, rotation, and without

overlap. This is well suited to evaluate the physical plau-

sibility of multi-object reconstruction. We build the shape

database Z using ShapeNet [3], as the correspondences be-

tween its CAD models and the objects rendered in the im-

ages are readily available in the datasets of [36]. We set

k = 50, with the number of object types C = 6 (ShapeNet-

triplets) or C = 13 (ShapeNet-pairs). Finally, in the last part

of this section we also report an evaluation on real images

from the (single-object) dataset Pix3D [41].

How to estimate 3D bounding boxes? We compare here

the different approaches to estimate the rotation and trans-

lation of 3D bounding boxes. Specifically, we compare the

combined loss L from Eq. 7 with the individual losses LR

and Lt defined using the Frobenious norm and the Huber

loss (Sec. 3.3). Furthermore, we consider a loss LM which

is similar to LR but does not perform the projection into

SO(3), so it’s not guaranteed to produce a valid rotation

matrix [26]. Finally, we compare to the rotation parameteri-

zation of [51], i.e. first a classification loss LbinR over quan-

tized bins followed by a regression loss LoffR to continuous

offsets. We use mean average precision (mAP) as 3D object

detection metric [37] with 3D IoU threshold 0.25 and 0.5, as

originally proposed in [40]. The results are shown in Tab. 2.

The best option is to directly predict the rotation matrix R

using SVD and optimize it together with the translation t

using our LRt.

How effective is the collision loss? An important aspect

of multiple object reconstruction is physical plausibility,

i.e., reconstructed objects should not intersect. To evalu-

ate the effectiveness of the collision loss, we measure the
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Figure 7: Qualitative results on real images. Left: Comparison of our Points2Objects vs CoReNet [36] on real images we

acquired in the wild. Right: Qualitative results of Points2Objects on real images from the single-object Pix3D dataset [41].

 #Table  #Chair  # Sofa  #Cup  #Bowl  #Bottle

Figure 8: Qualitative results on [36]. Top row: Single RGB input images. Bottom row: Outputs of our method. We show the

9-DoF object bounding boxes and the selected shapes exemplars from the CAD model database ZCAD.

Abs. 3D IoU per Object Class Abs. 3D IoU Rel. 3D IoU

bottle bowl chair mug sofa table mean global mean global

1© CoReNet m8 [36] 61.0 32.2 30.2 46.8 54.4 32.4 43.0 49.1 43.0 49.1

2© CoReNet m9 [36] 61.8 36.2 30.1 48.0 52.9 34.8 43.9 49.8 43.9 49.8

3© Points2Objects (Ours) 63.5 30.2 18.9 41.5 44.5 19.8 36.4 44.7 59.5 73.0

4© Points2Objects (Ours, aligned) 78.2 39.9 30.6 47.3 54.9 38.7 48.3 52.0 78.9 84.9

5© Oracle 86.0 56.5 42.1 66.1 66.3 50.2 61.2 61.2 100 100

Table 1: Comparision with CoReNet [36]. Per-class and mean IoU over all classes and class-agnostic global IoU on 1283

voxel grid. We show absolute reconstruction scores (Abs. 3D IoU) and relative scores (Rel. 3D IoU), that is, relative to the

maximum possible scores. For our model, the maximum possible score is indicated by the ground truth oracle 5©.

4594



9-DoF Bounding Box 3D mAP: @ 0.5 @ 0.25

LbinR + LoffR + Lt (as in [51]) 43.3 75.0

LM + Lt 44.8 77.0

LR + Lt 46.8 77.2

LRt (Eq. 7, ours) 48.6 77.2

Table 2: 3D bounding box estimation. We compare different rep-

resentations to estimate the rotation and translation of 3D bound-

ing boxes. The metric is mAP with IoU thresholds 0.5 and 0.25.

mIV Num. Collisions

L
′

1168.8 4116 y

−60.5%
L

′
+ Lcoll (ours) 794 1627

Table 3: Effect of the collision loss. We report the mean inter-

section volume (mIV) over all objects and scenes, and the total

number of collisions for our model with and without collision loss.

