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Abstract

How to learn effective features from large-scale point

clouds for semantic segmentation has attracted increasing

attention in recent years. Addressing this problem, we pro-

pose a learnable module that learns Spatial Contextual Fea-

tures from large-scale point clouds, called SCF in this pa-

per. The proposed module mainly consists of three blocks,

including the local polar representation block, the dual-

distance attentive pooling block, and the global contextual

feature block. For each 3D point, the local polar represen-

tation block is firstly explored to construct a spatial repre-

sentation that is invariant to the z-axis rotation, then the

dual-distance attentive pooling block is designed to utilize

the representations of its neighbors for learning more dis-

criminative local features according to both the geometric

and feature distances among them, and finally, the global

contextual feature block is designed to learn a global con-

text for each 3D point by utilizing its spatial location and

the volume ratio of the neighborhood to the global point

cloud. The proposed module could be easily embedded into

various network architectures for point cloud segmentation,

naturally resulting in a new 3D semantic segmentation net-

work with an encoder-decoder architecture, called SCF-Net

in this work. Extensive experimental results on two public

datasets demonstrate that the proposed SCF-Net performs

better than several state-of-the-art methods in most cases.

1. Introduction

With the rapid development of 3D sensors, semantic seg-

mentation of 3D point clouds has attracted more and more

attention in the computer vision field. Compared with 2D

images, 3D point clouds could provide richer geometric in-

†Corresponding author.

Figure 1. Diagram of the spatial contextual feature (SCF) module.

formation of scenes. However, semantic segmentation of

3D point clouds, particularly segmentation of large-scale

point clouds, is still a challenging task due to the fact that

3D point clouds are generally unstructured and unordered.

In recent years, a lot of DNN (Deep Neural Network)-

based methods have been proposed for segmenting 3D point

clouds [29, 30, 40, 22, 46, 10]. These methods could be

roughly divided into 3 categories [11]: projection-based

methods [21, 2], discretization-based methods [10, 33, 27,

15], and point-based methods [14, 39, 35, 7, 46, 44, 3, 29,

30, 45]. Both the projection-based and discretization-based

methods are computationally expensive to handle large-

scale point clouds, which need extra procedures to trans-

form point clouds to a regular representation and project the

intermediate segmentation results back to the point clouds.

Different from those methods, point-based methods directly

work on 3D point clouds. Although some existing point-

based methods have achieved promising performances on

small-sized point clouds, they could not deal with the large-

scale point clouds. Recently, some methods designed for

large-scale point clouds have been proposed, such as SPG

[20], PCT [4] and RandLA-Net [13]. However, most of

them still have to confront with the following problem: how

to learn more effective features from large-scale point

clouds for semantic segmentation?
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Inspired by the success of contextual information in

many visual tasks [43, 5, 24, 19, 28], we investigate how

to learn spatial contextual features from large-scale point

clouds for semantic segmentation here. We decompose the

aforementioned problem into three sub-problems as:

1) how to represent the local context of a 3D point?

2) how to learn local contextual features?

3) how to learn global contextual features?

Addressing the three subproblems, we propose a learn-

able module, called SCF in this paper, consisting of 3

blocks, including the local polar representation block, the

dual-distance attentive pooling block, and the global con-

textual feature block. The diagram of SCF is shown in

Figure 1. For each 3D point, the local polar representa-

tion block is firstly explored to construct a z-axis rotation-

invariant representation in a polar coordinate system for

representing the local context. Then the representations of

its neighbors are integrated to learn effective local features

by utilizing the weights learnt by the dual-distance attentive

pooling block. Finally, the global contextual feature block

learns global context of each 3D point by utilizing both the

location and the volume ratio of the neighborhood. Vari-

ous network architectures could utilize the proposed module

SCF for point cloud segmentation, and under an encoder-

decoder architecture, a new 3D semantic segmentation net-

work is presented, called SCF-Net in this work. In sum, the

main contributions are listed as follows:

• We propose the Local Polar Representation (LPR)

block, which could learn locally z-axis rotation-

invariant representation for each 3D point.

