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Abstract

Humans possess a unique social cognition capabil-

ity [43, 20]; nonverbal communication can convey rich so-

cial information among agents. In contrast, such crucial so-

cial characteristics are mostly missing in the existing scene

understanding literature. In this paper, we incorporate dif-

ferent nonverbal communication cues (e.g., gaze, human

poses, and gestures) to represent, model, learn, and infer

agents’ mental states from pure visual inputs. Crucially,

such a mental representation takes the agent’s belief into

account so that it represents what the true world state is and

infers the beliefs in each agent’s mental state, which may

differ from the true world states. By aggregating different

beliefs and true world states, our model essentially forms

“five minds” during the interactions between two agents.

This “five minds” model differs from prior works that in-

fer beliefs in an infinite recursion; instead, agents’ beliefs

are converged into a “common mind” [31, 47]. Based on

this representation, we further devise a hierarchical energy-

based model that jointly tracks and predicts all five minds.

From this new perspective, a social event is interpreted by

a series of nonverbal communication and belief dynam-

ics, which transcends the classic keyframe video summary.

In the experiments, we demonstrate that using such a so-

cial account provides a better video summary on videos

with rich social interactions compared with state-of-the-art

keyframe video summary methods.

1. Introduction

“The human body is the best picture of the human soul.”

— Ludwig Wittgenstein [32]

We live in a world with a plethora of animate and goal-

directed agents [60], or at least it is how humans perceive

and construct [49] the world in our mental state [24]. The

iconic Heider-Simmel display [19] is a quintessential stim-

ulus, wherein human participants are given videos of sim-

ple shapes roaming around the space. In this experiment,
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humans have a strong inclination to interpret the observed

featureless motions composed of simple shapes as a story-

telling description, such as a hero saving a victim from

a bully. This social cognition account of human vision is

largely missing in the computational literature of scene un-

derstanding or, more broadly, the field of computer vision.

In the field of social cognition, researchers have identi-

fied two unique components that distinguish human adults

from infants and other primates [43]. The first component

is “representational Theory of Mind (ToM),” the ability

to attribute mental states to oneself and others, to under-

stand that others have perspectives and mental states differ-

ent from one’s own, as well as using these abilities to recog-

nize false belief [39]. In the theoretical construct of mental

states, mainstream psychology and related disciplines have

traditionally treated belief as one simplest form, and there-

fore one of the building blocks of conscious thought [23].

Belief can be constructed as mental objects with seman-

tic attributes; cognitive states and processes are consti-

tuted by the occurrence, transformation, and storage of such

information-bearing structure [38]. The second component

is the triadic relations: You, and Me, collaboratively look-

ing at, working on, or talking about This [47]. Much power

of human social cognition depends on the ability to form

representations with a triadic structure [43].

To promote social cognition in computer vision, we fo-

cus on belief dynamics in nonverbal communication. Here,

belief is defined as an entity and its attributes (e.g., loca-

tion), and belief dynamics (i.e., the change of belief) are

naturally and completely summarized using four categories:

occur indicates an agent becomes aware of an object at a

certain location, update means an agent knows the object’s

attribute was updated, disappear denotes that an agent loses

track of the object’s attribute, and null is no change. We em-

phasize on triadic relations emerged during nonverbal com-

munication, including No Communication, Attention Fol-

lowing, and Joint Attention [12, 1]: No Communication in-

dicates no social interaction between the two agents, Atten-

tion Following is a one-way observation, and Joint Attention

means that two agents have the same intention to share at-

tention on a common stimulus and both know that they are

sharing the attention [47]; see an illustration in Fig. 1.
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Figure 1: Triadic belief dynamics in nonverbal communication. Three types of communication events emerge from social

interactions (bottom) and causally construct agents’ belief dynamics (top). In this paper, we propose a novel structural mind

representation “five minds” and a learning and inference algorithm for belief dynamics based on a hierarchical energy-based

model that tracks (i) each agent’s mental state (m1 and m2), (ii) their estimated belief about other agent’s mental state (m12

and m21), and (iii) the common mind (mc). Of note, some events have two phases connected by three arrows.

To account for the two social components computation-

ally, we propose a novel structural mind representation,

termed “five minds,” that includes two first-order self men-

tal states (i.e., the ground-truth mental state), two second-

order estimated mental states of each other’s mind (may

deviate from the ground-truth mental states), and the third-

level “common mind.” Note that the proposed “five minds”

differs from prior models that attempt to infer mental states

among agents recursively with potentially infinite loops; in-

stead, the “common mind” considers what the two agents

share completely transparently without infinite recursion

and corresponds to the concept of “common ground” [47].

