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Figure 1. Transfer performance is highly correlated with ImageNet performance for many-shot recognition but increasingly less correlated

for few-shot recognition, object detection and dense prediction. On the x-axes we plot ImageNet top-1 accuracy and on the y-axes the

average transfer log-odds. The gradients of the regression lines describe the correlation, with confidence intervals in shaded areas. For

perfect correlation, the ideal line is a positive slope diagonal. Correlation coefficients (Pearson’s r) are shown in the top left of each plot.

Abstract

Self-supervised visual representation learning has seen

huge progress recently, but no large scale evaluation has

compared the many models now available. We evaluate the

transfer performance of 13 top self-supervised models on 40

downstream tasks, including many-shot and few-shot recog-

nition, object detection, and dense prediction. We compare

their performance to a supervised baseline and show that on

most tasks the best self-supervised models outperform su-

pervision, confirming the recently observed trend in the lit-

erature. We find ImageNet Top-1 accuracy to be highly cor-

related with transfer to many-shot recognition, but increas-

ingly less so for few-shot, object detection and dense predic-

tion. No single self-supervised method dominates overall,

suggesting that universal pre-training is still unsolved. Our

analysis of features suggests that top self-supervised learn-

ers fail to preserve colour information as well as supervised

alternatives, but tend to induce better classifier calibration,

and less attentive overfitting than supervised learners.

1. Introduction

Computer vision in the last decade has been driven by

increasingly sophisticated convolutional neural networks

(CNNs) and the increasingly large datasets used to train

them. Nevertheless, progress in this paradigm is ultimately

bottlenecked by the data annotation process. This has moti-

vated a growing wave of research in self-supervised repre-

sentation learning, where CNN representations are trained

on pretext tasks with freely available labels. Once trained,

these CNN representations can be used to learn new tasks

more data efficiently through feature re-use or finetuning.

Self-supervised learning (SSL) has been around for some

time [47], but historically has lagged behind state of the

art supervised representation learning. However, the recent

pace of progress has increased dramatically and led to self-

supervised deep representations that appear to approach and

possibly even surpass that of fully-supervised representa-

tions [17, 5]. This has raised hopes that self-supervised

methods could indeed replace the ubiquitous annotation-

intensive paradigm of supervised deep learning in state of

the art computer vision going forward.
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Given the growing practical importance of self-

supervised learning as it approaches state of the art in com-

puter vision tasks, there is increasing interest in understand-

ing and benchmarking its empirical performance. Major re-

cent evaluation studies have looked at aspects such as the fit

between CNN architectures and choice of pretext task [27]

and the impact of the pre-training set size and CNN capacity

on downstream task performance [16].

Despite this initial progress, there are a number of impor-

tant open questions that remain to to be understood. Firstly,

given the plethora of self-supervised representations on the

market using diverse pre-text tasks and data-augmentations:

which methods are the most empirically effective? This is

currently hard to assess given the limited commonality in

the evaluation conditions reported by each method. Sec-

ondly: While the most widely adopted benchmark metric is

image classification performance, there are hopes that pre-

trained representations will generalise to other downstream

tasks such as detection and dense prediction [16]. How-

ever, the published self-supervision literature is particularly

inconsistent with regard to benchmarking these alternative

tasks, making it impossible to determine the most effective

methods. In particular, while we hope that the methods

with best performance on the most popular benchmark of

ImageNet recognition will also perform well on alternative

tasks, this conjecture has never been systematically tested

empirically. Thirdly: While core academic vision research

is happy to focus on ImageNet as a benchmark, the wider

community of computer vision practitioners work with di-

verse data types from medical [54] to agricultural [40], to

earth-observation [24] data and beyond. From this per-

spective a crucial question is to what extent self-supervised

features pre-trained on ImageNet can generalise directly

to these diverse downstream tasks? This is important to

know practically, because it dictates whether users in dif-

ferent vision domains can use pre-trained features directly,

or whether they would need to collect their own datasets

and perform domain-specific self-supervised learning – a

major data, compute and environmental [48] hurdle given

that state of the art methods can take around 20 GPU days

to train [8]. Academically, this is also important to know, as

an indicator of whether pursuing higher ImageNet accuracy

in self-supervised learning research leads to higher accu-

racy on diverse real-world vision tasks, or is our research

overfitting to ImageNet recognition?

To answer these questions and more, we conduct a large

empirical benchmarking study on the efficacy of different

pre-trained representations for diverse downstream tasks. In

particular, we evaluate 13 pre-trained self-supervised mod-

els on 40 transfer tasks covering many-shot and few-shot

image classification, object detection, surface normal pre-

diction and semantic segmentation, as summarised in Fig. 1.

Our downstream tasks cover diverse datasets with a wide

range of similarity to the source ImageNet data, which all

our models were pre-trained on.

Among other questions, we aim to answer the following:

Q1. How do state of the art self-supervised methods com-

pare to supervised feature learning for diverse downstream

datasets and tasks? A: The best self-supervised methods

can match and outperform supervised representation learn-

ing across most tasks considered. Only in few-shot recog-

nition with small domain shift to ImageNet does supervised

representation learning win.

Q2. Do self-supervised representations that perform well

on ImageNet classification systematically perform well on

diverse downstream datasets and tasks? A: For recognition

on datasets similar to ImageNet, performance is highly cor-

related. However, for some of the least similar recognition

datasets such as ISIC2018, there is little to no correlation

with ImageNet performance. For different tasks such as de-

tection and dense prediction, correlation exists but is lower

than for recognition.

