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Abstract

Face recognition models trained under the assumption of

identical training and test distributions often suffer from poor

generalization when faced with unknown variations, such

as a novel ethnicity or unpredictable individual make-ups

during test time. In this paper, we introduce a novel cross-

domain metric learning loss, which we dub Cross-Domain

Triplet (CDT) loss, to improve face recognition in unseen

domains. The CDT loss encourages learning semantically

meaningful features by enforcing compact feature clusters

of identities from one domain, where the compactness is

measured by underlying similarity metrics that belong to

another training domain with different statistics. Intuitively,

it discriminatively correlates explicit metrics derived from

one domain, with triplet samples from another domain in a

unified loss function to be minimized within a network, which

leads to better alignment of the training domains. The net-

work parameters are further enforced to learn generalized

features under domain shift, in a model-agnostic learning

pipeline. Unlike the recent work of Meta Face Recogni-

tion [18], our method does not require careful hard-pair

sample mining and filtering strategy during training. Exten-

sive experiments on various face recognition benchmarks

show the superiority of our method in handling variations,

compared to baseline and the state-of-the-art methods.

1. Introduction
Face recognition using deep neural networks has shown

promising outcomes on popular evaluation benchmarks

[21, 25, 26, 23]. Many current methods base their ap-

proaches on the assumption that the training data – CASIA-

Webface [46] or MS-Celeb-1M [19] being the widely used

ones – and the testing data have similar distributions. How-

ever, when deployed to real-world scenarios, those models

often do not generalize well to test data with unknown statis-

tics. In face recognition applications, this may mean a shift

in attributes such as ethnicity, gender or age between the

training and evaluation data. On the other hand, collecting

and labelling more data along the underrepresented attributes

Figure 1. Comparison between the conventional triplet and our

Cross-Domain Triplet losses. Top: The standard triplet loss is

domain agnostic and utilizes a shared metric matrix, Σ, to measure

distances of all (anchor,positive) and (anchor,negative) pairs. Bot-

tom: Our proposed Cross-Domain Triplet loss, takes into account

Σ
+ and Σ

−, i.e., the similarity metrics obtained from positive and

negative pairs in one domain, to make compact clusters of triplets

that belong to another domain. This, results to better alignment of

the two domains. Here, colors indicate domains.

is costly. Therefore, given existing data, learning algorithms

are needed to yield universal face representations and in turn,

be applicable across such diverse scenarios.

Domain generalization has recently emerged to address

the same challenge, but mainly for object classification with

limited number of classes [3, 9, 32]. It aims to employ

multiple labeled source domains with different distributions

to learn a model that generalizes well to unseen target data

at test time. However, many domain generalization methods

are tailored to closed-set scenarios and hence, not directly

applicable if the label spaces of the domains are disjoint.

Generalized face recognition is indeed a prominent example

of open-set applications with very large number of categories,

encouraging the need for further research in this area.

In this paper, we introduce an approach to improve the

problem of face recognition from unseen domains by learn-

ing semantically meaningful representations. To this end,
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we are motivated by recent works in few-shot learning [31],

domain generalization [9] and face recognition [22], reveal-

ing a general fact that, in training a model, it is beneficial

to exploit notions of semantic consistency between training

data coming from various sources. Therefore, we introduce

Cross-Domain Triplet (CDT) loss based on the triplet ob-

jective [36], that learns useful features by considering two

domains, where the similarity metrics provided by one do-

main are utilized in another domain to learn compact feature

clusters of identities (Fig 1).

Such similarity metrics are encoded by means of covari-

ance matrices, borrowing the idea from [31]. Different from

[31], however, instead of using class-specific covariance ma-

trices, we cast the problem in domain alignment regime,

where our model first estimates feature distributions between

the anchor and positive/negative samples, namely the sim-

ilarity metrics derived from positive/negative pairs in one

domain (i.e., Σ+ and Σ
− in Fig 1). Then, we utilize these

similarity metrics and apply them to triplets of another do-

main to learn compact clusters. As supported by theoretical

insights and experimental evaluations, our CDT loss aligns

distributions of two domains in a discriminative manner.