The proposed “five minds” model is well-grounded to

visual inputs, especially in terms of nonverbal communica-

tion. For instance, gaze communication uses eye gazes as

portals inward to provide agents with glimpses into the in-

ner mental world [12], and pointing gesture serves as “the

first uniquely human forms of communication” to ground

and reshape mental states [47]. We bring these crucial so-

cial components into representing, modeling, learning, and

inference of belief dynamics in the computer vision com-

munity. Intuitively, the spatiotemporal parsing of social in-

teractions affords the emergence of communication events;

these events causally affect belief dynamics. Thus, a hierar-

chical energy-based model with Bayesian inference is natu-

rally derived to track, maintain, and predict the mental states

of all “five minds.” To demonstrate the model’s efficacy, we

collect a new 3D video dataset with eye-tracking devices

to facilitate ground-truth labeling. We verify the proposed

method on this new 3D video dataset focusing on rich non-

verbal social interactions and triadic belief dynamics.

This paper makes four contributions: (i) By incorporat-

ing crucial social cognition components, we address a new

task of triadic belief dynamics learning and inference from

nonverbal communication in natural scenes with rich social

interactions. We propose a novel structural mental represen-

tation “five minds” by introducing a “common mind,” with

well-defined and quantized belief and belief dynamics, as

well as nonverbal communication events. To the best of our

knowledge, ours is the first to tackle such challenging prob-

lems in the field of computer vision. (ii) We collect a new

3D video dataset with rich social interactions using eye-

tracking devices to facilitate ground-truth labeling; nonver-

bal communication events and belief dynamics are densely

annotated. Such a setup goes beyond toy and symbolic ex-

amples presented in the literature, which we believe will

serve as a modern benchmark for high-level social learning

based on pixel inputs. (iii) We devise a hierarchical energy-

based model and a beam-search-based algorithm to simul-

taneously optimize the learning and inference of nonverbal

communication events and belief dynamics. (iv) We provide

a benchmark and demonstrate the efficacy of the proposed

method in a keyframe-based video summary.

2. Related Work

Nonverbal behavior and human communication

Tomasello [47] argues that nonverbal communication is

the “unconventionalized and uncoded” form, more founda-

tional than the human natural language. Crucially, instead

of merely treating head and body motions as an assembly

of skeletons movements (e.g., gaze [27], gesture [35], or in-

teraction [26] in computer vision), we do recognize the un-

derlying intentions behind these motions from the perspec-

tive of human social cognition; pointing and iconic gestures

have their special meaning to convey the message and es-

tablish shared intentionality and common ground [13].

This unique view of nonverbal behavior and communica-

tion is largely ignored in modern scene understanding and

computer vision. The present work subsumes prior work in

gaze, gesture, body motions, and interactions in computer

vision by presenting a hierarchical graphical representation,

wherein the communication events [12, 11] emerge from the

spatiotemporal parsing of low-level signals to maintain the

triadic relations and belief dynamics among agents.

Machine ToM ToM has been long regarded as an acid

test for human social interaction; impairment of such ca-

pability to construe persons in terms of their inner men-

tal lives often results in autism [4]. In literature, modern

computational models of ToM often treat the inference of

mental states as infinite (or approximated by finite) recur-

sions, notably by partially observable Markov decision pro-

cess (POMDP) [17, 2, 9, 8]. Recent research includes esti-
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mating the opponent’s sophistication (i.e., recursion) in se-

quential games [52, 7], representing and updating beliefs

through time [56, 37], reasoning about other agent’s de-

sires and beliefs based on their actions with a Bayesian

account [3], or learning to model agent’s mental state and

policy in grid world [41]. However, studies have concluded

that the default level of recursive reasoning typically could

go no deeper than one or two levels [5]; instead, we tend to

build and rely on the “common mind” [46, 45] after only

one or two levels of recursive reasoning of mental states.

In this paper, we adopt the representation of “common

mind,” a crucial ingredient to properly interpret the triadic

relation without infinite recursion. Sharing a similar spirit,

the coordinated and joint planning [14, 15, 29, 21] has been

extensively studied in symbolic-like environments. Addi-

tional efforts have also emerged to recognize false-belief or

perspective-taking with more realistic and noisy data in the

field of robotics [55, 34], computer vision [10], and natural

language processing [36]. However, the problem settings in

prior work either lack rich interactions or communications

among agents or have relatively confined problem space (at

most on object/human tracking). In comparison, the prob-

lem setting in this paper considers rich social interactions

with nonverbal communication in physical indoor environ-

ments captured and synced with multiple Azure Kinect sen-

sors and eye-tracking devices. To tackle the challenges in-

troduced by raw video input, we present a much more ex-

pressive hierarchical representation to interpret the interac-

tions and communications among agents.