Q3. Is there a best self-supervised representation over-

all? A: No. For example, the recent methods SwAV and

DeepCluster-v2 work well for recognition on ImageNet-like

data, but under-perform on non-recognition tasks and on

different data such as medical skin images. This suggests

that the vision of a universal pre-trained model suited for all

downstream tasks is yet to be realised.

Q4. Do self-supervised and supervised features represent

the same information? A: Contemporary self-supervised

features seem to discard colour information, presumably

due to the data augmentation they use. They also tend to be

more attentively diffuse in contrast to the high spatial focus

of attention in supervised features, which may contribute to

their improved uncertainty calibration.

2. Related Work

Self-supervised learning Self-supervised representation

learning is now a large topic that it is impossible to cover

completely here, and we point the reader to excellent recent

surveys [26, 37] for thorough reviews. In this paper, we

focus on still-image self-supervised learning, where a com-

mon paradigm is to pre-train on ImageNet [11] using a va-

riety of pre-text tasks from jigsaw puzzles [42] to coloriza-

tion [65, 33] to instance discrimination [58, 12, 6, 21] and

clustering [34, 5]. Evaluation is then typically performed by

using the learned representation to train a linear classifier on

ImageNet [21], or finetune the representation with a small

amount of data [7]. However, evaluation of the impact on

different downstream datasets (where there is domain shift

[67] with respect to ImageNet), and non-recognition tasks

has been highly inconsistent – a gap in the literature that we

aim to remedy in this paper.

To do this we wish to evaluate a large number of self-

supervised methods, covering a wide range of training ob-

jectives. Many recent works adopt a form of instance dis-

crimination [12, 58, 39], whereby each training image is

treated as its own class. By applying strong data augmen-

tation to these images, and comparing them using a con-

trastive [20, 51, 25] loss, a model can learn features which
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Table 1. Top self-supervised models beat the supervised pre-training baseline on popular many-shot recognition datasets, both in linear

evaluation and when finetuning. The top half of the table shows results from linear transfer of pre-trained models using logistic regression,

and the bottom half shows the results when these models are finetuned. We also include the ImageNet linear evaluation performance

(logistic regression or SGD) reported by the authors. Results style: best, second best.

ImageNet Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Flowers Food Pets SUN397 VOC2007 Avg.

L
in

ea
r

InsDis 59.50 36.87 71.12 28.98 80.28 59.97 68.46 83.44 63.39 68.78 49.47 74.37 62.29

MoCo-v1 60.60 35.55 75.33 27.99 80.16 57.71 68.83 82.10 62.10 69.84 51.02 75.93 62.41

PCL-v1 61.50 21.61 76.90 12.93 81.84 55.74 62.87 64.73 48.02 75.34 45.70 78.31 56.73

PIRL 61.70 37.08 74.48 28.72 82.53 61.26 68.99 83.60 64.65 71.36 53.89 76.61 63.92

PCL-v2 67.60 37.03 86.42 30.51 91.91 73.54 70.59 85.34 64.88 82.79 56.25 81.14 69.13

SimCLR-v1 69.30 44.90 90.05 43.73 91.18 72.73 74.20 90.87 67.47 83.33 59.21 80.77 72.59

MoCo-v2 71.10 41.79 87.92 39.31 92.28 74.90 73.88 90.07 68.95 83.30 60.32 82.69 72.31

SimCLR-v2 71.70 46.38 89.63 50.37 92.53 76.78 76.38 92.90 73.08 84.72 61.47 81.57 75.07

SeLa-v2 71.80 37.29 87.20 36.86 92.73 74.81 74.15 90.22 71.08 83.22 62.71 82.73 72.09

InfoMin 73.00 38.58 87.84 41.04 91.49 73.43 74.73 87.18 69.53 86.24 61.00 83.24 72.21

BYOL 74.30 53.87 91.46 56.40 93.26 77.86 76.91 94.50 73.01 89.10 59.99 81.14 77.05

DeepCluster-v2 75.20 54.49 91.33 58.60 94.02 79.61 78.62 94.72 77.94 89.36 65.48 83.94 78.92

SwAV 75.30 54.04 90.84 54.06 93.99 79.58 77.02 94.62 76.62 87.60 65.58 83.68 77.97

Supervised 77.20 43.59 90.18 44.92 91.42 73.90 72.23 89.93 69.49 91.45 60.49 83.60 73.75

F
in

et
u
n
e

InsDis 73.38 72.04 61.56 93.32 68.26 63.99 89.51 76.78 76.22 51.84 71.90 72.62

MoCo-v1 75.61 74.95 65.02 93.89 71.52 65.37 89.45 77.28 76.96 53.35 74.91 74.39

PCL-v1 74.97 87.62 73.24 96.35 79.62 70.00 90.83 78.30 86.98 58.40 82.08 79.85

PIRL 72.68 70.83 61.02 92.23 66.48 64.26 89.81 74.96 76.26 50.38 69.90 71.71

PCL-v2 79.37 88.04 71.68 96.50 80.26 71.76 92.95 80.34 85.39 58.82 82.20 80.66

SimCLR-v1 81.06 90.35 83.78 97.07 84.53 71.54 93.75 82.40 84.10 63.31 82.58 83.13