Furthermore, by leveraging a meta-learning framework, our

network parameters are further enforced to learn generalized

features under domain shift, following recent studies [9, 18].

Our experiments demonstrate the effectiveness of our

approach equipped with the Cross-Domain Triplet loss, con-

sistently outperforming the state-of-the-art on practical sce-

narios of face recognition for unknown ethnicity using the

Cross-Ethnicity Faces (CEF) [39] and Racial Faces in-the-

Wild (RFW) [44] benchmark datasets. Furthermore, it can

satisfactorily handle face recognition across other variations

as shown by empirical evaluations.

To summarize, we introduce an effective Cross-Domain

Triplet loss function which utilizes explicit similarity met-

rics existing in one domain, to learn compact clusters of

identities from another domain. This, results to learning

semantically meaningful representations for face recogni-

tion from unseen domains. To further expose the network

parameters to domain shift, under which more generalized

features are obtained, we also incorporate the new loss in

a model-agnostic learning pipeline. Our experiments show

that our proposed method achieves state-of-the-art results on

the standard face recognition from unseen domain datasets.

2. Related Work

Face Recognition. Following the success of deep neural

networks, recent works on face recognition have tremen-

dously improved the performances [46, 36, 35, 43, 7, 37, 6],

thanks to large amount of labeled data being at the disposal.

Many loss designs are shown to be effective in large scale

network training, i.e., CosFace [43] proposes to squeeze the

classification boundary with a loss margin in cosine man-

ifold, ArcFace [7] combines the boundary margin with an

angular margin to have better classification effect. Very

recently, URFace [37] proposes sample-level confidence

weighted cosine loss with an adversarial de-correlation loss

to achieve better feature representations.

Generally, face recognition algorithms conjecture that

the training data (e.g. CASIA-WebFace [46] or MS-Celeb-

1M [19]) and testing data follow similar distributions. Re-

cent works [18, 39] however, demonstrate unsatisfactory

performance of such systems due to their poor generaliza-

tion ability to handle unseen data in practice. This, makes

face recognition models that are aware of test-time distribu-

tion changes, be more favorable. Furthermore, in minimizing

distribution discrepancy, it is crucial to consider class infor-

mation to avoid mis-alignment of samples from different

categories in different domains [24].

Meta-learning and Domain Generalization. It is now an

accepted fact that meta-learning (a.k.a. learning to learn [41])

can boost generalization ability of a model. The episodic

training scheme originated from Model-Agnostic Meta-

Learning (MAML) [16] has been widely used to address

few shot learning [40, 38], domain generalization for object

recognition from unseen distributions [29, 3, 32] and very

recently face recognition from unseen domains [18]. The

underlying idea is to simulate the train/test distribution gap

in each round of training through creating episodic train/test

splits out of the available training data. Some other exam-

ples include Model-Agnostic learning of Semantic Features

(MASF) [9] which aligns a soft confusion matrix to retain

knowledge about inter-class relationships, Feature Critic Net-

works [32] which proposes learning an auxiliary loss to help

generalization and Meta-Learning Domain Generalization

(MLDG) [28] which generates domain shift during training

by synthesizing virtual domains within each batch.

Efforts in addressing unseen scenarios are either on

transferring existing class variances to under-represented

classes [47], or learning universal features through various

augmentations [37]. A recent effort is Meta Face Recogni-

tion (MFR) [18], in which a loss is composed of distances

of hard samples, identity classification and the distances be-

tween domain centers. However, simply enforcing alignment

of the centers of training domains does not necessarily align

their distributions and may lead to undesirable effects, e.g.,

aligning different class samples from different domains [24].

As a result, this loss component does not always improve

recognition (see w/o da. rows in Asian and Caucasian sec-

tions of Table 10 in [18]).

3. Proposed Method

In this section, we present our approach to improve the

problem of face recognition from unseen domains by learn-

ing semantically meaningful representations. To do so, we
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are inspired by recent works [31, 9, 22], showing that, in

training a model, it is beneficial to exploit notions of se-

mantic consistency between data coming from different dis-

tributions. We learn semantically meaningful features by

enforcing compact clusters of identities from one domain,

where the compactness is measured by underlying similarity

metrics that belong to another domain with different statis-

tics. In fact, we distill the knowledge encoded as similarity

metrics across the domains with different label spaces.

