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Abstract

BiSeNet [28, 27] has been proved to be a popular two-

stream network for real-time segmentation. However, its

principle of adding an extra path to encode spatial informa-

tion is time-consuming, and the backbones borrowed from

pretrained tasks, e.g., image classification, may be ineffi-

cient for image segmentation due to the deficiency of task-

specific design. To handle these problems, we propose a

novel and efficient structure named Short-Term Dense Con-

catenate network (STDC network) by removing structure re-

dundancy. Specifically, we gradually reduce the dimension

of feature maps and use the aggregation of them for im-

age representation, which forms the basic module of STDC

network. In the decoder, we propose a Detail Aggrega-

tion module by integrating the learning of spatial informa-

tion into low-level layers in single-stream manner. Finally,

the low-level features and deep features are fused to pre-

dict the final segmentation results. Extensive experiments

on Cityscapes and CamVid dataset demonstrate the effec-

tiveness of our method by achieving promising trade-off

between segmentation accuracy and inference speed. On

Cityscapes, we achieve 71.9% mIoU on the test set with

a speed of 250.4 FPS on NVIDIA GTX 1080Ti, which is

45.2% faster than the latest methods, and achieve 76.8%

mIoU with 97.0 FPS while inferring on higher resolution

images. Code is available at https://github.com/

MichaelFan01/STDC-Seg.

1. Introduction

Semantic segmentation is a classic and fundamental

topic in computer vision, which aims to assign pixel-

level labels in images. The prosperity of deep learning

greatly promotes the performance of semantic segmentation

by making various breakthroughs [18, 27, 22, 4], coming

with fast-growing demands in many applications, e.g., au-

tonomous driving, video surveillance, robot sensing, and so
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Figure 1. Speed-Accuracy performance comparison on the

Cityscapes test set. Our methods are presented in red dots while

other methods are presented in blue dots. Our approaches achieve

state-of-the-art speed-accuracy trade-off.

on. These applications motivate researchers to explore ef-

fective and efficient segmentation networks, particularly for

mobile field.

To fulfill those demands, many researchers propose to

design low-latency, high-efficiency CNN models with sat-

isfactory segmentation accuracy. These real-time seman-

tic segmentation methods have achieved promising perfor-

mance on various benchmarks. For real-time inference,

some works, e.g., DFANet [18] and BiSeNetV1 [28] choose

the lightweight backbones and investigate ways of feature

fusion or aggregation modules to compensate for the drop

of accuracy. However, these lightweight backbones bor-

rowed from image classification task may not be perfect for

image segmentation problem due to the deficiency of task-

specific design. Besides the choice of lightweight back-

bones, restricting the input image size is another commonly

used method to promote the inference speed. Smaller in-

put resolution seems to be effective, but it can easily ne-

glect the detailed appearance around boundaries and small

objects. To tackle this problem, as shown in Figure 2(a),

BiSeNet [28, 27] adopt multi-path framework to combine

the low-level details and high-level semantics. However,
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Figure 2. Illustration of architectures of BiSeNet [28] and our

proposed approach. (a) presents Bilateral Segmentation Network

(BiSeNet [28]), which use an extra Spatial Path to encode spatial

information. (b) demonstrates our proposed method, which use a

Detail Guidance module to encode spatial information in the low-

level features without an extra time-cosuming path.

adding an additional path to get low-level features is time-

consuming, and the auxiliary path is always lack of low-

level information guidance.

To this end, we propose a novel hand-craft network for

the purpose of faster inference speed, explainable structure,

and competitive performance to that of existing methods.

First, we design a novel structure, called Short-Term Dense

Concatenate module (STDC module), to get variant scal-

able receptive fields with a few parameters. Then, the STDC

modules are seamlessly integrated into U-net architecture

to form the STDC network, which greatly promote network

performance in semantic segmentation task.

In details, as shown in Figure 3, we concatenate response

maps from multiple continuous layers, each of which en-

codes input image/feature in different scales and respec-

tive fields, leading to multi-scale feature representation. To

speed up, the filter size of layers is gradually reduced with

negligible loss in segmentation performance. The details

structure of STDC networks can be found in Table 2.