MoCo-v2 79.87 84.38 75.20 96.45 71.33 69.47 94.35 76.78 79.80 55.77 71.71 77.74

SimCLR-v2 78.71 82.94 79.84 96.22 79.05 70.16 94.32 82.22 83.20 61.12 78.19 80.54

SeLa-v2 81.99 88.99 85.62 96.80 84.37 74.36 95.80 86.24 88.55 65.84 84.85 84.86

InfoMin 80.24 83.92 78.76 96.94 71.15 71.12 95.24 78.93 85.28 57.66 76.63 79.62

BYOL 79.45 89.40 84.60 97.01 83.95 73.62 94.48 85.54 89.62 63.96 82.70 84.03

DeepCluster-v2 82.52 90.75 87.27 97.06 85.15 74.84 95.31 87.51 89.43 66.42 84.90 85.56

SwAV 83.08 89.85 86.76 96.78 84.37 75.16 95.46 87.22 89.05 66.24 84.66 85.33

Supervised 83.50 91.01 82.61 96.39 82.91 73.30 95.50 84.60 92.42 63.56 84.76 84.60

are resilient to various changes in view. The main diffi-

culty in instance discrimination lies in approximating the

loss over all instances, as it becomes intractable for large

datasets. This leads to metric learning methods which re-

quire large numbers of pairwise comparisons. The scaling

problem that still remains has been tackled by using mem-

ory banks of features [58], momentum encoders [21] or

very large batches [6]. On the other side, clustering-based

approaches [4, 1] compare groups of images with similar

features, sidestepping the intractability of instance discrim-

ination. The problem here instead is computing the cluster

assignments over the entire training set. These approaches

therefore tend to focus on ways of performing this assign-

ment online [64, 5]. Among recent methods, BYOL stands

out as one which does not directly use either a contrastive or

clustering approach, but as noted by [53], an implicit con-

trastive loss term is created by their use of batch normali-

sation. In this paper, we evaluate methods using all of the

above approaches, investigating the effect of training objec-

tive on transfer performance and representation quality.

Prior evaluations and benchmarks The importance

of empirical evaluation of general purpose representation

learning is highlighted by the growing number of major

evaluation papers in this area [28, 16, 63, 27]. In terms

of transfer performance from supervised pre-training, [28]

proposes a suite of downstream recognition task evalu-

ations and evaluates transfer performance of several su-

pervised models of varying architecture and pre-training

details. They find very strong correlations between Im-

ageNet performance and transfer performance on down-

stream tasks. In contrast, we compare pre-trained models

of exactly the same (ResNet-50) architecture, and instead

evaluate the impact of the different training objectives and

augmentation strategies used by self-supervised learners;

as well as considering a more diverse suite of downstream

benchmarks including few-shot recognition, object detec-

tion and dense prediction. Our results are more nuanced,

with high correlation visible in recognition tasks similar to

ImageNet and lower correlation elsewhere. [16] propose

a richer range of downstream benchmarks to evaluate self-

supervised pre-training, but focus on the impact of differ-

ent pre-training datasets and CNN architectures. In con-

trast, we provide the first comprehensive comparison of dif-

ferent self-supervised algorithms, holding architecture and

dataset constant. [27] compares a few architectures and SSL

algorithms on a small number of downstream tasks, and

draw observations such as pre-text task performance be-

ing uncorrelated with representation performance on Ima-

geNet recognition. In contrast, we evaluate whether perfor-

mance on the commonly evaluated ImageNet recognition

is indicative of in-the-wild performance on diverse down-

stream datasets and non-recognition tasks. The evaluation

in [63] finds that self-supervised methods can not beat su-

pervised models. We find that a more recent family of self-

supervised learners consistently achieve the highest perfor-

mances, on recognition, detection, surface normal estima-

tion and semantic segmentation, with the one exception of

few-shot recognition on ImageNet-like data.
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Table 2. Few-shot transfer (5-way 20-shot) of pre-trained models using prototypical networks on popular recognition datasets. Results

style: best, second best.

Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Flowers Food Pets SUN397

InsDis 48.67 ± 0.93 89.20 ± 0.50 55.18 ± 0.69 70.16 ± 0.56 75.17 ± 0.68 82.02 ± 0.50 93.76 ± 0.36 70.67 ± 0.64 82.96 ± 0.57 90.81 ± 0.43

MoCo-v1 48.76 ± 0.93 91.45 ± 0.43 53.04 ± 0.70 66.74 ± 0.55 72.68 ± 0.70 83.08 ± 0.50 93.60 ± 0.35 71.21 ± 0.65 83.68 ± 0.58 90.89 ± 0.45

PCL-v1 43.31 ± 0.86 87.51 ± 0.49 47.44 ± 0.75 68.16 ± 0.53 69.90 ± 0.75 74.41 ± 0.62 82.75 ± 0.64 65.38 ± 0.69 89.90 ± 0.52 86.40 ± 0.48

PIRL 49.69 ± 0.92 90.41 ± 0.46 55.82 ± 0.68 71.23 ± 0.55 75.99 ± 0.70 81.98 ± 0.51 93.72 ± 0.35 70.09 ± 0.66 83.61 ± 0.55 91.20 ± 0.45

PCL-v2 37.68 ± 0.76 88.99 ± 0.45 49.46 ± 0.73 78.22 ± 0.47 80.63 ± 0.59 81.22 ± 0.54 91.81 ± 0.39 69.75 ± 0.66 89.17 ± 0.52 89.37 ± 0.44