We start with introducing the overall network architec-

ture. Our architecture closely follows a typical image/face

recognition design. It consists of a representation-learning

network fr(· ; θr), parametrized by θr, an embedding net-

work fe(· ; θe), parametrized by θe and a classifier network

fc(· ; θc), parametrized by θc. Following the standard set-

ting [3, 9, 18], both fc(· ; θc) and fe(· ; θe) are light networks,

a couple of Fully Connected (FC) layers, which take inputs

from fr(· ; θr). More specifically, forwarding an image I

through fr(·) outputs a tensor fr(I) ∈ R
H×W×D that, after

being flattened, acts as input to both the classifier fc(·) and

the embedding network fe(·).
Before delving into more details, we first review some

basic concepts used in our formulation. Then, we provide

our main contribution to learn generalized features from

multiple source domains with disjoint label spaces. Fi-

nally, we incorporate the solution into a model-agnostic algo-

rithm, originally based on Model-Agnostic Meta-Learning

(MAML) [16].

3.1. Notation and Preliminaries

Throughout the paper, we use bold lower-case letters (e.g.,

x) to show column vectors and bold upper-case letters (e.g.,

X) for matrices. The d× d identity matrix is denoted by Id.

By a tensor X , we mean a multi-dimensional array of order

k , i.e., X ∈ R
d1×···×dk . [X ]i,j,··· ,k denotes the element at

position {i, j, · · · , k} in X .

In Riemannian geometry, the Euclidean space R
d is a

Riemannian manifold equipped with the inner product de-

fined as 〈x,y〉 = xT
Σ y,x,y ∈ R

d [11, 14]. The class

of Mahalanobis distances in R
d, d : Rd × R

d → R
+, is

denoted by

dΣ(x,y) =
√

(x− y)TΣ (x− y) , (1)

where Σ ∈ R
d×d is a Positive Semi-Definite (PSD) ma-

trix [27], region covariance matrix of features being one

instance [10, 15]. This, boils down to the Euclidean (l2)

distance when the metric matrix, Σ, is chosen to be Id. The

motivation behind Mahalanobis metric learning is to deter-

mine Σ such that dΣ(·, ·) endows certain useful properties

by expanding or shrinking axes in R
d.

In a general deep neural network for metric learning, one

relies on a FC layer with weight matrix W ∈ R
D×d immedi-

ately before a loss layer (e.g. contrastive [20] or triplet [36])

to provide the embeddings of the data to a reduced dimen-

sion space [12, 13, 36]. Then, given the fact that Σ is a PSD

matrix and can be decomposed as Σ = W TW , the squared

l2 distance between two samples x and y (of a batch) passing

through a network is computed as

d2Σ
(

x, y
)

= ‖W
(

f(x)− f(y)
)

‖22

=
(

f(x)− f(y)
)T

Σ
(

f(x)− f(y)
)

, (2)

where f(x) ∈ R
d denotes functionality of the network on

an image x.

In this work, we use positive (negative) image pairs to de-

note face images with equal (different) identities. Moreover,

a triplet, (anchor, positive, negative), consists of one anchor

face image, another sample from the same identity and one

image from a different identity.

3.2. Cross­Domain Similarity Learning

Here, we tackle the face recognition scenario where dur-

ing training we observe k source domains, each with dif-

ferent attributes like ethnicity. At test time, a new target

domain is presented to the network which has samples of

individuals with different identities and attributes. We for-

mulate this problem as optimizing a network using a novel

loss based on the triplet loss [36] objective function, which

we dub Cross-Domain Triplet loss. Cross-Domain Triplet

loss, accepts inputs from two domains iD and jD, estimates

underlying distributions of positive and negative pairs from

one domain (e.g., jD), to measures the distances between

(anchor, positive) and (anchor, negative) samples of the other

domain (e.g., iD), respectively. Then, using the computed

distances and a pre-defined margin, the standard triplet loss

function is applied.