In the phase of decoding, as shown in Figure 2(b), in-

stead of utilizing an extra time-consuming path, Detail

Guidance are adopted to guide the low-level layers for the

learning of spatial details. We first utilize Detail Aggre-

gation module to generate detail ground-truth. Then, the

binary cross-entropy loss and dice loss are employed to op-

timize the learning task of detail information, which is con-

sidered as one type of side-information learning. It should

be noted that this side-information is not required in the in-

ference time. Finally, the spatial details from low-level lay-

ers and semantic information from deep layers are fused to

predict the semantic segmentation results. The whole archi-

tecture of our method is shown in Figure 4.

Our main contributions can be summarized as follows:

• We design a Short-Term Dense Concatenate module

(STDC module) to extract deep features with scalable

receptive field and multi-scale information. This mod-

ule promotes the performance of our STDC network

with affordable computational cost.

• We propose the Detail Aggregation module to learn the

decoder, leading to more precise preservation of spatial

details in low-level layers without extra computation

cost in the inference time.

• We conduct extensive experiments to present the ef-

fectiveness of our methods. The experiment results

present that STDC networks achieve new state-of-

the-art results on ImageNet, Cityscapes and CamVid.

Specifically, our STDC1-Seg50 achieves 71.9% mIoU

on the Cityscapes test set at a speed of 250.4 FPS on

one NVIDIA GTX 1080Ti card. Under the same ex-

periment setting, our STDC2-Seg75 achieves 76.8%

mIoU at a speed of 97.0 FPS.

2. Related Work

2.1. Efficient Network Designs

Model design plays an important role in computer vi-

sion tasks. SqueezeNet [16] used the fire module and

certain strategies to reduce the model parameters. Mo-

bileNet V1 [13] utilized depth-wise separable convolution

to reduce the FLOPs in inference phase. ResNet [9] [10]

adopted residual building layers to achieve outstanding per-

formance. MobileNet V2 [25] and ShuffleNet [29] used

group convolution to reduce computation cost while main-

taining comparable accuracy. These works are particularly

designed for the image classification tasks, and their exten-

sions to semantic segmentation application should be care-

fully tuned.

2.2. Generic Semantic Segmentation

Traditional segmentation algorithms, e.g., threshold se-

lection, super-pixel, utilized the hand-crafted features to as-

sign pixel-level labels in images. With the development of

convolution neural network, methods [3, 1, 32, 14] based

on FCN [23] achieved impressive performance on various

benchmarks. The Deeplabv3 [3] adopted an atrous spa-

tial pyramid pooling module to capture multi-scale context.

The SegNet [1] utilized the encoder-decoder structure to re-

cover the high-resolution feature maps. The PSPNet [32]

devised a pyramid pooling to capture both local and global

context information on the dilation backbone. Both dila-

tion backbone and encoder-decoder structure can simulta-

neously learn the low-level details and high-level seman-

tics. However, most approaches require large computation

cost due to the high-resolution feature and the complicate

network connections. In this paper, we propose an efficient

and effective architecture which achieves good trade-off be-

tween speed and accuracy.

2.3. Real­time Semantic Segmentation

Recently, there are fast-growing practical applications

for real-time semantic segmentation. In this circumstance,
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Figure 3. (a) General STDC network architecture. ConvX opera-

tion refers to the Conv-BN-ReLU. (b) Short-Term Dense Concate-

nate module (STDC module) used in our network. M denotes the

dimension of input channels, N denotes the dimension of output

channels. Each block is a ConvX operation with different kernel

size. (c) STDC module with stride=2.

there are two mainstreams to devise efficient segmentation

methods. (i) lightweight backbone. DFANet [18] adopted

a lightweight backbone to reduce computation cost and de-

vised a cross-level feature aggregation module to enhance

performance. DFNet [21] utilized “Partial Order Pruning”

algorithm to obtain a lightweight backbone and efficient

decoder. (ii) multi-branch architecture. ICNet [31] de-

vised the multi-scale image cascade to achieve good speed-

accuracy trade-off. BiSeNetV1 [28] and BiSeNetV2 [27]

proposed two-stream paths for low-level details and high-

level context information, separately. In this paper, we pro-

pose an efficient lightweight backbone to provide scalable

receptive field. Furthermore, we set a single path decoder

which uses detail information guidance to learn the low-

level details.

3. Proposed Method

BiSeNetV1 [28] utilizes lightweight backbones, e.g.,

ResNet18 and spatial path as encoding networks to form

two-steam segmentation architecture. However, the classi-

fication backbones and two-stream architecture may be in-

efficient due to the structure redundancy. In this section, we

first introduce the details of our proposed STDC network.