Keyframe-based video summary Keyframe-based

video summary is a practical application of video under-

standing. In literature, models tend to obtain keyshots for

segment-based summary [16], minimize the reconstruction

loss [33], or directly compute a frame-level score, mea-

suring the frame’s contribution in summarizing the video

essence [44]. Various mechanisms and additional cues have

been adopted to improve semantics, including temporal de-

pendency [57], subtitles [54] and action features [30]. Al-

though these models are effective in general, they primarily

rely on low-level features (e.g., appearance, motion) with-

out much modeling of high-level “agency” of human agents.

Obtaining a better semantic summary for videos with

rich human interactions and nonverbal communications ne-

cessitates the modeling and understanding of the agents’

mental world. To tackle this problem, we incorporate be-

lief dynamics and model nonverbal communications in the

video summary task for interaction-rich videos.

3. Representation and Model

In this section, we start by introducing the proposed ToM

representation, “five minds,” that accounts for the triadic re-

lation and “common mind”; this representation is embedded

in a hierarchical graphical model with a six-level structure.

Next, to learn a probabilistic distribution over such hierar-

chically structured data and capture the relations among la-

tent and observable variables, a classic Gibbs energy-based

probabilistic formulation with carefully designed and most

representative energy terms is derived, capable of pars-

ing the communication events that emerged from the raw

pixel inputs and tracking belief dynamics in five minds. At

length, we conclude this section with a detailed description

of learning and joint inference algorithms.1

3.1. Hierarchical Representation

Given the input image sequence I “ tItut“1,...,T , the

detected human agent i at time t is denoted by hi
t “

pxi
t, p

i
t, g

i
tq, where xi

t P R
3 denotes the spatial position,

pit P R
3ˆ26 the skeleton pose, and git P R

3 the gaze di-

rection. Similarly, o
j
t “ pxj

t , c
j
t , d

j
t q denotes the detected

object j at time t, where x
j
t P R

3 denotes the spatial loca-

tion, c
j
t P C the object category, and d

j
t P t1, . . . , Nou the

object ID; C is the object category set. Let H “ thi
tu and

O “ tojtu denote all the detected human agents and objects

in the video. Without loss of generality, we assume a mini-

mal setting for triadic relation with two agents in a video.

Formally, all minds Mt at time t is represented as a set,

forming a “five minds” representation:

Mt “ tm1

t ,m
2

t ,m
12

t ,m21

t ,mc
tu, t “ 1, . . . , T, (1)

where m1

t and m2

t denote two agents’ mind, m12

t and

m21

t denote the agent’s belief about the other agent’s

mind, and mc
t denotes their common mind. Each mind

is defined as mt “ tpoit, Apoitqq : i “ 1, . . . , No,tu
with a set of objects oi and their attributes Apoiq (e.g.,

3D location). The state change of Mt, i.e., ΔMt “
tΔm1

t ,Δm2

t ,Δm12

t ,Δm21

t ,Δmc
tu, defines the belief dy-

namics. Here, Δm “ tΔpoit, Apoitqqu and belief dynamics

in each mind Δpoit, Apoitqq P t0, 1, 2, 3u, correspond to four

communication types, occur, disappear, update, and null.

ΔMt along time construct the overall belief dynamics

tΔMu, derived from the spatiotemporal parsing of the

video. The parsing is represented by a spatiotemporal parse

graph [59] pg “ ppt, Eq, a hierarchical graphical model

that combines a parse tree pt and the contextual relation E

on terminal nodes; Fig. 2 illustrates an example. A parse

tree pt “ pV,Rq includes the vertex set with a six-level hi-

erarchical structure V “ Vr Y Vb Y Ve Y Vs Y Vf Y Vt

and the decomposing rule R, where Vr is the root set with

only one node representing the entire video, Vb the set of

belief dynamics of “five minds,” Ve is the set of communi-

cation events, Vs is the set of interactive segments, Vf is the

set of frame-based static scenes, and Vt is the set of all the

detected instances in an indoor scene. Specifically:

1Henceforth, we use the term “mind” in human and animal studies and

the term “mental state” in computational models interchangeably.
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Figure 2: A parse graph of a social event with a six-level hierarchical structure. V denotes vertex sets in the hierarchy.

The root node Vr corresponds to the entire video. The set of belief dynamics Vb emerges from the lower-level communication

events (see also Fig. 1). Communication events in Ve decompose into lower-level interactive segments in Vs; these segments

are social primitives learned unsupervisedly. Each frame of the scene in Vf further decomposes into several terminal nodes

in Vt, grounded into entities detected from videos. The colored dots in the Ve layer represent belief changes triggered by

communication events. Note that belief dynamics are accumulated over time; we only illustrate the most significant changes.