Let j
T = {j(a, p, n)b}

Bj

b=1
represents a batch of Bj

triplets from the j-th domain, j ∈ 1 · · · k, from which we

can consider positive samples j
I
+ = {j(a, p)b}

Bj

b=1
. For sim-

plicity we drop the superscript j here. We combine all local

descriptors of each image to estimate the underlying distri-

bution by a covariance matrix. Specifically, we forward each

positive image pair (a, p), through fr(·) to obtain the feature

tensor representation fr(a), fr(p) ∈ R
H×W×D. We cast

the problem in the space of pairwise differences. Therefore,

we define the tensor R+ = fr(a)− fr(p). Next, we flatten

the resulting tensor R+ into vectors {r+i }
HW
i=1 , r+i ∈ R

D.

This allows us to calculate a covariance matrix of positive

pairs in pairwise difference space as

Σ
+ =

1

N − 1

N
∑

i=1

(

r+i − µ+
) (

r+i − µ+
)T

, (3)

where N = BHW and µ+ = 1

N

∑N

i=1
r+i .
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Similarly, using B negative pairs I− = {(a, n)b}
B
b=1

, we

find R− = fr(a) − fr(n) for each (a, n) and flatten R−

into vectors {r−i }
HW
i=1 , r−i ∈ R

D. This enables us to define

a covariance matrix of negative pairs as

Σ
− =

1

N − 1

N
∑

i=1

(

r−i − µ−
) (

r−i − µ−
)T

, (4)

where N = BHW and µ− = 1

N

∑N

i=1
r−i .

Considering that a batch of images has adequate samples,

this will make sure a valid PSD covariance matrix is obtained,

since each face image has HW samples in covariance com-

putations. Furthermore, samples from a large batch-size can

satisfactorily approximate domain distributions according

to [1, 8].

Our Cross Domain Triplet loss, lcdt, works in a similar

fashion by utilizing the distance function d2
Σ
(·, ·) defined

in (2), to compute distance of samples using the similar-

ity metrics from another domain. Given triplet images i
T

from domain iD and j
Σ

+, jΣ− from domain jD computed

via (3) and (4), respectively, it is defined as

lcdt
(i
T,j T; θr

)

= (5)

1

B

B
∑

b=1

[ 1

HW

H
∑

h=1

W
∑

w=1

d2jΣ+([fr(
iab)]h,w, [fr(

ipb)]h,w)−

1

HW

H
∑

h=1

W
∑

w=1

d2jΣ−
([fr(

iab)]h,w, [fr(
inb)]h,w) + τ

]

+

where τ is a pre-defined margin and [·]+ is the hinge func-

tion. We utilize class balanced sampling to provide inputs to

both covariance and Cross-Domain Triplet loss calculations

as this has been shown to be more effective in long-tailed

recognition problems [18, 33].

Insights Behind our Method. Central to our proposal, is

distance of the form rTΣ r, defined on samples of two

domains with different distributions. If r is drawn from a

distribution then the multiplications with Σ results in a dis-

tance according to the empirical covariance matrix, which

optimizing over the entire points translates to alignment of

the domains. More specifically, assuming that Σ is PSD,

then eigendecomposition exists, i.e., Σ = V ΛV T . Expand-

ing the term leads to

rTΣr =
(

Λ
1
2V Tr

)T (

Λ
1
2V Tr

)

=
∥

∥Λ
1
2V Tr

∥

∥

2

2

which correlates r with the eigenvectors of Σ weighted

by the corresponding eigenvalues. This, attains its maxi-

mum when r is in the direction of leading eigenvectors of

the empirical covariance matrix Σ. In other words, as the

eigenvectors of Σ are directions where its input data has

maximal variance, minimizing this term over r vectors re-

sults to alignment of the two data sources. Fig 2 depicts the

underlying process in our loss.