Then we present the whole arhitecture of our single-stream

method with detail guidance.

3.1. Design of Encoding Network

3.1.1 Short-Term Dense Concatenate Module

The key component of our proposed network is the Short-

Term Dense Concatenate module (STDC module). Fig-

ure 3(b) and (c) illustrate the layout of STDC module.

Specifically, each module is separated into several blocks,

STDC module Block1 Block2 Block3 Block4 Fusion

RF(S = 1) 1× 1 3× 3 5× 5 7× 7
1× 1, 3× 3

5× 5, 7× 7

RF(S = 2) 1× 1 3× 3 7× 7 11× 11
3× 3

7× 7, 11× 11

Table 1. Receptive Field of blocks in our STDC module. RF de-

notes Receptive Field, S means stride, Note that if stride=2, the

1 × 1 RF of Block1 is turned into 3 × 3 RF by Average Pool

operation.

and we use ConvXi to denote the operations of i-th block.

Therefore, the output of i-th block is calculated as follows:

xi = ConvXi(xi−1, ki) (1)

where xi−1 and xi are the input and output of i-th block,

separately. ConvX includes one convolutional layer, one

batch normalization layer and ReLU activation layer, and

ki is the kernel size of convolutional layer.

In STDC module, the kernel size of first block is 1, and

the rest of them are simply set as 3. Given the channel

number of STDC module’s output N , the filter number of

convolutional layer in i-th block is N/2i, except the filters

of last convolutional layer, whose number is the same to

that of previous convolutional layer. In image classifica-

tion tasks, its a common practice to using more channels in

higher layers. But in semantic segmentation tasks, we fo-

cus on scalable receptive field and multi-scale informations.

Low-level layers need enough channels to encode more

fine-grained informations with small receptive field, while

high-level layers with large receptive field focus more on

high-level information induction, setting the same channel

with low-level layers may cause information redundancy.

Down-sample is only happened in Block2. To enrich the

feature information, we concatenate x1 to xn feature maps

as the output of STDC module by skip-path. Before con-

catenation, the response maps of different blocks in STDC

module is down-sampled to the same spatial size by aver-

age pooling operation with 3 × 3 pooling size, as shown in

Figure 3(c). In our setting, the final output of STDC module

is:

xoutput = F (x1, x2, ..., xn) (2)

where xoutput denotes the STDC module output, F is the

fusion operation in our method, while x1, x2, ..., xn are fea-

ture maps from all n blocks. In the consideration of effi-

ciency, we adopt concatenation as our fusion operation. In

our method, we use the STDC module in 4 blocks.

Table 1 presents the receptive field of blocks in STDC

module, and xoutput thus gathers multi-scale information

from all blocks, We claim that our STDC module has two

advantages: (1) we elaborately tune the filter size of blocks

by gradually decreasing in geometric progression manner,

leading to significant reduction in computation complexity.

(2) the final output of STDC module is concatenated from
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Stages Output size KSize S
STDC1 STDC2

R C R C

Image 224×224 3 3

ConvX1 112×112 3×3 2 1 32 1 32

ConvX2 56×56 3×3 2 1 64 1 64

Stage3
28×28

28×28

2

1

1

1
256

1

3
256

Stage4
14×14

14×14

2

1

1

1
512

1

4
512

Stage5
7×7

7×7

2

1

1

1
1024

1

2
1024

ConvX6 7×7 1×1 1 1 1024 1 1024

GlobalPool 1×1 7×7

FC1 1024 1024

FC2 1000 1000

FLOPs 813M 1446M

Params 8.44M 12.47M

Table 2. Detailed architecture of STDC networks. Note that ConvX

shown in the table refers to the Conv-BN-ReLU. The basic module

of Stage 3, 4 and 5 is STDC module. KSize mean kernel size. S,

R, C denote stride, repeat times and output channels respectively.

all blocks, which preserves scalable respective fields and

multi-scale information.