• We propose the Dual-Distance Attentive Pooling

(DDAP) block, which could automatically learn effec-

tive local features based on both the geometric and fea-

ture distances.

• We propose the Global Contextual Feature (GCF)

block, which could learn the global context of each 3D

point from the point cloud.

• We propose the SCF module, which could be applied

to various architectures for exploring new point cloud

segmentation networks. Extensive experimental re-

sults in Section 4 demonstrate that the proposed SCF-

Net by embedding the SCF module into a standard

encoder-decoder architecture achieves state-of-the-art

performances.

2. Related Work

In this section, we introduce the three mentioned cate-

gories of point cloud segmentation methods in Section 1,

including the projection-based methods, the discretization-

based methods, and the point-based methods in detail.

2.1. Projection­based Methods

To leverage the 2D segmentation methods, many exist-

ing works aim to project 3D point clouds into 2D images

and then process 2D semantic segmentation. For example,

the point clouds were transformed to multi-view represen-

tations in [21, 2]. However, the projection inevitably causes

the information loss of the details. Besides, these methods

need to project back the intermediate segmentation results

to the point clouds, which is computationally expensive.

2.2. Discretization­based Methods

The discretization-based methods convert the point

cloud into a discrete representation, such as voxel. The

point cloud was voxelized into 3D grids and fed to a fully-

3D CNN for voxel-wise segmentation [15]. Many works

[10, 33, 27] achieved point clouds semantic segmentation

based on discretization. In particular, Fully-Convolutional

Point Network (FCPN) [31] can process massive point

clouds. However, the performance of these methods is sen-

sitive to the granularity of the voxels, and the voxelization

inherently introduces discretization artifacts.

2.3. Point­based Methods

Different from the projection-based and discretization-

based methods, point-based methods directly work on the

point clouds. These methods can be generally classi-

fied as point convolution and pointwise MLP (Multi-Layer

Perceptron) methods. Inspired by the successful appli-

cation of convolution operators for images, many works

[14, 39, 35, 7] tended to propose convolution methods for

point clouds. The pointwise MLP methods use shared MLP

as the basic unit. The pioneering work of these methods,

PointNet [29], learnt per-point features. However, per-point

features cannot capture the local geometric patterns, and the

contextual features among points are lost. To deal with that,

many methods have been explored recently, which mainly

utilize two techniques, including neighboring feature pool-

ing and attention-based aggregation.

Neighboring feature pooling: The information from lo-

cal neighbors are aggregated for each point in these meth-

ods [30, 8, 46, 17, 44]. PointNet++ [30] improved the

performance of PointNet by grouping points hierarchically

and learning local features with increasing contextual scale.

Different from that, two neighborhoods were generated in

world and feature space leveraging K-means clustering and

KNN [8]. PointWeb [46] was proposed to extract contextual

features from local neighborhood by densely constructing

a locally fully-linked web. Inspired by the 2D descriptor

SIFT [25], Jiang et al. [17] proposed PointSIFT module.

The orientation-encoding was achieved by encoding the in-

formation from eight crucial orientations.

Attention-based aggregation: These methods intro-

duce attention mechanism [37] to further improve the per-
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formance. Yang et al. [41] developed Point Attention Trans-

formers to model the interactions between points. A Local

Spatial Aware layer was proposed by Chen et al. [3] to learn

Spatial Distribution Weights and capture the local geomet-

ric structure.

To capture contextual features and geometric structures,

several works tried to achieve segmentation resorting to

graph networks [20, 18, 38, 26] and RNN (Recurrent Neural

Networks) [6, 42, 47, 23].

RandLA-Net [13] utilized random sampling to achieve

high efficiency and leveraged local feature aggregation

module to learn and preserve geometric patterns.