3.3. A Solution in a Model Agnostic Framework

Following recent trends in domain generalization tasks,

we employ gradient-based meta-train/meta-test episodes un-

der a model-agnostic learning framework to further expose

the optimization process to distribution shift [9, 32, 18]. Al-

gorithm (1) summarizes our overall training process. More

specifically, in each round of training, we split input source

domains into one meta-test and the remaining meta-train

domains. We randomly sample B triplets from each domain

to calculate our losses. First, we calculate two covaraince

matrices, Σ+ and Σ
−, as well as temporary set of param-

eters, Θ′, based on the summation of a classification and

triplet losses, Ls. The network is trained to semantically

perform well on the held-out meta-test domain, hence Σ
+,

Σ
− and Θ′ are used to compute the loss on the meta-test

domain, Lt. This loss has additional CDT loss, lcdt, to also

involve cross-domain similarity for domain alignment. In

the end, the model parameters are updated by accumulated

gradients of both Ls and Lt, as this has been shown to be

more effective than the original MAML [2, 18]. Here, the

accumulated Lt loss provides extra regularization to update

the model with higher-order gradients. In the following, we

provide details of the identity classification and the triplet

losses.

Having a classification training signal is crucial to face

recognition applications. Hence, we use the standard Large

Margin Cosine Loss (LMCL) [43] as our identity classifica-

tion loss which is as follows

lcls
(

Ii; θr, θc
)

= (6)

− log
exp (s wT

yi
fc(Ii)−m)

exp (s wT
yi
fc(Ii)−m) +

∑

yj 6=yi
exp (s wT

yj
fc(Ii))

,

where yi is the ground-truth identity of the image Ii, fc(·) is

the classifier network, wyi
is the weight vector of the identity

yi in θc, s is an scaling multiplier and m is the margin.

We further encourage fr network to learn locally compact

semantic features according to identities from one domain.

To this end, we use the triplet loss. Using the standard l2
distance function ‖ · ‖2, the triplet loss function provides

training signal such that for each triplet, the distance between

a and n becomes greater than the distance between a and p

plus a predefined margin ρ. More formally,

ltrp
(

T; θr, θe
)

= (7)

1

B

B
∑

b=1

[

∥

∥fe(ab)− fe(pb)
∥

∥

2

2
−
∥

∥fe(ab)− fe(nb)
∥

∥

2

2
+ ρ

]

+
.

Note that wy, fc(I) and fe(I) are l2 normalized prior to

computing the loss. Furthermore, fc(·) and fe(·) operate on

the extracted representation by fr(·).
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Figure 2. A schematic view of our Cross-Domain Triplet loss. In one iteration, given samples of two domains i and j with their associated

(disjoint) labels are available, covariance matrices in difference spaces of positive and negative pairs of domain j are calculated and used to

make positive and negative pairs of domain i, close and far away, respectively. This, makes compact clusters of identities while aligning the

distributions. Note that alignments of positive and negative pairs are done simultaneously in a unified manner based on the triplet loss.

Algorithm 1 : Learning Generalized Features for Face

Recognition.

Input:

Source domains D =
[1
D,2D2, · · · ,

k D];
Batch-size B;

Hyper-parameters α, β, λ;

Output:

Learned parameters: Θ̂ = {θ̂r, θ̂c, θ̂e}

1: Initialize parameters Θ = {θr, θc, θe}
2: repeat

3: Initialize the gradient accumulator: GΘ ← 0
4: for each iD (meta-test domain) in D do

5: for each jD, i 6= j (meta-train domain) in D do

6: Sample B triplets i
T, from B identities of iD

7: Sample B triplets j
T, from B identities of jD

8: Compute Ls ← E[lcls(
j
T; θr, θc)] + ltrp(

j
T; θr, θe)

9: Compute Θ′ ← Θ− α∇(Θ)Ls

10: Compute j
Σ

+ and j
Σ

− using positive and negative

pairs of j
T

11: Compute Lt ← E[lcls(
i
T; θ′r, θ

′

c)] +
ltrp(

i
T; θ′r, θ

′

e) + lcdt(
i
T,j T; θ′r)

12: end for

13: GΘ ← GΘ + λ∇ΘLs + (1− λ)∇ΘLt

14: end for

15: Update model parameters: Θ← Θ− β

k
GΘ

16: until convergence

4. Experiments

In this part, we first provide our implementation details

for the sake of reproducibility. Then, we provide experi-

mental results for face recognition from unseen domains.

We conclude this section by ablation analysis of important

components of our algorithm. To the best of our knowledge,

Meta Face Recognition (MFR) [18] is the very recent work

that addresses the same problem. Therefore, we compare our

method against MFR in all evaluations. We also consider the

performances of CosFace [43], Arcface [7] and URFace [37]

as our baseline.