• The belief dynamics ΔM are conditioned on communi-

cation events Ve, grouped by interactive segments Vs.

• A communication event e P Ve is one of the three cate-

gorical nonverbal communication events: No Communi-

cation, Attention Following, or Joint Attention; see Fig. 1.

• An interactive segment s P Vs is the decomposition of a

communication event e P Ve and represented by the 4D

spatiotemporal features Φs “ pΦ1

s,Φ
2

sq extracted from

detected entities. These features describe social interac-

tions, including both unary Φ1

s and pair-wise features Φ2

s.

• The contextual relation E is represented by an attention

graph Gs formed based on 4D features, wherein the node

represents an agent or an object in the scene, and an edge

is connected between two nodes if there is directed atten-

tion detected among the two entities from visual inputs.

3.2. Probabilistic Formulation

To infer the optimal parse graph pg˚ from raw video se-

quence I , we formulate the video parsing of social events

as a maximum a posteriori (MAP) inference problem:

pg
˚ “ argmax

pg

P ppg|H,OqP pH,O|Iq

“ argmax
pg

P pH,O|pgqP ppgqP pH,O|Iq,
(2)

where P pH,O|Iq is the detection score of agents and

objects in the video, P ppgq is the prior model, and

P pH,O|pgq is the likelihood model. Below, we detail the

prior model and the likelihood model one by one.

Prior The prior model P ppgq measures the validness

of parse graph; all the nodes in the parse graph should

be reasonably parsed from the root node. We model the

prior probability of pg as a Gibbs distribution: P ppgq “
1

Z1

expt´Eppgqu “ 1

Z1

expt´Eaggr ´ Eevt ´ Ebeu, where

Eaggr is the aggregation prior, Eevt the communication

event prior, and Ebe the belief dynamics prior. Specifically,

• The aggregation prior is defined as Eaggr “ λ1
Ne

T
to en-

courage the algorithm to focus more on high-level com-

munication patterns, instead of being trapped into trivial

primitives that results in fragmented segmentation.

• The communication event prior leverages transition and

co-occurrence frequencies of communication events,

Eevt “ ´
λ2

ř

i,j, transpei,ejq“1
log ptranspei, ejq

ř

i,j
p transpei, ejq “ 1q

´
λ3

ř

i,j, occpei,ejq“1
log poccpei, ejq

ř

i,j
p occpei, ejq “ 1q

,

(3)

where ptranspei, ejq and poccpei, ejq are based on fre-

quencies from the dataset, and trans and occ are indi-

cator functions that reflects the spatiotemporal relations.

• Ebe models the prior of belief dynamics, which helps to

prune some invalid configurations, such as two consecu-

tive occurs or an occur after an update. The prior model

is defined as Ebe “ ´λ4

řNe

j“1
log pM pΔMj |ejq, and

p
M pΔMj |ejq “

ź

t

ppΔMt`1|ΔMt, ejq ppΔMt|ejq, (4)

where ΔMj is the set of belief dynamics in event ej .
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Likelihood The likelihood model measures the consis-

tency between the parse graph pg and the ground-truth ob-

served data H and O. Since our model has a hierarchical

structure, we split the likelihood into three energy terms,

corresponding to the three crucial layers in the parse graph:

P pH,O|pgq “ P pH,O|Vb, Ve, Eq

“
1

Z2

expt´EcomppH,O|Ve, Eq

´ EevtpH,O|Ve, Eq ´ EbepH,O, Ve|tΔMuqu.

(5)

• The first energy term Ecomp constrains the communica-

tion event composed by the interactive segments, so that

the features within one composition are sufficiently sim-

ilar, whereas the features between two consecutive com-

positions are considerably distinct:

EcomppH,O|Ve, Eq “ EpΦ|Vs, Eq

“
λ5

Ne

Ne
ÿ

j“1

˜

1

Tj

ÿ

t

Dpφj,t, φj,t`1q

¸

´
λ6

ř

i,j,✶transpei,ejq“1
DpψpΦiq, ψpΦjqq

ř

i,j
p✶transpei, ejq “ 1q

´
λ7

ř

i,j,✶occpei,ejq“1
DpψpΦiq, ψpΦjqq

ř

i,j
p✶occpei, ejq “ 1q

(6)

where Φi “ tφi,tu is the set of features within the interac-

tive segment si, ψp¨q the wavelet transform [40], and Dp¨q
the Euclidean distance between the two sets of features.