SimCLR-v1 53.55 ± 0.91 95.87 ± 0.28 63.95 ± 0.78 78.10 ± 0.52 82.97 ± 0.59 84.24 ± 0.46 95.69 ± 0.29 74.10 ± 0.61 91.90 ± 0.43 93.83 ± 0.33

MoCo-v2 39.64 ± 0.77 91.87 ± 0.40 57.67 ± 0.76 76.65 ± 0.48 81.30 ± 0.63 84.57 ± 0.50 94.31 ± 0.33 74.39 ± 0.64 91.78 ± 0.43 92.34 ± 0.39

SimCLR-v2 53.93 ± 0.94 96.97 ± 0.22 64.25 ± 0.76 79.50 ± 0.53 86.33 ± 0.55 86.42 ± 0.43 96.55 ± 0.24 78.88 ± 0.57 92.24 ± 0.42 95.07 ± 0.30

SeLa-v2 40.75 ± 0.86 92.67 ± 0.51 57.12 ± 0.77 77.67 ± 0.51 82.42 ± 0.64 85.85 ± 0.45 93.86 ± 0.34 77.26 ± 0.62 88.19 ± 0.51 94.50 ± 0.33

InfoMin 38.64 ± 0.75 89.12 ± 0.46 57.58 ± 0.79 72.90 ± 0.52 77.25 ± 0.64 80.90 ± 0.53 91.60 ± 0.40 73.99 ± 0.63 91.06 ± 0.45 90.39 ± 0.45

BYOL 62.65 ± 0.92 98.38 ± 0.15 71.01 ± 0.75 78.73 ± 0.50 85.92 ± 0.56 87.56 ± 0.45 97.88 ± 0.19 80.07 ± 0.56 95.71 ± 0.31 95.36 ± 0.29

DeepCluster-v2 54.68 ± 0.93 97.06 ± 0.22 69.50 ± 0.77 81.08 ± 0.49 86.52 ± 0.54 87.56 ± 0.42 97.51 ± 0.20 81.69 ± 0.55 93.80 ± 0.39 96.26 ± 0.26

SwAV 53.09 ± 0.89 96.82 ± 0.23 67.83 ± 0.76 79.22 ± 0.50 85.24 ± 0.57 87.33 ± 0.43 97.10 ± 0.23 79.07 ± 0.59 93.84 ± 0.39 96.12 ± 0.27

Supervised 68.90 ± 0.87 98.51 ± 0.16 82.72 ± 0.65 84.29 ± 0.44 88.89 ± 0.49 86.58 ± 0.49 96.95 ± 0.25 82.93 ± 0.55 98.25 ± 0.19 96.28 ± 0.27

3. Preliminaries

Representation learning methods We consider the fol-

lowing thirteen self-supervised learning methods. Con-

trastive: InsDis (also known as NPID) [58], MoCo-v1

[21] and its upgrade MoCo-v2 [8], PIRL [39], SimCLR-

v1 [6] and SimCLR-v2 [7], InfoMin [52] and BYOL [17].

Clustering: PCL-v1 and PCL-v2 [34], SeLa-v2 [1, 5],

DeepCluster-v2 [4, 5] and SwAV [5].

For these methods, we download pre-trained weights of

ResNet50(1×) [23] models and use the backbone as a fea-

ture extractor when transferring to downstream tasks. Addi-

tionally, we evaluate a supervised baseline for comparison,

a standard pre-trained ResNet50 available from the PyTorch

[44] library. All models have 23.5M parameters in their

backbones and were pre-trained on the ImageNet [11] train-

ing set, consisting of 1.28M images, and only the supervised

baseline used labels. More details of the pre-trained models

can be found in Section A.1 of the appendix.

As we cannot control the pre-training setup, there are

differences in how long the models were trained for, what

data augmentation they applied, what loss they trained with

and what additional architectural elements they used. These

differences are detailed in Table 10 in the appendix. How-

ever, all models use the same ResNet50(1×) [23] backbone,

Table 3. Few-shot transfer (5-way 20-shot) of pre-trained mod-

els using prototypical networks on CD-FSL. Results style: best,

second best.