Implementation Details. Our implementation was done

in PyTorch [34]. For our baseline model, we utilized a

28-layer ResNet with a final FC layer that generates an

embedding space of R256, i.e., the final generalized feature

space at test time. In our design, fr(·; θr) is the backbone

immediately before this FC layer. fc(·) generates logits

immediately after it, while fe(·) stacks an additional FC

layer, to map inputs to a lower dimensional space of R128.

As for the optimizer, we adopted stochastic gradient descent

with the weight decay of 0.0005 and momentum of 0.9. In

Algorithm (1), the batch-size B is set to 128, α and β to

1e−4 decaying to half every 1K steps and λ to 0.7. We set

the classifier margin m to 0.5 and both margins τ and ρ to 1.

4.1. Cross Ethnicity Face Verification/Identification

As our first set of experiments, we tackled the problem of

face recognition from unseen ethnicity. Here, the evaluation

protocol is leave-one-ethnicity-out, i.e., excluding samples

of one ethnicity (domain) from training and then evaluating

the performances on the samples of the held-out domain.

Datasets. For evaluation, there exist two recent datasets

recommended for studying facial cross ethnicity recognition

performances, namely the Cross-Ethnicity Faces (CEF) [39]

and Racial Faces in-the-Wild (RFW) [44] datasets. CEF

dataset is selected from MS-Celeb-1M [19], consisting of

four types of ethnicity images, Caucasian, African-American,

East-Asian and South-Asian. We combined the last two sets

into one ethnicity domain, Asian. There are 200 identities

with 10 different images from each ethnicity. Note that, the

identities in CEF are disjoint from the MS-Celeb-1M dataset,

which we use to train our model. Similarly, RFW is another

cross-ethnicity evaluation benchmark made from the MS-

Celeb-1M dataset with four ethnicity subsets: Caucasian,

African, Asian and Indian. CEF has only test samples, while
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Training

Domain(s)

Verification Identification

CA AA AS CA AA AS

CA 97.8 92.0 93.2 90.0 69.2 75.7

AA 91.5 96.4 92.0 60.4 83.8 62.5

AS 93.3 91.8 95.6 63.9 64.5 84.1

All 98.4 97.1 97.0 90.2 84.0 84.4

Table 1. Verification and Identification accuracy numbers in %

on the CEF [39] testing set using our annotated MS-Celeb-1M

dataset with ethnicity labels. We report the evaluation metrics when

either a single domain or all domains (i.e., the last row) are used

to train a CosFace model [43]. Testing data is either from CA:

Caucasian, AA: African-American or AS: Asian domain, from

disjoint identities to those of the training data. As shown in the

results, regardless of the amount of data, a model trained on samples

from a specific domain, performs much better on the testing data

from the same domain. This, suggests the importance of having

bias free training data when evaluating generalized face recognition

algorithms. The top two results are highlighted in bold.

RFW provides both training and testing data across the do-

mains.

Effect of Ethnicity Bias in Training Data. Note that,

most public face datasets are collected from the web by

querying celebrities. This, leads to significant performance

bias towards the Caucasian ethnicity. For example, 82% of

the data are Caucasian images in the MS-Celeb-1M dataset,

while there are only 9.7% African-American, 6.4% East-

Asian and less than 2% Latino and South-Asian combined

altogether [39].

To further highlight the influence of having ethnicity bias

in training data of face recognition models, we performed an

experiment using our annotated MS-Celeb-1M dataset with

ethnicity labels and the CEF test set. To train a model, we

considered two cases either 1) only with training samples

of a single test ethnicity or 2) all training samples from all

of the ethnicities. We report two standard evaluation met-

rics, verification accuracy and identification accuracy. To

calculate the verification accuracy, we follow the standard

protocol suggested by [21], from which 10 splits are con-

structed and the overall average number is reported. Each

split contains 900 positive and 900 negative pairs and the

accuracy on each split is computed using the threshold found

from the remaining 9 splits. As suggested by [39], in facial

recognition systems, the drop in the identification accuracy

is larger when dealing with face images from a novel ethnic-

ity during test time. Therefore, we also report identification

accuracy numbers suggested by [39]. More specifically, we

consider a positive pair of reference and query to be correct,

if there is no other image from a different identity that is

closer in distance to the reference, than the query.