Given the input channel dimension M and output chan-

nel dimension N , the parameter number of STDC module

is:

Sparam = M × 1× 1×
N

21
+

n−1∑

i=2

N

2i−1
× 3× 3×

N

2i
+

N

2n−1
× 3× 3×

N

2n−1

=
NM

2
+

9N2

23
×

n−3∑

i=0

1

22i
+

9N2

22n−2

=
NM

2
+

3N2

2
× (1 +

1

22n−3
) (3)

As shown in Equation 3, the parameter number of STDC

module is dominated by the predefined input and output

channel dimension, while the number of blocks has slight

impact on the parameter size. Particularly, if n reaches the

maximum limit, the parameter number of STDC module al-

most keeps constant, which is only defined by M and N .

3.1.2 Network Architecture

We demonstrate our network architecture in Figure 3(a). It

consists of 6 stages except input layer and prediction layer.

Generally, Stage 1∼5 down-sample the spatial resolution

of the input with a stride of 2, respectively, and the Stage

6 outputs the prediction logits by one ConvX, one global

average pooling layer and two fully connected layer.

The Stage 1&2 are usually regarded as low-level layers

for appearance feature extraction. In pursuit of efficiency,

we only use one convolutional block in each of Stage 1&2,

which is proved to be sufficient according to our experi-

ences. The number of STDC module in Stage 3, 4, 5 is

carefully tuned in our network. Within those stages, the

first STDC module in each stage down-samples the spatial

resolution with a stride of 2. The following STDC modules

in each stage keep the spatial resolution unchanged.

We denote the output channel number of stage as Nl,

where l is the index of stage. In practice, we empirically

set N6 as 1024, and carefully tune the channel number of

rest stages, until reaching a good trade-off between accu-

racy and efficiency. Since our network mainly consists of

Short-Term Dense Concatenate modules, we call our net-

work STDC network. Table 2 shows the detailed structure

of our STDC networks.

3.2. Design of Decoder

3.2.1 Segmentation Architecture

We use the pretrained STDC networks as the backbone of

our encoder and adopt the context path of BiSeNet [28] to

encode the context information. As shown in Figure 4(a),

we use the Stage 3, 4, 5 to produce the feature maps with

down-sample ratio 1/8, 1/16, 1/32, respectively. Then we

use global average pooling to provide global context infor-

mation with large receptive field. The U-shape structure are

deployed to up-sample the features stem from global fea-

ture, and combine each of them with the counterparts from

last two stages (Stage 4&5) in our encoding phase. Follow-

ing BiSeNet [28], we use Attention Refine module to refine

the combination features of every two stages. For the final

semantic segmentation prediction, we adopt Feature Fusion

module in BiSeNet [28] to fuse the 1/8 down-sampled fea-

ture from Stage 3 in the encoder and the counterpart from

the decoder. We claim that the features of these two stages

are in different levels of feature representation. The fea-

ture from the encoding backbone preserves rich detail in-

formation, while the feature from the decoder contains con-

text information due to the input from global pooling layer.

Specifically, the Seg Head includes a 3×3 Conv-BN-ReLU

operator followed with a 1 × 1 convolution to get the out-

put dimension N , which is set as the number of classes. We

adopt cross-entry loss with Online Hard Example Mining to

optimize the semantic segmentation learning task.

3.2.2 Detail Guidance of Low-level Features

We visualize the features of BiSeNet’s spatial path in Fig-

ure 5(b). Compared with the backbone’s low-level lay-

ers(Stage 3) of same downsample ratio, spatial path can en-

code more spatial detail, e.g., boundary, corners. Based on

this observation, we propose a Detail Guidance module to

guide the low-level layers to learn the spatial information

in single-stream manner. We model the detail prediction
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Figure 4. Overview of the STDC Segmentation network. ARM denotes Attention Refine module, and FFM denotes Feature Fusion Module

in [28]. The operation in the dashed red box is our STDC network. The operation in the dashed blue box is Detail Aggregation Module.

(a) Input  (b) Spatial Path (c) Stage3 (d) Stage3D
Figure 5. Visual explanations for features in the spatial path and

Stage 3 without and with Detail Guidance. The column with sub-

script D denotes results with Detail Guidance. The visualization

shows that spatial path can encode more spatial detail,e.g., bound-

ary, corners, than backbone’s low-level layers, while our Detail

Guidance module can do the same thing without extra computa-

tion cost.

as a binary segmentation task. We first generate the de-

tail map ground-truth from the segmentation ground-truth

by Laplacian operator as shown in Figure 4 (c). As illus-

trated in Figure 4(a), we insert the Detail Head in Stage 3

to generate the detail feature map. Then we use the detail

ground-truth as the guidance of detail feature map to guide

the low-level layers to learn the feature of spatial details. As

shown in Figure 5(d), the feature map with detail guidance

can encode more spatial details than aforementioned result

presented in Figure 5(c). Finally, the learned detail features

are fused with the context features from the deep block of

the decoder for segmentation prediction.