CropDiseases EuroSAT ISIC ChestX

InsDis 91.95 ± 0.44 86.52 ± 0.51 52.19 ± 0.53 29.13 ± 0.44

MoCo-v1 92.04 ± 0.43 86.55 ± 0.51 53.79 ± 0.54 30.00 ± 0.43

PCL-v1 80.74 ± 0.57 75.19 ± 0.67 38.01 ± 0.44 25.54 ± 0.43

PIRL 91.19 ± 0.49 87.06 ± 0.50 53.24 ± 0.56 29.48 ± 0.45

PCL-v2 92.58 ± 0.44 87.94 ± 0.40 44.40 ± 0.52 28.28 ± 0.42

SimCLR-v1 94.03 ± 0.37 89.38 ± 0.40 53.00 ± 0.54 30.82 ± 0.43

MoCo-v2 92.12 ± 0.46 88.92 ± 0.41 52.39 ± 0.49 29.43 ± 0.45

SimCLR-v2 94.92 ± 0.34 91.05 ± 0.36 53.15 ± 0.53 30.90 ± 0.44

SeLa-v2 94.75 ± 0.37 88.34 ± 0.57 48.43 ± 0.54 30.43 ± 0.46

InfoMin 92.34 ± 0.44 86.76 ± 0.47 48.21 ± 0.54 29.48 ± 0.44

BYOL 96.07 ± 0.33 89.62 ± 0.39 53.76 ± 0.55 30.71 ± 0.47

DeepCluster-v2 96.63 ± 0.29 92.02 ± 0.37 49.91 ± 0.53 31.51 ± 0.45

SwAV 96.15 ± 0.31 91.99 ± 0.36 47.08 ± 0.50 30.91 ± 0.45

Supervised 93.09 ± 0.43 88.36 ± 0.43 48.79 ± 0.53 29.26 ± 0.44

meaning we can evaluate them in the same way. For a given

target dataset we pass the training data through the back-

bone to obtain feature vectors. On top of the backbone we

attach a task-specific head to produce label predictions for

the target task. When fitting to the target training set we ei-

ther optimise only the head or finetune the entire network.

4. Experiments

We now thoroughly evaluate our large suite of recent

SSL methods on transfer to a variety of downstream do-

mains and tasks. Our evaluation consists of four sets of

transfer experiments: (1) many-shot recognition, where a

substantial amount of labelled training data is available in

the target domain for fitting a classifier, (2) few-shot recog-

nition where only a few labelled training images are avail-

able for each class in the target domain, and two cases of

cross-task transfer, (3) object detection and (4) dense pre-

diction, using the two exemplar tasks: surface normal es-

timation and semantic segmentation. The first two experi-

ments contain some benchmarks with significant amounts

of domain-shift compared to the ImageNet source data,

while the last two experiments contain task-shift, that may

make different demands on the features. For example, de-

tection may require stronger spatial sensitivity of features

compared to recognition; and dense prediction may re-

quire something closer to spatial equivariance, in contrast

to recognition which may benefit from spatial invariance.

4.1. Many­shot recognition

Experimental setup For many-shot recognition, we

adopt the benchmark suite proposed in the transfer learning

study [28], which includes the target datasets FGVC Air-

craft [38], Caltech-101 [15], Stanford Cars [29], CIFAR-

10 [30], CIFAR-100 [30], DTD [9], Oxford 102 Flowers

[41], Food-101 [3], Oxford-IIIT Pets [43], SUN397 [59]

and Pascal VOC2007 [14]. These datasets cover a wide

range of classification tasks, including texture, scene and

fine/coarse-grained object classification. While they are all

in the ‘many-shot’ regime, they include significant variety

in amount of training data (2,000-75,000 images), and car-

dinality of classification (10-397 classes). We exclude the
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Table 4. Detection transfer from pre-trained models using Faster

R-CNN FPN on PASCAL VOC. We train models both with frozen

backbones and with all layers finetuned. We report the metrics AP,

AP50 and AP75. Results style: best, second best.

VOC (Frozen) VOC (Finetune)

AP AP50 AP75 AP AP50 AP75

InsDis 50.13 77.92 53.34 48.82 76.43 52.40

MoCo-v1 50.39 78.03 54.08 50.51 78.06 54.55

PCL-v1 51.05 80.16 54.36 53.93 81.69 59.33

PIRL 49.54 77.26 52.79 45.08 72.50 47.80

PCL-v2 52.45 81.22 57.13 53.92 81.89 59.35

SimCLR-v1 51.94 81.19 56.49 52.19 81.36 56.92

MoCo-v2 54.22 81.86 59.97 44.74 72.82 47.01

SimCLR-v2 54.95 82.34 61.18 51.42 79.40 55.89

SeLa-v2 49.66 80.63 53.15 50.41 80.55 54.35

InfoMin 53.45 81.12 58.96 44.92 72.72 47.41

BYOL 53.32 82.01 58.37 54.91 82.57 60.82

DeepCluster-v2 50.05 80.87 53.21 51.03 80.93 55.51

SwAV 50.68 80.82 54.11 52.07 81.50 56.03

Supervised 51.99 81.53 56.21 53.26 81.51 59.07

Birdsnap [2] dataset as a significant number of the original

images are no longer available at the given URLs. When

using these datasets throughout the paper, we will refer to

them collectively as the Kornblith datasets.

We report results for both linear evaluation and finetun-

ing. For linear, we fit multinomial logistic regression on

the extracted features. When finetuning, we train the mod-

els for 5,000 steps using SGD with Nesterov momentum.

Full details about our fitting, the dataset splits, metrics and

preprocessing can be found in Appendix A.2.

Results The results can be found in Table 11.

Linear: We draw the following observations: (i) On all

but one downstream task, the best self-supervised methods

outperform supervised pre-training on ImageNet (bottom

row). This is notably the case on Aircraft and Cars bench-

marks, where the best self-supervised models outperform

supervised pre-training by over 10% absolute performance.

Although supervised pre-training is best for within-dataset

transfer to ImageNet (leftmost column), this shows that the

self-supervised methods are learning a more general pur-

pose feature for diverse downstream tasks. (ii) The recent

methods, DeepCluster-v2 [5], BYOL [17] and SwAV [5]

stand out as being regularly highly ranked in each case.

Finetuning: The bottom half of Table 1 shows a simi-

lar picture. The supervised model is more competitive

here, achieving top results on three datasets including Air-

craft where its frozen weights under-performed. However,

DeepCluster-v2, SwAV and SimCLR-v2 still outperform

it overall, confirming that, on the whole, the best self-

supervised learners have surpassed supervision for many-

shot recognition transfer. We present further discussion

about these results in Section 4.6.