We show the results of this experiment in Table 1. Several

conclusions can be drawn here. First, the results indicate

that a network trained only on samples of a specific eth-

Unseen

Ethnicity
Method

TAR@FAR’s of Rank@

0.001 0.01 0.1 1

Caucasian

CosFace [43] 63.94 77.26 91.44 91.05

Arcface [7] 63.98 77.43 91.92 91.15

URFace [37] 64.10 77.81 92.27 91.76

MFR [18] 64.31 79.89 93.44 92.90

Ours 65.74 82.48 95.18 94.25

African-

American

CosFace [43] 89.48 92.75 95.12 95.02

Arcface [7] 89.69 92.31 95.55 95.66

URFace [37] 89.75 92.76 96.23 95.70

MFR [18] 90.66 95.01 97.69 97.07

Ours 94.89 96.98 98.17 97.23

Asian

CosFace [43] 81.98 91.63 95.41 93.94

Arcface [7] 82.96 91.81 96.09 93.92

URFace [37] 84.33 92.44 96.10 94.37

MFR [18] 85.54 94.73 96.86 95.41

Ours 88.74 96.41 98.56 97.27

Indian

CosFace [43] 80.54 87.39 94.55 93.24

Arcface [7] 82.17 88.58 95.24 93.41

URFace [37] 83.32 89.11 95.30 93.53

MFR [18] 84.17 89.42 96.08 93.94

Ours 87.84 92.08 97.12 95.18

Table 2. Comparative results of our method against the state of

the art on the four leave-one-ethnicity-out scenarios on the CEF

test set [39]. Note that our method consistently outperforms the

competitors.

nicity, tends to perform highly better on the same ethnicity,

regardless of the amount of training samples. Second, the

second best numbers in each column are very close to their

corresponding upper bound shown in the last row (”All” here

means when all training samples from all of the ethnicities

are considered during training). Comparatively, the gaps

between the seen domain and unseen test domains under the

identification score are very larger, exceeding 20% between

CA and AA when only Caucasian samples are used during

training. This, clearly shows that such a bias may invalidate

conclusions drawn from performance of facial recognition

systems in unseen domains. A related study [42] shows the

impact of noise in training data in face recognition.

We note that, for pre-training, the method of MFR uti-

lizes the MS-Celeb-1M dataset, but without removing target

ethnicity samples from training data. As we have experi-

mentally observed and discussed above, this, causes difficul-

ties when addressing generalized face recognition problem.

Therefore, in this section, we adapt MFR, when consider-

ing face recognition from unseen domains. Thus, we first

aim to remove such a bias from our training data. To this

end, we train an ethnicity classifier network on manually

annotated face images with ground-truth ethnicity label. The

number of images per ethnicity varies between 5K to 8K. We

then, make use of the network to find correct ethnicity label

of each individual in the dataset. This allow us to remove

all known samples of an specific domain when addressing

cross-ethnicity face recognition.
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Unseen

Ethnicity
Method

TAR@FAR’s of

0.001 0.01 0.1

Caucasian

CosFace [43] 61.15 70.74 85.50

Arcface [7] 61.18 70.85 85.93

URFace [37] 62.54 72.94 88.24

MFR [18] 63.81 76.06 90.43

Ours 65.20 78.80 91.87

African

CosFace [43] 71.55 83.40 90.11

Arcface [7] 71.82 84.07 92.11

URFace [37] 73.93 86.34 93.26

MFR [18] 75.31 88.94 93.67

Ours 77.90 91.17 96.87

Asian

CosFace [43] 66.33 80.04 90.26

Arcface [7] 66.49 80.97 91.73

URFace [37] 67.55 81.04 90.89

MFR [18] 69.02 82.54 91.94

Ours 69.17 82.60 94.10

Indian

CosFace [43] 65.55 80.17 91.03

Arcface [7] 67.39 81.15 91.44

URFace [37] 69.26 83.03 91.97

MFR [18] 71.44 83.11 92.22

Ours 76.63 86.70 95.47

Table 3. Comparative results of our method against the state of

the art on the four leave-one-ethnicity-out scenarios of the RFW

dataset [44]. Note that our method consistently outperforms the

competitors.