Detail Ground-truth Generation: We generate the binary

detail ground-truth from the semantic segmentation ground-

truth by our Detail Aggregation module, as shown in dashed

blue box of Figure 4(c). This operation can be carried out

by 2-D convolution kernel named Laplacian kernel and a

trainable 1 × 1 convolution. We use the Laplacian opera-

tor shown in Figure 4(e) to produce soft thin detail feature

maps with different strides to obtain mult-scale detail infor-

mations. Then we upsample the detail feature maps to the

original size and fuse it with a trainable 1 × 1 convolution

for dynamic re-wegihting. Finally, we adopt a threshold

0.1 to convert the predicted details to the final binary detail

ground-truth with boundary and corner informations.

Detail Loss: Since the number of detail pixels is much

less than the non-detail pixels, detail prediction is a class-

imbalance problem. Because weighted cross-entropy al-

ways leads to coarse results, following [7], we adopt binary

cross-entropy and dice loss to jointly optimize the detail

learning. Dice loss measures the overlap between predict

maps and ground-truth. Also, it is insensitive to the number

of foreground/background pixels, which means it can alle-

viating the class-imbalance problem. So for the predicted

detail map with the height H and the width W , the detail

loss Ldetail is formulated as follows:

Ldetail(pd, gd) = Ldice(pd, gd) + Lbce(pd, gd) (4)

where pd ∈ R
H×W denotes the predicted detail and gd ∈

R
H×W denotes the corresponding detail ground-truth. Lbce

denotes the binary cross-entropy loss while Ldice denotes

the dice loss, which is given as follows:

Ldice(pd, gd) = 1−
2
∑H×W

i pidg
i
d + ǫ

∑H×W

i (pid)
2 +

∑H×W

i (gid)
2 + ǫ

(5)

where i denotes the i-th pixel and ǫ is a Laplace smoothing

item to avoid zero division. In this paper we set ǫ = 1.

As shown in Figure 4(b), we use a Detail Head to pro-

duce the detail map, which guide the shallow layer to en-

code spatial information. Detail Head includes a 3 × 3
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Conv-BN-ReLU operator followed with a 1 × 1 convolu-

tion to get the output detail map. In the experiment, the

Detail Head is proved to be effective to enhance the feature

representation. Note that this branch is discarded in the in-

ference phase. Therefore, this side-information can easily

boost the accuracy of segmentation task without any cost in

inference.

4. Experimental Results

We implement our method on three datasets: ImageNet [6],

Cityscapes [5] and CamVid [2] to evaluate the effectiveness

of our proposed backbone and segmentation network, re-

spectively. We first introduce the datasets and implementa-

tion details. Then, we report our accuracy and speed results

on different benchmarks compared with other algorithms.

Finally, we discuss the impact of components in our pro-

posed approach.

4.1. Benchmarks and Evaluation Metrics

ImageNet. The ILSVRC [6] 2012 is the most popular im-

age classification dataset. It contains 1.2 million images for

training, and 50,000 for validation with 1,000 categories. It

is also widely used for training a pretrained model for down-

stream tasks, like object detection or semantic segmenta-

tion.

Cityscapes. Cityscapes [5] is a semantic scene parsing

dataset, which is taken from a car perspective. It contains

5,000 fine annotated images and split into training, valida-

tion and test sets, with 2,975, 500 and 1,525 images respec-

tively. The annotation includes 30 classes, 19 of which are

used for semantic segmentation task. The images have a

high resolution of 2, 048× 1, 024, thus it is challenging for

the real-time semantic segmentation. For fair comparison,

we only use the fine annotated images in our experiments.

CamVid. Cambridge-driving Labeled Video Database

(Camvid) [2] is a road scene dataset, which is taken from

a driving automobile perspective. This dataset contains

701 annotated images extracted from the video sequence,

in which 367 for training, 101 for validation and 233 for

testing. The images have a resolution of 960 × 720 and 32
semantic categories, in which the subset of 11 classes are

used for segmentation experiments.