1Note that the linear evaluation in [28] uses weights from different
checkpoints during pre-training, while we only use the final released
weights. This explains why our numbers differ on some datasets.

4.2. Few­shot recognition

Experimental setup To evaluate the performance of self-

supervised features on downstream tasks in the few-shot

regime, we use the same Kornblith datasets as for the many-

shot regime, save for the multi-label VOC2007. Addition-

ally, we evaluate on the Broader Study of Cross-Domain

Few-Shot Learning (CD-FSL) benchmark introduced by

[19]. It consists of four datasets that exhibit increasing dis-

similarity to natural images, CropDiseases [40], EuroSAT

[24], ISIC2018 [54, 10] and ChestX [56].

Our evaluation uses a nearest-centroid classifier (also

known as Prototypical Networks [50]) on the features ex-

tracted from the ResNet50 backbones. Across the 14

datasets, we consider 5-way 20-shot transfer (with 5-way 5-

shot and 5-way 50-shot reported in the appendix). The test

set (query set) always has 15 images per class and we per-

form 600 randomly sampled few-shot episodes and report

the average accuracy along with a 95% confidence interval.

Results Table 2 shows the results on the Kornblith

datasets. We see that: (i) The supervised model domi-

nates in this setting, on all datasets but DTD and Flow-

ers. (ii) It does so by a large margin on Aircraft and Cars

(5+%), in stark contrast to our linear many-shot results

above. (iii) The best self-supervised models are BYOL and

DeepCluster-v2, followed by SwAV and SimCLR-v2.

The CD-FSL results are shown in Table 3, from which

we make the following observations: (i) Across all datasets

and evaluation setups several self-supervised models out-

perform the supervised baseline. (ii) On CropDiseases, the

dataset most similar to ImageNet, the standout models are

similar to those in the many-shot experiment: DeepCluster-

v2, SwAV and BYOL. On EuroSAT, SimCLR-v2 overtakes

BYOL in third place after the same top two. (iii) PCL-v1

consistently transfers the worst in the few-shot setting. (iv)

On ISIC, the least ‘object-like’ of all the datasets, the rank-

ing of the methods is very different. We present further dis-

cussion about these results in Section 4.6.

Summarising these results, we see that self-supervision

still lags behind for low domain shift few-shot transfer while

it consistently beats supervision for larger domain shifts.

4.3. Detection

Experimental setup We evaluate the pre-trained net-

works on Pascal VOC using Faster R-CNN [46] with a Fea-

ture Pyramid Network [35] backbone. We use the detec-

tron2 [57] framework and base our evaluation on the sug-

gested hyperparameters therein. Training is done on both

the trainval07 and the trainval12 datasets and evaluation is

done on the test2007 set. We report AP50, the default VOC

metric as well as the COCO-style metrics AP and AP75. We

evaluate both freezing the backbone (all but the last resid-

ual block) and finetuning all layers end-to-end. Full training

details can be found in Section A.4 in the appendix.

Results The results are presented in Table 4, from which

we observe that: (i) The best self-supervised models again
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Table 5. Surface normal estimation on NYUv2 (left), with mean

and median angular error (lower is better) and percentage of pixels

within 11.25
◦, 22.5◦, and 30

◦ degrees of ground truth surface nor-

mal (higher is better). Semantic segmentation on ADE20K (right),

with the metrics mean intersection over union and pixel accuracy.

Results style: best, second best.

Surface Normal Estimation Semantic Segmentation

Mean Median 11.25
◦

22.5
◦

30
◦ Mean IoU Accuracy

InsDis 32.99 27.35 23.58 43.02 53.51 0.2742 68.03

MoCo-v1 33.69 28.63 21.51 41.07 51.87 0.2530 62.48

PCL-v1 37.90 33.58 16.73 34.96 45.43 0.2983 75.00

PIRL 33.16 27.66 22.24 42.41 53.12 0.2697 66.09

PCL-v2 33.98 28.67 21.95 41.21 51.76 0.2965 74.81

SimCLR-v1 30.47 23.26 28.34 48.88 59.01 0.2966 74.83

MoCo-v2 30.49 24.19 26.59 47.43 58.03 0.2794 67.69

SimCLR-v2 28.77 21.30 30.58 51.87 62.05 0.2960 74.90

SeLa-v2 39.57 36.10 14.56 32.49 42.51 0.2956 74.71

InfoMin 32.45 26.58 23.86 44.00 54.66 0.2944 74.78

BYOL 30.56 23.12 29.23 49.10 59.01 0.2940 74.74

DeepClust. 30.19 23.54 28.44 48.42 58.76 0.2744 67.08

SwAV 31.64 24.86 27.80 46.70 56.67 0.2961 74.87

Supervised 33.52 27.91 24.00 42.33 52.80 0.2563 61.83

outperform supervised pre-training as a transfer learning

source. (ii) However, the best performing models are now

quite different from those in the previous sections (more on

this in Section 4.6) with SimCLR-v2 excelling for a frozen

backbone, and BYOL excelling for a finetuned backbone.

Our results are in contrast to the headline claim in [22],

which is that ImageNet pre-training is not necessarily useful

in transfer to detection tasks. However, this observation in

[22] was based on the COCO benchmark, and did not hold

for their experiments on Pascal VOC. This is most likely

due to the lesser number of images and categories in VOC.