3. Methodology

In this section, we firstly propose the SCF module for

large-scale point cloud segmentation, consisting of three

blocks, LPR, DDAP and GCF. Then we present the SCF-

Net, which has an encoder-decoder with the SCF module.

3.1. SCF Module

The SCF module is proposed to learn spatial contextual

features. We introduce the three proposed blocks in detail,

and describe the architecture of the SCF module in this sub-

section.

3.1.1 Local Polar Representation

It is noted that in many real scenes, the orientations of

the objects belonging to a same class are generally differ-

ent, such as chairs in a conference room, indicating that

the features directly learnt from the input 3D points are

orientation-sensitive. Such an orientation-sensitive case

could hamper the segmentation performance to some extent.

Addressing this issue, we propose the LPR for learning a z-

axis rotation-invariant representation, which represents the

local context of a 3D point in a polar coordinate system in-

stead of a Cartesian coordinate system. Different from the

design of the 3D shape descriptor [9], the architecture of the

LPR is shown in Figure 2.

Figure 2. Architecture of the local polar representation block.

As seen from Figure 2, the local spatial information is

fed into the LPR block, and the output is the polar represen-

tation and the geometric distance.

LPR includes the following steps:

Constructing initial local representation: Firstly, cal-

culate the relative coordinates of neighboring points in the

polar coordinate system. For a point pi, its K-nearest neigh-

bors {p1i , p
2
i , . . . , p

k
i , . . . , p

K
i } are gathered by the KNN (K

nearest neighbors) algorithm based on Euclidean distances.

The local representation is expressed as (diski , φ
k
i , θ

k
i ).

diski =
√

xk2

i + yk
2

i + zk
2

i (1)

φk
i = arctan(

yki
xk
i

) (2)

θki = arctan(
zki

√

xk2

i + yk
2

i

) (3)

where (xk
i , y

k
i , z

k
i ) is the relative coordinate in the Cartesian

coordinate system.

Calculating the local direction: We then calculate the

center-of-mass point pmi of the local neighborhood. The

local direction is defined as the direction from pi to pmi ,

which has the following two advantages:

a) The center-of-mass point can reflect the general pic-

ture of the local neighborhood;

b) The randomness introduced by down sampling can be

effectively reduced by using the mean value in the calcula-

tion of pmi .

Updating the φk
i and θki : The φk

i and θki are updated to

φk′

i and θk
′

i , respectively as:

φk′

i = φk
i − αi (4)

θk
′

i = θki − βi (5)

where αi and βi are the relative angle of pmi . As noted in (4)

and (5), φk′

i and θk
′

i remains unchanged when point clouds

rotate around z axis.

Figure 3. Illustration of updating φk

i and θki . (a) the original rela-

tive angles φk

i and θki ; (b) the relative angles αi and βi of the local

direction; (c) the updated φk
′

i and θk
′

i .

The update algorithm is shown in Figure 3. The relative

angle of pki (dark blue) is φk
i and θki . The local direction is

from point pi (orange) to the barycenter point pmi (red). The

relative angle is updated to φk′

i and θk
′

i , respectively.

After the LPR block, the local representation is invariant

to the z-axis rotation.
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3.1.2 Dual-Distance Attentive Pooling

Given the local representation, the next problem to be

faced is how to learn local contextual features utilizing

the neighboring point features. Heuristically, distance is

an important variable to measure the correlation among

points. The smaller the distance is, the more relevant

they are. Therefore, we propose the dual-distance attentive

pooling block to automatically learn effective local contex-

tual features by integrating the neighboring point features

{f1
i
, f2

i
, . . . , fk

i
, . . . , fK

i
}. The architecture of the DDAP is

shown in Figure 4.

Figure 4. Architecture of the dual-distance attentive pooling block.

As seen from Figure 4, DDAP has three inputs, includ-

ing geometric distance, point features and geometric pat-

terns. To generate geometric patterns, the local representa-

tion output by the LPR are concatenated with the absolute

coordinates, and further processed via a shared MLP.