Evaluation Metrics. For classification evaluation, we use

evaluate top-1 accuracy as the evaluation metrics follow-

ing [9]. For segmentation evaluation, we adopt mean of

class-wise intersection over union (mIoU) and Frames Per

Second (FPS) as the evaluation metrics.

4.2. Implementation Details

Image Classification. We use mini-batch stochastic gradi-

ent descent (SGD) with batch size 64, momentum 0.9 and

weight decay 1e−4 to train the model. Three training meth-

ods from [11] are adopted, including learning rate warmup,

Backbone Resolution mIoU(%) FPS

GhostNet [8] 512× 1024 67.8 135.0

MobileNetV3 [12] 512× 1024 70.1 148.3

EfficientNet-B0 [26] 512× 1024 72.2 99.9

STDC2 512× 1024 74.2 188.6

GhostNet [8] 768× 1536 71.3 60.9

MobileNetV3 [12] 768× 1536 73.0 70.4

EfficientNet-B0 [26] 768× 1536 73.9 45.9

STDC2 768× 1536 77.0 97.0

Table 3. Lightweight backbone comparison on Cityscapes val set.

All experients utilize the same decoder and same experiment set-

tings.

cosine learning rate policy and label smoothing. The total

epochs is 300 with warmup strategy at the first 5 epochs,

within which the learning rate starts from 0.001 to 0.1. The

dropout before classification block is set to 0.2. We do not

use other special data augmentations, and all of them are the

same as [9].

Semantic Segmentation. We use mini-batch stochastic

gradient descent (SGD) with momentum 0.9, weight decay

5e−4. The batch size is set as 48, 24 for the Cityscapes,

CamVid dataset respectively. As common configuration, we

utilize ”poly” learning rate policy in which the initial rate is

multiplied by (1 − iter
max iter

)power. The power is set to 0.9
and the initial learning rate is set as 0.01. Besides, we train

the model for 60, 000, 10, 000 iterations for the Cityscapes,

CamVid dataset respectively, in which we adopt warmup

strategy at the first 1000, 200 iterations.

Data augmentation contains color jittering, random hor-

izontal flip, random crop and random resize. The scale

ranges in [0.125, 1.5] and cropped resolution is 1024× 512
for training Cityscapes. For training CamVid, the scale

ranges in [0.5, 2.5] and cropped resolution is 960× 720.

In all experiments, we conduct our experiments base on

pytorch-1.1 on a docker. We perform all experiments un-

der CUDA 10.0, CUDNN 7.6.4 and TensorRT 5.0.1.5 on

NVIDIA GTX 1080Ti GPU with batch size 1 for bench-

marking the computing power of our method.

4.3. Ablation Study

This section introduces the ablation experiments to validate

the effectiveness of each component in our method.

Effectiveness of STDC Module. We adjust the block num-

ber of STDC module in STDC2 and present the result in

Figure 7. According to our Equation 3, as the group num-

ber increases, the FLOPs decrease obviously. And the best

performance is in 4 blocks. The benefits of more blocks be-

come very small and a deeper network is bad for the parallel

calculation and FPS. Hence, in this paper, we set the block

number in STDC1 and STDC2 to 4.

Effectiveness of Our backbone. To verify the effective-

ness of our backbone designed for real-time segmentation,

we adopt the latest lightweight backbones which has com-
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(a) Input  (b) Stage3 (c) Stage3D (d) Prediction  (e) PredictionD (f) Groundtruth 
Figure 6. Visual comparison of our Detail Guidance on Cityscapes val set. The column with subscript D denotes results with Detail

Guidance. The first row (a) shows the input images. (b) and (c) illustrate the heatmap of Stage 3 without and with Detail Guidance. (d)

and (e) demonstrate the predictions without and with Detail Guidance. (f) is the ground-truth of input images.

Figure 7. Comparisons with different block number of STDC2 on

ImageNet.

Method SP
DG

mIoU(%) FPS
4x 2x 1x

BiSeNetV1 [28] X 69.0 105.8

STDC2-50 X 73.7 171.6

STDC2-50 73.0 188.6

STDC2-50 X 73.4 188.6

STDC2-50 X 73.6 188.6

STDC2-50 X 73.8 188.6

STDC2-50 X X 73.9 188.6

STDC2-50 X X X 74.2 188.6

Table 4. Detail information comparison on Cityscapes val set. SP

means method with Spatial Path and DG indicates Detail Guid-

ance, inwhich 1x, 2x, 4x denotes detail features with different

down-sample strides in Detail Aggregation module.

parable classification performance compared with STDC2

to formulate a semantic segmentation network with our de-

coder. As show in Table. 3, our STDC2 yield the best speed-

accuracy trade-off comapred with other lightweight back-

bones.