4.4. Surface normal estimation

Experimental setup We evaluate the pre-trained features

for surface normal estimation on NYUv2 [49] (ground-truth

from [32]) as the first exemplar task for dense prediction

problems. We train PSPNet models [68] with ResNet50

backbones, as in previous experiments. The performance is

measured by the mean and median angular error, as well as

the percentage of estimated surface normals within 11.25
◦,

22.5
◦, and 30

◦ of the ground truth.

Results From the results in Table 52, we can see that the

best self-supervised models again outperform supervised

pre-training for transfer from ImageNet, with SimCLR-v2

winning across the board followed by BYOL. In this case

the margins are often substantial with SimCLR-v2 outper-

forming supervised pre-training by around 4-10% depend-

ing on the metric.

4.5. Semantic segmentation

Experimental setup The second dense prediction task

we consider is semantic segmentation on ADE20K [70].

2Note that our numbers are not directly comparable to [16] as they
based model (checkpoint) selection on test performance. Given the ab-
sence of a validation split for NYUv2, we considered it better practice to
train all methods for a fixed number of iterations. As the focus of our
benchmark is on comparison across models, this should not be an issue.

We use the CSAIL Semantic Segmentation framework im-

plementation of UPerNet [60], which is based on the Fea-

ture Pyramid Network [35] and the Pyramid Pooling Mod-

ule [68]. We report both the mean intersection over union

(IoU) and accuracy.

Results We present the results of these experiments in

the two rightmost columns of Table 5. The main insights

to be gleaned from these performance measurements are:

(i) the supervised baseline is among the worst performing

methods; (ii) PCL-v1 achieves the top results, while it con-

sistently performed poorly in recognition; and (iii) there

is only a very slight correlation between the performance

of SSL methods on ImageNet recognition and their perfor-

mance on semantic segmentation.

4.6. Does better ImageNet performance lead to bet­
ter performance on downstream tasks?

As we mentioned in the introduction, a major question

we set out to answer is whether ImageNet performance

is in general representative of downstream performance

on diverse tasks and datasets? This determines whether

practitioners can safely select the latest benchmark leading

SSL methods for downstream tasks; and influences whether

state-of-the-art self-supervised representations are likely to

be useful off-the-shelf for practical problems in diverse do-

mains [45, 19], or whether practitioners would need to col-

lect domain-specific data for large scale training. It is also

indicative of whether pursuing ImageNet recognition per-

formance is the right benchmark for the self-supervision

research community, or whether we need a richer set of

benchmarks to properly assess the value of self-supervision

research progress to the broader vision community.

Analysis Based on our experiments in Sections 4.1-4.5,

we compute the Pearson and Spearman (rank) correlation

coefficients between ImageNet and downstream task per-

formance across all dataset pairs. Detailed performance

plots for every dataset are shown in Figs 5-6 in the ap-

pendix. From the summary of correlations in Figs 1-2 we

can see that: (i) The ImageNet-to-downstream task cor-

relation is generally high for many-shot recognition tasks.

(ii) In the case of few-shot recognition, the correlations are

fairly strong for low domain shift transfer. For the larger do-

main shifts in CD-FSL the correlation is weaker, but present

for three of the four datasets. It is entirely absent for the

ISIC skin lesion benchmark, which is arguably the least

ImageNet-like out of the four due to unstructured texture.

(Chest Xray dataset is different due to being greyscale, but

similar in the presence of structure in the images). (iii)

For detection, AP50 is the strongest correlated metric, and

frozen fitting correlates stronger than finetuning. (iv) For

surface-normal estimation, weak but clear correlation is

present across all metrics. (v) For semantic segmentation

the correlation is weak and even non-existent for ranks.

Overall we can distill the following take-home messages

for practitioners. (1) For recognition tasks on structured im-

ages, one is safe to choose the current benchmark-leading
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Figure 2. The correlations between ImageNet and downstream transfer performance, showing high correlation for many-shot recognition,

but increasingly less so for few-shot, object detection and dense prediction. The blue bars show Pearson’s r correlations between logit-

transformed ImageNet top-1 accuracy and the transfer performance (which is logit-transformed for metrics bounded between 0 and 1, and

negated for minimisation metrics). The orange bars show the rank correlation (Spearman’s ρ).

self-supervised representations for direct transfer purposes

in either the many-shot or few-shot regime, and this fea-

ture may well out-perform supervised transfer from Ima-

geNet with the exception of few-shot on ImageNet-like data.

(2) For spatially sensitive prediction tasks such as detection

and dense prediction, the current SimCLR-v2 and BYOL are

good bets and may outperform supervised transfer, but tak-

ing the future ImageNet benchmark leader may not neces-

sarily lead to best performance. (3) For recognition tasks

on unstructured images and textures, there is no clear recipe

to choose a self-supervised representation and task-specific

comparison is required.

4.7. Does pre­training strategy influence down­
stream model calibration?

As computer vision is deployed in many high-

importance real-world applications that are safety critical

[31], or have potential impact on social fairness [13], the

calibration [18] of predictive models is as important as

overall accuracy, if not a hard-requirement for system de-

ployment. Mistaken predictions should be flagged as such

by low-confidence probabilities, so they can be dealt with

by another process. Given the growing social importance

of this issue, we also evaluate whether pre-training strategy

has an influence on downstream model calibration.