Particularly, we focus on two representative distances,

the geometric distance dkig in the world space and the feature

distance dkif in the feature space. Without loss of generality,

let g(i) and g(k) denote the input feature vectors of the i-th

point and its k-th (k = 1, 2, ...,K) neighbor to the DDAP

block respectively. The feature distance dkif between g(i)
and g(k) is defined as:

dkif = mean(|g(i)− g(k)|) (6)

where ‘| · |’ is the L1 norm and mean(·) is the mean func-

tion. The negative exponential of both are used to learn the

attentive pooling weights. Besides, we use λ to tune dkif
to handle its instability, because features are automatically

learnt by the network.

d
k

i = exp(−dkig)⊕ λ exp(−dkif ) (7)

where ‘⊕’ is the concatenation operator.

In addition, the dual-distance d
k

i
and the feature f

k

i
is

merged via concatenation.

d
k+

i
= d

k

i ⊕ f
k

i (8)

Then, a shared MLP followed by softmax is applied to

d
k+

i
, and the attentive pooling weight ak

i
is learnt automat-

ically as:

a
k

i = softmax (MLP (dk+

i
)) (9)

Finally, the local contextual features are obtained by cal-

culating the weighted-sum of the neighboring point features

with the learnt weights ak
i

.

fiL =

K
∑

k=1

(aki · fki ) (10)

3.1.3 Global Contextual Feature

Local contextual feature describes the context among

points in the neighborhood, but it is not discriminative

enough for semantic segmentation. To obtain more effec-

tive features, we propose the global contextual feature block

to learn the global context from 3D points. The illustration

of the GCF is displayed in Figure 5.

Figure 5. Illustration of the global contextual feature block.

As seen from Figure 5, both the local and global spatial

information are used. The region is shown as a circular area,

which is actually a 3D spherical space.

We utilize the location and volume ratio ri in the global

context representation. It is noted that a same category of

objects (e.g. chairs) in different scenes usually have vari-

ous styles, and their geometric architectures are generally

similar, but not exactly the same. Hence, considering that

the volume ratio is not sensitive to the positions of the inner

points within the local and global bounding spheres, we use

it so that the representation could tolerate slight geometric

deformations of the objects of a same category.

ri =
vi

vg
(11)

where vi is the volume of the neighborhood’s bounding

sphere corresponding to pi, and vg is the volume of the

bounding sphere of the point cloud.

The x-y-z coordinate of pi is used to represent the loca-

tion of the local neighborhood. Therefore, the global con-

textual features are defined as fiG.

fiG = MLP ((xi, yi, zi)⊕ ri) (12)

where (xi, yi, zi) is the coordinate of pi, and ‘⊕’ is the con-

catenation operator.
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Figure 6. Architecture of the SCF-Net and the SCF module. The local context learning for one point is shown.

3.1.4 Architecture of SCF

The architecture of the SCF module is shown in Fig-

ure 6(b). Its inputs are the spatial information and the fea-

tures learnt previously. The spatial information is utilized to

learn both the local and global contextual features, while the

learnt features are only used for local feature learning. The

local contextual features are learnt by the LPR and DDAP

blocks. Figure 6(b) shows the local contextual feature learn-

ing for one point, which is applied to each point in par-

allel. The local context representations constructed by the

LPR are automatically integrated by the DDAP. We learn

local contextual features twice to increase contextual infor-

mation. Then, the features are further added with another

feature map, resulting in the local features. The global con-

textual features are learnt from the spatial information by

the GCF block. The output of the module is the learnt spa-

tial contextual feature, which is the concatenation of the lo-

cal and global contextual features.

3.2. Architecture of SCF­Net

In this subsection, we embedded the proposed SCF mod-

ule into a standard encoder-decoder architecture, resulting

the new segmentation network, SCF-Net. The complete ar-

chitecture of SCF-Net is shown in Figure 6(a).