Effectiveness of Detail Guidance. We first visualize the

heatmap of the feature map of Stage 3 as shown in Fig-

ure 6. The features of Stage 3 with detail guidance encode

more spatial information comparing to that of Stage 3 with-

out detail guidance. Hence the final prediction of small

objects and boundaries are more precise. We show some

quantitative results in Table 4. To verify the effectiveness

of our Detail Guidance, we show the comparison of differ-

ent detail guidance strategies of STDC2-Seg on Cityscapes

val dataset. To further demonstrate the capability of Detail

Guidance, we first use the Spatial Path in BiSeNetV1 [28] to

encode the spatial information, then use the features gener-

ated from the Spatial Path to replace the features from Stage

3D. The setting of experiment with Spatial Path are exactly

the same with other experiments. As shown in Table 4, De-

tail Guidance in STDC2-Seg can improve the mIoU without

harming the inference speed. Adding Spatial Path to encode

spatial information can also improve the performance on ac-

curacy, but it increases the computation cost at the same

time. Also we find our Detail Aggregation module encode

the abundant detail information and yield the highest mIoU

with aggregation of 1x, 2x, 4x detail features.

4.4. Compare with State­of­the­arts

In this part, we compare our methods with other existing

state-of-the-art methods on three benchmarks, ImageNet,

Cityscapes and CamVid.

Results on ImageNet. As shown in Table 5, our STDC

networks achieves higher speed and accuracy compared

with other lightweight backbones. Compared with the

lightweight backbones used in real-time segmentation, e.g.,

DF1Net, the top-1 classification accuracy of our STDC1

network is 4.1% higher than baseline on the ImageNet val-

idation set. Compared with populuar lightweight networks,

9722



Model Top1 Acc. Params FLOPs FPS

ResNet-18 [9] 69.0% 11.2M 1800M 1058.7

ResNet-50 [9] 75.3% 23.5M 3800M 378.7

DF1 [21] 69.8% 8.0M 746M 1281.3

DF2 [21] 73.9% 17.5M 1770M 713.2

DenseNet121 [15] 75.0% 9.9M 2882M 363.6

DenseNet161 [15] 76.2% 28.6M 7818M 255.0

GhostNet(x1.0) [8] 73.9% 5.2M 141M 699.1

GhostNet(x1.3) [8] 75.7% 7.3M 226M 566.2

MobileNetV2 [25] 72.0% 3.4M 300M 998.8

MobileNetV3 [12] 75.2% 5.4M 219M 661.2

EfficientNet-B0 [26] 76.3% 5.3M 390M 443.0

STDC1 73.9% 8.4M 813M 1289.0

STDC2 76.4% 12.5M 1446M 813.6

Table 5. Comparisons with other popular networks on ImageNet

Classification.

Model Resolution Backbone
mIoU(%)