• The second energy term Eevt is the negative communi-

cation event classification score with respect to the de-

tected feature set Φ “ tΦju and the constructed atten-

tion graph set G “ tGju. This second term is defined as

EevtpH,O|Ve, Eq “ EpΦ,G|Veq and encodes all the en-

tities in the scene extracted from visual input, which can

be solved by a maximum likelihood estimation (MLE):

EpΦ,G|Veq “ ´
1

Ne

Ne
ÿ

j“1

λ8 log ppΦΛj
,GΛj

|ejq

“ ´
1

Ne

Ne
ÿ

j“1

λ8 log ppej |ΦΛj
,GΛj

q ´ C,

(7)

where Λj is the set of indexes of the interactive segments

decomposed from ej , and C is a constant.

• The third energy term Ebe models the belief dynamics in

all five minds, formally defined as

E
bepH,O, Ve|tΔMjuq “ ´

1

Ne

Ne
ÿ

j“1

λ9 log ppΔMj |H,O, Veq

“ ´
1

Ne

Ne
ÿ

j“1

p
1

Tj

ÿ

t

λ9 log ppΔMj,t`1|gj,t`1, ej , tΔMj,t1 uqq,

(8)

where t1 P rtsj , ts, t
s
j is the starting frame of the event ej ,

and gj,t`1 the attention graph of frame t ` 1 in event ej .

3.3. Learning

The detailed learning process follows a bottom-up pro-

cedure. Specifically, the algorithm (i) parses each frame to

extract the entities and relations, (ii) jointly and dynami-

cally parses both interactive segments (proposals generated

unsupervisedly by clustering methods) and communication

events (with trained likelihood) by beam search, (iii) pre-

dicts the belief dynamics (with trained likelihood), and (iv)

fine-tunes all the parameters to minimize the overall loss.

Algorithm 1 details the overall learning procedure.

Algorithm 1: Learning to parse social events

Input : Video tItrainu, ground truth V ˚
e and V ˚

b
.

Output: Parameter sets Θ˚
1

and Θ
˚
2

, and parse graph pg.

Init. : H,O,Φ,G,Θ˚
1
,Θ˚

2
“ H; L˚

1
, L˚

2
“ `8

1 for Ii in tItrainu do

2 Hi = humanDetectionWithReID(Ii), H ÐÝ H Y Hi

3 Oi = objectDetectionWithReID(Ii), O ÐÝ O Y Oi

4 Φi = extractSTFeatures(Hi, Oi), Φ ÐÝ Φ Y Φi

5 Gi = buildAttentionGraph(Hi, Oi, Φi), G ÐÝ G Y Gi

6 end

7 Vs ÐÝ Generate tsu by unsupervised clustering.

/* Train likelihood of ej as in [12] */

8 Train ppej |ΦΛj
,GΛj

q in Eq. (7) with ground-truth V ˚
e .

/* Finetune the parameter set Θ
˚
1
. */

9 for Θ
piq
1

“ pλ1, λ2, λ3, λ5, λ6, λ7, λ8q P ΩΘ1
do

10 Compute Ecomp based on Eq. (6), given Φ and Θ
piq
1

.

11 Compute Eevt based on Eq. (7), given Φ, G, Θ
piq
1

.

12 Infer Ve by dynamic programming beam search; see details

in Algorithm 2.

13 Calculate error L1 between Ve and V ˚
e .

14 if L1 ă L˚
1

then L˚
1

ÐÝ L1. Θ˚
1

ÐÝ Θ
piq
1

.

15 end

/* Train belief dynamics likelihood */

16 Train p
`

∆Mj,t`1|gj,t`1, ej , t∆Mj,t1 u
˘

in Eq. (8) with V ˚
b

.

/* Finetune the parameter set Θ
˚
2
. */

17 for Θ
piq
2

= pλ4, λ9q P ΩΘ2
do

18 for ej in Ve do

19 Compute the posterior probability of belief dynamics

based on Eqs. (4) and (8).

20 Predict the best V̂b by MAP.

21 end

22 Calculate error L2 between the best predicted belief

dynamics V̂b and the ground-truth V ˚
b

.

23 if L2 ă L˚
2

then L˚
2

ÐÝ L2. Θ˚
2

ÐÝ Θ
piq
2

.

24 end

4. Experiment

4.1. Dataset

To verify the efficacy of the proposed algorithm, we col-

lected a new 3D video dataset with rich social interactions.

This dataset was shot in both third-person view (with Azure

Kinect sensors) and first-person view (with two pairs of

glasses, capable of reading videos) to properly mimic hu-

man social interactions and the perception of the environ-

ment. One pair of glasses is an SMI eye tracker, capable
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Algorithm 2: Event inference via DP beam search

Input : Φ, G, Vs, ppej |ΦΛj
,GΛj

q.