As seen from Figure 6(a), the input of the network is a

point cloud of size N × d, where N is the number of the

points and d is the input feature dimension. The per-point

features are firstly extracted by a fully connected layer, and

the dimension is unified to 8. Five encoder layers are uti-

lized progressively to encode the features. Among them,

random sampling is used to down sample the point cloud,

and the SCF module is embedded to learn spatial contex-

tual features. The number of points is gradually decreased

from N to N
512

, while the feature dimension is increased

from 8 to 512. Next, five decoder layers are used to de-

code the features. The encoded features are up sampled

through the nearest-neighbor interpolation, which simply

utilizes the value at the nearest neighbor as the interpolated

value, and further concatenated with the intermediate fea-

ture map through skip connection. At last, three consecu-

tive fully-connected layers are used to predict the semantic

labels. The output is the segmentation predictions of size

N × c, where c is the number of classes. Besides, the cross

entropy loss is used for training.

4. Experiments

In this section, we evaluate our SCF-Net on two typical

large-scale point cloud benchmarks, S3DIS [1] and Seman-

tic3D [12]. The experiments* are implemented in the Ten-

sorflow on a server with NVIDIA Titan Xp GPUs, CUDA

9.0 and cuDNN v7.

In addition, we also report the corresponding results of 9

methods [29, 16, 42, 20, 22, 46, 44, 35, 13] on the S3DIS

and the results of 10 methods [2, 33, 34, 32, 44, 38, 20, 35,

36, 13] on the Semantic3D for comparison, including SPG,

KPConv, and RandLA-Net.

4.1. Implementation Detail and Dataset

We use the Adam optimizer with an initial learning rate

of 10−2. The batch size is set as 4 and 3 when training

with S3DIS and Semantic3D, respectively. The network is

trained for 100 epochs, with learning rate dropped by 5%
after each epoch. The number of neighbors is set to be 16

(K=16) for efficiency. A fixed number of points (≈ 105) are

sampled from each training point cloud for network train-

ing, while the whole raw test point clouds are used for test-

ing. Each point is represented by 3D coordinates and color

information in the experiments.

*The code is available at

https://github.com/leofansq/SCF-Net
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PointNet [29] 47.6 66.2 78.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

RSNet [16] 56.5 66.5 - 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0

3P-RNN [42] 56.3 - 86.9 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6

SPG [20] 62.1 73.0 86.4 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [22] 65.4 75.6 88.1 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

PointWeb [46] 66.7 76.2 87.3 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5

ShellNet [44] 66.8 - 87.1 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4

KPConv [35] 70.6 79.1 - 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

RandLA-Net [13] 70.0 82.0 88.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1

SCF-Net (Ours) 71.6 82.7 88.4 93.3 96.4 80.9 64.9 47.4 64.5 70.1 71.4 81.6 67.2 64.4 67.5 60.9

Table 1. Quantitative results of different methods on S3DIS. The classwise metric is IoU(%).

Figure 7. Visualization examples of three typical indoor scenes (hallway, conference room and office) on S3DIS. Left: RGB colored input

point clouds; Middle: Predictions obtained via the proposed SCF-Net; Right: Ground truths.

S3DIS is a large-scale indoor point cloud dataset, which

consists of point clouds of 6 areas including 271 rooms.

Each point cloud is a medium-sized room, and each point is

annotated with one of the semantic labels from 13 classes.

Semantic3D is a large-scale outdoor point cloud dataset

with over 3 billion points from real-world, including urban

and rural scenes. It consists of 15 training point clouds and

15 online testing point clouds. In addition to coordinates

and color information, each point also has intensity values,

but we do not use them. Each point is annotated with one

of the semantic labels from 8 classes.

4.2. Evaluation on S3DIS

As done in [29], we perform 6-fold cross validation to

evaluate our methods. The mean Intersection-over-Union

(mIoU), mean class Accuracy (mAcc) and Overall Accu-

racy (OA) are used as standard metrics.