Shape Estimation Abs. 3D IoU: mean global

L
′

z (Eq. 3) Hard-Labels (as in [42]) 32.2 40.3

Lz (Eq. 4) Soft-Labels (ours) 36.4 44.7

Table 4: Soft vs. hard labels. Shape reconstruction quality in

terms of intersection-over-union (IoU) on a 128
3 voxel grid.

mean intersecting volume (mIV) between colliding objects

and the total number of collisions. We report both metrics in

Tab. 3 on the validation split of ShapeNet-triplets. Our col-

lision loss substantially decreases the intersecting volume

and reduces the number of collisions by 60.5%.

How do soft- and hard-labels affect shape estimation?

In Sec. 3.2, we present two approaches to select shape ex-

emplars from the database Z . The first one optimizes L′
z

(Eq. 3) using hard-labels, i.e. one-hot encoding of target la-

bels z, as done in [42]. The second approach Lz (Eq. 4) re-

lies on soft-labels taking into consideration geometric sim-

ilarity between objects, therefore allowing to predict multi-

ple plausible shapes instead of forcing the network to make

a hard decision on one particular shape. Using the eval-

uation methodology from [36], we evaluate shape recon-

struction as intersection-over-union (IoU) on a 1283 voxel

grid (Tab. 4). We report both mean IoU over all classes and

class-agnostic global IoU. Our shape-selection mechanism

using soft-labels significantly improves shape prediction by

+4.2 mIoU over the hard-labels baseline [42].

Comparison to CoReNet on their datasets and Pix3D

First, we compare our reconstructions to CoReNet [36] on

their ShapeNet-pairs and ShapeNet-triplets datasets. Given

an image, [36] predicts a dense 1283 voxel grid. Each voxel

is either empty or assigned to an object-class, trained with

the focal loss (m8) 1© or the IoU loss (m9) 2©, see Tab. 1.

Our method reaches a higher relative 3D IoU (59.5 vs. 43.9)

but does not quite match CoReNet’s absolute 3D IoU (36.4

vs. 43.9). The relative score takes the maximum possible

Method Train Test 3D mIoU

CoReNet [36] triplets pairs −

CoReNet [36] triplets triplets 43.9 y
−22.3%

CoReNet [36] pairs triplets 34.1

Points2Objects (Ours) triplets pairs 36.2

Points2Objects (Ours) triplets triplets 36.4 y

−10.1%
Points2Objects (Ours) pairs triplets 32.7

Table 5: Generalization to varying object types and cardinality.

score into account, i.e. as our model is supervised with clus-

tered shapes (from the shape database Z) it can only be

as good as this supervision. The oracle 5© indicates this

best possible score for our model, using the ground truth

9-DoF bounding box and the ground truth shapes from Z
used to supervise our model. We also perform Procrustes

alignment 4© to the ground truth to abstract from 9-DoF es-

timation errors (48% vs. 36%).

Next, we analyze the generalization capabilities of both

models under varying number of objects and class-type

combinations (Tab. 5). We train on ShapeNet-pairs and

evaluate on ShapeNet-triplets, and vice-versa. Our model

generalizes well when trained on triplets and evaluated on

pairs (36.41 vs. 36.21). Both CoReNet and ours experience

performance drops when trained on pairs and evaluated on

triplets, but we lose less than CoReNet (-10% vs.-22%).

Finally, we compare to CoReNet quantitatively on Pix3D

in the same setting as [36]. We report mIoU over all 9

classes and splits S1, S2 as defined by [10]. On S1, we ob-

tain 34.1% (vs. 33.3%). On S2, 26.3% (vs. 23.6%). Thus,

our approach improves over CoReNet on real images.

5. Conclusion

We have presented an end-to-end trainable model for re-

alistic and joint 3D multi object reconstruction from a single

input RGB image. Specifically, we extend the CenterNet

paradigm to coherently predict multiple 3D objects. Objects

are first detected as points, then reconstructed by jointly es-

timating 9-DoF object bounding boxes and 3D shape exem-

plars from a given shape database. Our model is agnostic to

shape representations and flexible towards changing them

in the shape database.We further aim towards realistic and

physically plausible reconstructed scenes. To that end, the

model encourages collision-free reconstructions and uses

CAD models as shape representations to guarantee valid

and realistic object shapes.
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jects as Points. In arXiv preprint arXiv:1904.07850, 2019.

4597