Output : Ve

Initialization: Ve “ H,B “ tVe, p “ 0u,m, n.

1 while True do

2 B1 “ H
3 for tVe, pu P B do

4 teiu “ NextpVs, Ve,mq
5 if teiu ‰ H then

6 for each proposed ei do

7 ppVe|Φ,Gq “ DP pVe, p, ei,Φ,Gq
8 Ve “ Ve Y teiu; B1 “ B1 Y tVe, pu

9 end

10 else B1 “ B1 Y tVe, pu

11 end

12 if B1 ““ B then return Ve “ BestpB, 1q
13 else D “ BestpB1, nq; B “ D

14 end

of accurately tracking human eye gazes while recording the

video. Another pair is Pivothead glasses, simply recording

the first-person view video. Both glasses have a similar look

to regular glasses to ensure maximum naturalism during

data collection. Crucially, such a setup also eases the chal-

lenging ground-truth annotation procedure; the annotators

can better understand the belief dynamics with the precise

reference of the agents’ first-person view attention.

Our dataset is specially designed to cover typical nonver-

bal communication in rich social interactions. In total, we

collected 88 videos (109,331 frames, 72.89 minutes of each

sensor) recorded with 12 participants in 7 different scenar-

ios. The participants were asked to perform three types of

nonverbal communication naturally, as illustrated in Fig. 1.

Among all the nonverbal behaviors in the dataset, we anno-

tated two major types including eye gaze (almost all frames)

and pointing (around 5.47% of all frames); note also that our

scenarios involve both first-order and second-order false be-

liefs [36]. We did not provide scripts for performing detailed

actions; instead, we only informed the participants about

the task and the types of nonverbal communication they can

use. This design follows the principles in recent large-scale

video dataset collection [25] to ensure maximum realism.

We densely annotated the dataset, including human head

bounding boxes, object bounding boxes, pointing, interac-

tive segments, communication events, and the belief dy-

namics in all “five minds” for all the objects in all the

scenes. These ground-truths were first annotated by seven

volunteers using Vatic [48] after simple tutorials and later

verified by at least one expert. The annotation process re-

lied on synced third-person and first-person views. Of note,

having perfect ground-truth annotation is impossible for any

high-level semantic task (e.g., belief dynamics) due to its in-

trinsic ambiguities, which have also been exhibited in other

more traditional computer vision tasks (e.g., activity recog-

nition and event segmentation). Here, the goal of annotation

is not to provide universally perfect labels at each frame; in-

stead, we hope to use these annotations to provide a reason-

able quantitative measurement of the model’s performance.

In total, 5,975 frames are labeled with pointing gestures.

Among communication events, 48.56% is No Communica-

tion, 32.51% Attention Following, and 18.93% Joint Atten-

tion. 40 videos have first-order false beliefs, and 13 videos

have second-order false beliefs. 26 videos are reserved as

the testing set, and the rest 62 videos are used for model

training and validation. Detailed statistics of belief dynam-

ics in the dataset are tabulated in Table 1.

The pre-process procedure including following steps:

• Azure Kinect SDK tracks 26 3D joints of each agent.

• Detectron2 [51] detects objects.

• Deepsort [50] tracks objects.

• Object RGB and category features are matched and

aligned between the third- and first-person views.

• Gaze360 [53] estimates 3D human gazes.

• We use the detected objects, depth maps, and camera pa-

rameters to recover 3D object point clouds.

Combining with 3D information and multi-views, features

that can be potentially extracted from our dataset would be

advantageous compared to 2D data, especially in cases that

require handling complex occlusions, which is crucial for

multi-agent human-object and human-human interactions.

Although collecting and processing a new 3D video

dataset is challenging, it is the only viable direction to go

if we hope to study social cognition on natural videos in

indoor environments. First, as such a study requires dense

annotations for evaluations, it demands specific hardware

and computational power (e.g., eye-tracking glasses, Azure

Kinect sensors) to collect the raw data in a way that could

ease the annotation process. Hence, crowd-sourcing the

dataset is not an option. Second, the ideal dataset would

cover rich social interactions with nonverbal communica-

tion. The closest existing dataset is presented in Fan et

al. [12] using clips collected from TV shows and movies;

however, its nonverbal communication and belief dynamics

are sparse. As a significant upgrade to existing datasets, we

hope this new dataset paves the way towards ToM modeling

in natural and complex indoor environments.

4.2. Task 1: Predicting Belief Dynamics

To directly evaluate the proposed algorithm, we predict

belief dynamics in all five minds on our dataset and evaluate

based on the Macro-average of Precision and F1-score.