FPS
val test

ENet [24] 512× 1024 no - 58.3 76.9

ICNet [31] 1024× 2048 PSPNet50 - 69.5 30.3

DABNet [17] 1024× 2048 no - 70.1 27.7

DFANet B [18] 1024× 1024 Xception B - 67.1 120

DFANet A’ [18] 512× 1024 Xception A - 70.3 160

DFANet A [18] 1024× 1024 Xception A - 71.3 100

BiSeNetV1 [28] 768× 1536 Xception39 69.0 68.4 105.8

BiSeNetV1 [28] 768× 1536 ResNet18 74.8 74.7 65.5

CAS [30] 768× 1536 no - 70.5 108.0

GAS [22] 769× 1537 no - 71.8 108.4

DF1-Seg-d8 [21] 1024× 2048 DF1 72.4 71.4 136.9

DF1-Seg[21] 1024× 2048 DF1 74.1 73.0 106.4

DF2-Seg1[21] 1024× 2048 DF2 75.9 74.8 67.2

DF2-Seg2[21] 1024× 2048 DF2 76.9 75.3 56.3

SFNet [20] 1024× 2048 DF1 - 74.5 121

HMSeg [19] 768× 1536 no - 74.3 83.2

TinyHMSeg [19] 768× 1536 no - 71.4 172.4

BiSeNetV2 [27] 512× 1024 no 73.4 72.6 156

BiSeNetV2-L [27] 512× 1024 no 75.8 75.3 47.3

FasterSeg [4] 1024× 2048 no 73.1 71.5 163.9

STDC1-Seg50 512× 1024 STDC1 72.2 71.9 250.4

STDC2-Seg50 512× 1024 STDC2 74.2 73.4 188.6

STDC1-Seg75 768× 1536 STDC1 74.5 75.3 126.7

STDC2-Seg75 768× 1536 STDC2 77.0 76.8 97.0

Table 6. Comparisons with other state-of-the-art methods on

Cityscapes. no indicates the method do not have a backbone.

e.g. EfficientNet-B0, the FPS of STDC2 network is 83.7%

higher than that of baseline with competitive classification

result.

Results on Cityscapes. As shown in Table 6, we present

the segmentation accuracy and inference speed of our pro-

posed method on Cityscapes validation and test set. Fol-

lowing the previous methods [27, 22], we use the training

set and validation set to train our models before submitting

to Cityscapes online server. At test phase, we first resize

the image into the fixed size 512 × 1024 or 768 × 1536 to

inference, then we up-sample the results to 1024 × 2048.

Overall, our methods get the best speed-accuracy trade-off

Model Resolution Backbone mIoU(%) FPS

ENet [24] 720× 960 no 51.3 61.2

ICNet [31] 720× 960 PSPNet50 67.1 34.5

BiSeNetV1 [28] 720× 960 Xception39 65.6 175

BiSeNetV1 [28] 720× 960 ResNet18 68.7 116.3

CAS [30] 720× 960 no 71.2 169

GAS [22] 720× 960 no 72.8 153.1

BiSeNetV2 [27] 720× 960 no 72.4 124.5

BiSeNetV2-L [27] 720× 960 no 73.2 32.7

STDC1-Seg 720× 960 STDC1 73.0 197.6

STDC2-Seg 720× 960 STDC2 73.9 152.2

Table 7. Comparisons with other state-of-the-art methods on

CamVid. no indicates the method do not have a backbone.

among all methods. We use 50 and 75 after the method

name to represent the input size 512×1024 and 768×1536
respectively. For example, with the STDC1 backbone and

512×1024 input size, we name the method STDC1-Seg50.

As shown in Table 6, our STDC1-Seg50 achieves a signifi-

cantly faster speed than baselines, i.e., 250.4 FPS, and still

has 71.9% mIoU on test set, which is over 45.2% faster than

the runner-up. Our STDC2-Seg50 using 512 × 1024 input

size achieves 73.4% mIOU with 188.6 FPS, which is the

state-of-the-art trade-off between performance and speed.

For 768 × 1536 input size, our STDC2-Seg75 achieves the

best mIOU 77.0% in validation set and 76.8% on test set at

97.0 FPS.

Results on CamVid. We also evaluate our method on

CamVid dataset. Table 7 shows the comparison results with

other methods. With the input size 720× 960, STDC1-Seg

achieves 73.0% mIoU with 197.6 FPS which is the state-

of-the-art trade-off between performance and speed. This

further demonstrates the superior capability of our method.

5. Conclusions

In this paper, we revisit the classical segmentation archi-

tecture BiSeNet [28, 27] for structure optimization. Gen-

erally, the classification backbone and extra spatial path of

BiSeNet greatly hinder the inference efficiency. Therefore,

we propose a novel Short-Term Dense Concatenate Mod-

ule to extract deep features with scalable receptive field and

multi-scale information. Based on this module, STDC net-

works are designed and achieve competitive accuracy with

high FPS in image classification.Using STDC networks as

backbone, our detail-guided STDC-Seg achieves state-of-

the-art speed-accuracy trade-off in real-time semantic seg-

mentation. Extensive experiments and visualization results

indicates the effectiveness of our proposed STDC-Seg net-

works. In future, we extend our method by following direc-

tions: (i) the backbone will be validated in more tasks, e.g.,

object detection. (ii) we will explore deeper on the utiliza-

tion of spatial boundary in semantic segmentation tasks.
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