The quantitative results of all the referred methods are

reported in Table 1. As seen from this table, our method

performs better than others on all the three metrics (mIoU,

mAcc and OA), and achieves the best performance on 3 cat-

egories, including beam, board, and clutter.

The visualization examples of three typical indoor

scenes are shown in Figure 7, including hallway, confer-

ence room and office. In general, semantic segmentation

of indoor scenes is difficult, because some categories are

hard to distinguish, such as white boards on white walls.

Our method performs well on the board class, which can

be seen from both the quantitative and qualitative results.

Nevertheless, the misclassification is inevitable. As shown

in the middle row of Figure 7, a table (center area) in the

conference room is misclassified to bookcase.

4.3. Evaluation on Semantic3D

We submit our results to the sever and evaluate on the

reduced set of 4 subsampled point clouds. The mIoU and

OA of the test data are compared.

We report the quantitative results of all the referred meth-

ods in Table 2. As seen from this table, our method has

the best mIoU among all these methods. As for OA, it is

slightly lower than for RandLA-Net, but it is better than

all the other compared methods. Besides, SCF-Net also

achieves the best performance on car segmentation.

The visualization results are shown in Figure 8. Note that
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SnapNet [2] 59.1 88.6 3600.0 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4

SEGCloud [33] 61.3 88.1 1881.0 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3

RF MSSF [34] 62.7 90.3 1643.8 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6

MSDeepVoxNet [32] 65.3 88.4 115000.0 83.0 67.2 83.9 36.7 92.4 31.3 50.0 78.2

ShellNet [44] 69.3 93.2 3000.0 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2

GACNet [38] 70.8 91.9 1380.0 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8

SPG [20] 73.2 94.0 3000.0 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2

KPConv [35] 74.6 92.9 600.0 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7

RGNet [36] 74.7 94.5 - 97.5 93.0 88.1 48.1 94.6 36.2 72.0 68.0

RandLA-Net [13] 77.4 94.8 - 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8

SCF-Net (Ours) 77.6 94.7 563.6 97.1 91.8 86.3 51.2 95.3 50.5 67.9 80.7

Table 2. Quantitative results of different methods on the reduced-8 split of Semantic3D. The runtime of the compared methods is obtained

from the benchmark. The classwise metric is IoU(%).

Figure 8. Visualization results on the reduced-8 split of Semantic3D. Top: RGB colored input point clouds; Bottom: Predictions obtained

via the proposed SCF-Net. Note that the ground truth of the test set is not publicly available.

Figure 9. Confusion matrix on Semantic3D.

the ground truth of the test set is not publicly available, so

only RGB colored point clouds and predictions are shown.

The confusion matrix shown in Figure 9 provides a de-

tailed look at the error sources. Most of the errors are caused

by the hard scape and the low vegetation classes. Probably

because the hard scape class includes several kinds of ob-

jects, and the appearances of the three natural classes are

similar.

4.4. Ablation Study

The effectiveness of our approach is verified by the ex-

perimental results on S3DIS and Semantic3D. To better un-

derstand the network, we further evaluate it and conduct the

following two groups of experiments. The experiments are

conducted on S3DIS due to the lack of public ground truth

of Semantic3D test set.

4.4.1 Ablation Study on SCF

The following ablation studies are conducted to study the

impacts of the three proposed blocks. We use the standard

6-fold cross validation to evaluate the ablated networks, and

show the comparison in Table 3.