To make a fair comparison, we consider the following

five baselines: (i) Chance is a weak baseline, i.e., randomly

assigning a belief dynamic label; (ii) CNN uses the pre-

trained ResNet-50 [18] to extract image features and adopts

an MLP to classify the belief dynamics; (iii) CNN w/ HOG-

LSTM feeds both the ResNet-50 features of the entire im-

age and the HOG [6] of the local image patch gazed by

the agent to an LSTM [22], followed by an MLP to predict

belief dynamics; (iv) CNN w/ HOG & memory adds the

history of predicted belief dynamics on top of ResNet-50
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Table 1: Statistics of belief dynamics in our dataset. The numbers of belief dynamics denote different categories: 0–occur,

1–disappear, 2–update, 3–null. The belief dynamics are imbalanced by its inherent sparse nature, with null most frequent

and occur/disappear rare; it is one of the many challenges that make the inference of belief dynamics difficult.

Five Minds m1 m2 m12 m21 mc

Belief Dynamics 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

No Communication 49 0 501 78017 36 2 442 78087 1 1 0 78514 3 1 0 78528 0 0 0 78545

Attention Following 36 6 401 36953 33 2 457 36899 23 6 128 37238 23 5 264 37104 0 0 0 37370

Joint Attention 15 5 324 26136 17 0 340 26119 32 6 290 26153 28 1 267 26180 32 6 166 26276

Table 2: Quantitative results on predicting belief dynamics of five minds. The best scores are marked in bold.

Macro-average of Precision (Ò) Macro-average of F1-score (Ò)

Model m1 m2 m12 m21 mc Avg. m1 m2 m12 m21 mc Avg.

Chance 0.250 0.250 0.250 0.250 0.250 0.250 0.103 0.104 0.102 0.101 0.100 0.102

CNN 0.250 0.250 0.250 0.250 0.250 0.250 0.171 0.167 0.169 0.174 0.250 0.186

CNN w/ HOG-LSTM 0.250 0.250 0.250 0.250 0.250 0.250 0.167 0.132 0.205 0.182 0.250 0.187

CNN w/ HOG & memory 0.277 0.279 0.266 0.267 0.259 0.270 0.285 0.285 0.246 0.250 0.155 0.244

Features w/ memory 0.272 0.278 0.253 0.260 0.256 0.264 0.274 0.288 0.230 0.227 0.191 0.242

Init. seg. 0.371 0.418 0.293 0.301 0.265 0.330 0.346 0.366 0.302 0.314 0.274 0.320

Event prior 0.384 0.409 0.294 0.307 0.264 0.332 0.365 0.364 0.305 0.324 0.273 0.326

Uniform event 0.385 0.413 0.293 0.310 0.267 0.334 0.363 0.366 0.304 0.328 0.278 0.328

Ours-full 0.397 0.415 0.316 0.315 0.278 0.344 0.431 0.443 0.351 0.349 0.299 0.375

and HOG features; (v) Features w/ memory uses the same

sets of features as our methods (see details below) with the

history of predicted belief dynamics; all features are con-

catenated and fed into an MLP to predict belief dynamics.

We only used the annotations of belief dynamics in all five

minds when training the deep learning models.

To assess the contributions and efficacy of essential com-

ponents in the proposed method, we derive the following

variants as ablation study: (i) Init. seg. directly uses the ini-

tial interactive segments generated by unsupervised cluster-

ing as event segments, without additional temporal cluster-

ing by beam search; (ii) Event prior only uses event prior

for event assignment without the event likelihood; (iii) Uni-

form event replaces event posterior with uniform distribu-

tion, and randomly assign event labels for all segments.

A suite of 4D spatiotemporal features Φs (see Sec-

tion 3.1) are adopted to ground our methods to raw video

inputs. Unary feature Φ1

s concerns a single agent and con-

catenates features of human poses, hand-object distances,

and estimated gaze and attention. Pair-wise feature Φ2

s fo-

cuses on the relations between two agents and concatenates

features of the relative human poses between two agents,

relative gaze angles, and relative hand joint distances. All

models are implemented in PyTorch using ADAM opti-

mizer [28] and trained on an Nvidia TITAN RTX GPU.

Quantitatively, our full model achieves the best perfor-

mance on predicting belief dynamics of five minds, mea-

sured by the macro-average of both Precision and F1-score;

see comparisons in Table 2. Overall, the CNN baseline and

its variant with HOG-LSTM perform the worst on this chal-

lenging task, only slightly better than randomly guessing.