We compute the expected calibration error (ECE) [18]

with 15 bins of the models from our two many-shot bench-

marks, linear and finetuning. We exclude VOC2007 as it

is a multi-label problem. As a simple post-hoc calibra-

tion method, we also perform temperature scaling [18] on

the predictions. Figure 3 shows the average ECE for each

model over its ImageNet performance both with and with-

out further calibration via temperature scaling.

Analysis The overall trend shows better self-supervised

methods (as measured on ImageNet accuracy) achieving

better calibration. In the unscaled linear case, several SSL

models get significantly lower ECE compared to supervi-

sion, which also partially holds true after temperature scal-

ing. For unscaled finetuning, the supervised model is the

best, though after scaling it is surpassed by DeepCluster-v2

and SwAV. Overall there is a strong inverse correlation of

ECE to ImageNet performance – though less so after tem-

perature scaling – showing better self-supervised models

are better calibrated in downstream transfer.

4.8. What information is retained in features?

How to measure what information is retained in CNN

features is an open research question in itself [62]. How-

ever, to complement our prior performance-driven compar-

isons, we conduct a preliminary analysis on this topic using

the methodology suggested in [69]. Specifically, we com-

pare the ability to reconstruct RGB images from the features

extracted by our pre-trained models, when using the deep

image prior [55]. This feature inversion algorithm trains

an encoder-decoder architecture to produce an image which

achieves similar features to the original image when passed

through the pre-trained model. We perform image recon-

struction from features across all 14 pre-trained models and

all 15 unique recognition datasets.

Analysis To quantify the results we compare: (i) the

perceptual difference between original images and recon-

structions as measured by [66], and (ii) pixel-wise mean
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have better calibration (ECE metric, lower is better).
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squared error between original images and reconstructions.

We summarise the results in Figure 4, with complete quali-

tative examples given in Figure 8 of the appendix. From the

qualitative results we can see that all methods can provide

a somewhat recognisable reconstruction, with the notice-

able difference that supervised pre-training tends to provide

much cleaner colour in the reconstruction. We conjecture

that the poor colour fidelity is due to the heavy colour dis-

tortions used in the data augmentation of state of the art self-

supervised methods leading them to learn colour-invariant

features. If so this means that downstream users should be

cautious about applying such features to tasks where colour

is a critical feature for decision-making. There is a general

trend towards stronger methods (in the ImageNet accuracy

sense) providing better reconstructions (correlation of -0.69

for perceptual distance computed by the VGG network and

for the colour errors, red -0.56, green -0.11, blue -0.22).

4.9. Does pre­training strategy influence where
downstream networks attend?

We adapt traditional occlusion-based saliency methods

[62] to a task-agnostic setting. By occluding part of the im-

age we compute the distance between the features of the

clean and occluded images. As we pass the occlusion mask

over the image we compute the average feature distance for

each pixel. The larger the value for a given pixel, the more

the feature changes if that pixel is occluded in the input, in-

dicating the network is highly sensitive to this region. More

details can be found in Section A.9 of the appendix.

Analysis We summarise the results quantitatively in Fig-

ure 4, with complete qualitative examples given in Figure 9

of the appendix. From the qualitative results, some notable

observations are that on the aircraft image, the supervised

baseline attends to mainly the sky, while the self-supervised

ones focus on the actual aircraft. This explains why the

supervised model performed so poorly at this fine-grained

classification task earlier, as it fails to focus on the details

of the aircraft. Overall, there is a trend that the supervised

model attends to smaller regions than the self-supervised

models. This is summarised quantitatively in Figure 4,

which reports attentive diffusion/focus in terms of the per-

centage of the attention map with values above its mean.

The correlation with ImageNet performance here is very

low at 0.09, but the correlation with average transfer per-

formance (many-shot linear) is significantly higher at 0.38,

suggesting that a larger attentive region helps in transfer

to recognition tasks. Overall we consider these results to

be reflective of widely reported [61] attentive overfitting of

supervised learning models, which self-supervised learners

seem less vulnerable to, and which may contribute to their

superior performance in most recognition tasks and superior

calibration for un-tuned backbones.

5. Discussion

We have conducted the first thorough and up-to-date em-

pirical evaluation of state of the art SSL performance when

applied to diverse downstream tasks, a comparison that has

been missing in the literature until now. Our evaluation

showed that: (1) The best self-supervised methods today

can usually outperform supervised pre-training as a source

of knowledge transfer, an exciting milestone for the field

that has long been speculated on, but now clearly confirmed.

(2) Performance of self-supervised representations on Ima-

geNet is reassuringly broadly representative of downstream

performance on natural image recognition tasks, confirming

the relevance of this metric for research. (3) However, Im-

ageNet performance is not reliably representative of down-

stream performance on unstructured image recognition, or

other spatially sensitive tasks such as detection, surface nor-

mal prediction and semantic segmentation. Thus the vision

of a ‘universal’ pre-trained feature with best performance on

diverse downstream tasks is yet to be realised. Furthermore,

SSL researchers should adopt a wider range of benchmarks

to better impact the broader computer vision community.

There are several limitations of our current study. Most

notably, we were not able to compare the value of self-

supervised representations transferred from ImageNet to

domain-specific self-supervised representations trained on

each target dataset. This would answer the important ques-

tion of whether domain-specific SSL is worthwhile, and if

ImageNet can provide truly generic features. This is an

important but complex question to answer given the differ-

ent training protocols of existing methods and diversity of

downstream datasets, so we leave this to future work.
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