First of all, we remove the GCF block. The improve-

ment from the second row to the first row demonstrates that
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mIoU(%)

SCF-Net 71.6

removing GCF 70.5

removing GCF & replacing DDAP with SAP 69.3

removing GCF & replacing DDAP with SAP

& replacing LPR with LSR 67.9

Table 3. Results of ablated networks on S3DIS. SAP is attentive

pooling only based on features themselves. In LSR, the represen-

tation is pi ⊕ pki ⊕ (pi − pki )⊕ ||pi − pki ||.

the introduction of global contextual features can effectively

improve the understanding of the scene. Secondly, we addi-

tionally replace the DDAP block with a normal self attentive

pooling (SAP). Only neighboring point features are taken

into consideration while learning the pooling weights. The

effectiveness of the DDAP is verified in the third row. The

mIoU is improved by 1.2%. Finally, we replace the LPR

block with a normal local spatial representation (LSR). The

representation is pi ⊕ pki ⊕ (pi–p
k
i )⊕ ||pi–p

k
i || in LSR. The

replacing of LPR diminishes segmentation performance by

1.4%, which shows the impact of it. The distance informa-

tion is explicitly encoded in both LPR and LSR. The main

difference between them is the representing method of the

relative position. In LSR, it is represented in Cartesian co-

ordinates, while it is represented as the relative angle to the

local direction in LPR, which is not sensitive to the rotation

around the z-axis. The improvement confirms the impor-

tance of the local representation.

4.4.2 Ablation Study on DDAP

The following ablation studies are conducted to under-

stand the impacts of various design choices made in DDAP.

First of all, we study the influences of the distances. All

ablated networks in this study are evaluated on area 2 of

S3DIS, which is the most difficult area according to the

mIoU results. We remove the feature and the geometric dis-

tance in turn, and report the comparison in Table 4. The re-

moval of the feature distance diminishes segmentation per-

formance by 0.4%, while 1.5% decline is caused by the re-

moval of the geometric distance. From that, the effective-

ness of the dual-distance is demonstrated. In addition, it

can be seen that the improvement benefited from the geo-

metric distance is greater, which also shows the importance

of focusing on the spatial contextual features.

mIoU(%)

dual-distance 59.7

removing feature distance 59.3

removing both geometric and feature distance 57.8

Table 4. Distances influences on DDAP.

Secondly, we explore different fusion methods of the

dual-distance d
k

i
and the feature f

k

i
. The experiments are

also conducted on area 2. We evaluate two typical fusion

methods, concatenation and weighted summation, and re-

port the comparison in Table 5. For weighted summation,

three weight ratios are taken into consideration. The ex-

perimental results show that concatenation is better than

weighted summation. The weighted summation with 5:5

ratio is the best among the three, which demonstrates the

effectiveness of both d
k

i
and f

k

i
.

mIoU(%)

concatenation 59.7

weighted summation (5:5) 58.9

weighted summation (9:1) 55.2

weighted summation (1:9) 58.7

Table 5. Fusion methods of the dual-distance d
k

i and the feature

f
k

i . The ratio is expressed as (dk

i : fki )

Finally, we evaluate three values of λ. The experiments

are conducted on 6 areas to investigate the general effect,

and the comparison is reported in Table 6. It can be seen that

0.1 is a better choice, which achieves the best performance

on five of the six areas.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

1 74.4 59.4 76.7 58.0 62.0 79.0

0.1 75.1 59.7 78.4 60.2 63.4 80.2

0.01 75.1 59.5 77.2 61.7 61.6 80.0

Table 6. Comparison of mIoU(%) with different values of λ.

5. Conclusion

In this paper, we propose the learnable module SCF to

learn effective features from large-scale point clouds for se-

mantic segmentation. The proposed module mainly con-

sists of three blocks, including the local polar representa-

tion block, the dual-distance attentive pooling block, and

the global contextual feature block. The LPR and DDAP

blocks are used for learning discriminative local contex-

tual features, while the GCF block is proposed to learn the

global contextual features. SCF could be easily embedded

into various network architectures for point cloud segmen-

tation, and we embed it into an encoder-decoder architec-

ture, resulting in the SCF-Net in this work. Extensive ex-

perimental results on S3DIS and Semantic3D demonstrate

that the proposed method achieves state-of-the-art perfor-

mances on both indoor and outdoor scenes.
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