The performances of CNN w/ HOG & memory and Features

w/ memory are improved after incorporating the history of

the estimated belief dynamics. The results indicate that the

performance bottleneck to infer belief dynamics does not

lie in the low-level features or representations; instead, it

heavily depends on high-level semantics to distinguish sim-

ilar segments and events to predict mental states and belief

dynamics in nonverbal communication correctly.

The ablation study further reveals the effects of various

model components. Without temporal segment re-clustering

by dynamic-programming-based beam search, Init. seg. per-

forms worse. Compared to using the posterior event distri-

bution in our full model, the performance would drop if

using either the biased event distribution prior or the uni-

form event distribution. Our full model yields the best per-

formance on this challenging task with carefully derived hi-

erarchical representation and joint learning algorithms.

4.3. Task 2: Keyframe-based Video Summary

We apply the proposed method on keyframe-based video

summary on videos with rich social interactions. For com-

parison, we choose three state-of-the-art methods as base-

lines: DPP-LSTM [57], FCSN [42], and DSN [58]. To adopt

the proposed method for this task, we sum over the pre-

dicted probabilities of belief dynamics occur and disappear,

which indicate a significant belief change in agents’ minds;

we use it as the score indicating the frame’s contribution

in summarizing the video content. To quantitatively com-

pare our method with three baselines, we conducted a study

with 33 human participants, who were neither experts on

the task, nor were they knowledgeable about the video. Af-

ter seeing the entire video, participants were presented with

top keyframes from different methods (in a counterbalanced

order to avoid bias) and asked to select the best keyframe-

based summary that describes the observed video. The pro-

posed method outperforms the state-of-the-art methods sig-

nificantly; see the detailed comparisons in Fig. 4.
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Figure 3: Qualitative comparisons of keyframe-based video summarization. The blue histogram represents the estimated

probability of belief dynamics (including occur and disappear) by our model. The top keyframes chosen by human partic-

ipants are shown next to our model’s prediction. Overall, baseline models tend to predict frames merely based on visual

patterns, making the top keyframes similar to each other and grouped in clusters. In comparison, with the proper modeling of

belief dynamics, our method tends to capture the moment with significant belief changes in “five minds,” resulting in a more

uniform set of keyframes along the time. Note that human participants also demonstrate similar behaviors when choosing the

top keyframes for video summarization. Please refer to the supplementary material for additional qualitative results.

Figure 4: Human ratings of keyframe-based video sum-

mary. Our model outperforms state-of-the-art methods sig-

nificantly on videos with rich interactions.

We further discuss a qualitative comparison shown in

Fig. 3; please refer to the supplementary material for addi-

tional qualitative comparisons. In this example, agent A (in

a black jacket) puts a teddy bear on the desk and leaves the

room. Agent B (in a white shirt) later hides the teddy bear

into a bag. When agent A comes back, he cannot find the

teddy bear at the original location, showing his confusion to

agent B by spreading his hands. Agent B pretends to have

no clue about what happened and also spreads his hands.

Agent A looks around for the lost teddy bear helplessly. As

shown on the top of Fig. 3 (in green), keyframes chosen

by human participants give a complete and refined sum-

mary of the video content. Our model produces a similar

story digest—the most similar one compared with human

judgments among all the methods. In essence, our method

captures almost all the crucial moments of the story by

modeling belief dynamics during social interactions. The

keyframes generated by other baseline methods fail to cap-

ture the key moments spanning across the entire story; they

tend to group the predicted keyframes in selected moments.

Taken together, the result presented here is no surprise.

When watching and summarizing the video with rich social

interactions, humans primarily understand the story from a

higher level, typically considering the issues going on in

the mental world instead of purely looking at the visual mo-

tions. As such, by introducing higher-level multi-agent be-

lief dynamics into the keyframe modeling and selecting pro-

cedure, the generated keyframes can be mostly optimized to

understand social interactions better.

5. Conclusion

This paper studies two critical components in under-

standing multi-agent social interaction in 3D real scenes,

i.e., understanding nonverbal communication and belief dy-

namics in “five minds,” with a particular focus on a struc-

tured mental representation of “common mind.” A six-level

hierarchical graphical model is devised to account for the

parsing of belief dynamics in “five minds,” nonverbal com-

munication events, the 4D spatiotemporal interactive seg-

ments, and the detected entities and relations from raw

visual inputs. We propose an energy-based probabilistic

model and a beam-search-based algorithm to learn and in-

fer communication events and belief dynamics jointly. Ex-

perimental results show that our model captures the sparse

belief dynamics in all five minds and facilitates generating

more comprehensive keyframe-based video summarization.

We believe such a unique social aspect of scene understand-

ing could have broader applications in various future tasks.
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