Training Data. To train our model, we used our MS-

Celeb-1M dataset annotated with ethnicity labels. In the

case of RFW experiments, we further trained the model us-

ing RFW train set, while following the leave-one-ethnicity-

out testing protocol. Where there is only one training sample

per identity, we made use of random augmentation of the

image, to generate a positive pair. The augmentation is a

random combination of Gaussian blur and occlusion sug-

gested by [37]. Since RFW has overlapping identities with

MS-Celeb-1M, following MFR, we first removed samples of

such identities and made MS-C-w/o-RFW, i.e., MS-Celeb-

without-RFW.

Evaluation Metrics. At test time, the extracted feature

vectors of each image and its flipped version are concate-

nated and considered as the final representation of the image.

We used cosine distance to compute the distances. As for

evaluating performances, we report the True Acceptance

Rate (TAR) at different levels of False Acceptance Rate

(FAR) such as 0.001, 0.01 and 0.1 using the Receiver Op-

erating Characteristic (ROC) curve. Moreover, we report

Rank-1 accuracy where a pair of probe and gallery image is

considered correct if after matching the probe image to all

gallery images, the top-1 result is within the same identity.

Results on the CEF Testing Set. In Table 2, we compare

our results with those of the state-of-the-art techniques across

all four leave-one-domain-out scenarios. Note that there is

Method
TAR@FAR’s of Rank@

AUC Acc
0.001 0.01 1

CosFace [43] 92.55 96.55 96.85 99.53 99.35

LF-CNNs [45] - - - 99.3 98.5

MFR [18] 94.05 97.25 97.8 99.8 99.78

Ours 94.20 97.22 97.75 99.8 99.76

Table 4. Comparative results of our method against the state of the

art on cross-age face recognition using the CACD-VS dataset [4].

Our method works on par with MFR.

no annotated face image as Indian in the source domains here.

Our method, equipped with the Cross-Domain Triplet loss,

comfortably outperforms the recent method of MFR. This,

we believe, clearly shows the benefits of our approach, which

allows us to learn cross-domain similarities from labeled

source face images, thus yielding a better representation for

unseen domains.

Results on the RFW Dataset. In Table 3, using the RFW

dataset, we compare our results with those of the state-of-the-

art methods described above in the leave-one-ethnicity-out

protocol. As in the previous experiment, our method is the

top performing one in all cases. Under FAR@0.1 measure,

the gap between our algorithm and the closest competitor,

MFR, exceeds 3% when African-American and Indian im-

ages are considered as the test domain. CosFace method

is considered as the baseline and is the least performing

method, indicating the importance of learning generalized

features in face recognition.

4.2. Handling Other Variations

To demonstrate that our approach is generic and can han-

dle other common variations during test time, we considered

additional experiments. Following the standard protocol

suggested by MFR [18], the full train data annotated with

ethnicity is used as our source domains in all experiments.

Cross age face verification and identification. First, we

considered an experiment using the Cross-Age Celebrity

Dataset (CACD-VS) [4]. The dataset provides 4k cross-age

image pairs with equal number of positive and negative pairs

to form a testing subset for face verification task. The results

of this experiment are shown in Table 4, where we have also

reported the Area Under the ROC Curve (AUC) as well as

the verification accuracy numbers. The table indicates, while

our method outperforms the recent method of MFR under

the FAR@0.001 measure, works competitively very close to

it under other evaluation metrics. Under the AUC measure,

we obtain the exact same performance as the MFR. In all

comparisons, our method outperforms the previous work of

LF-CNNs [45].
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Method
TAR@FAR’s of Rank@

0.001 0.01 0.1 1

CosFace [43] 69.03 71.35 90.47 94.29

Arcface [7] 69.15 71.62 91.22 94.36

URFace [37] 70.79 74.67 93.40 94.72

MFR [18] 72.33 81.92 95.97 96.92

Ours 76.41 84.53 97.68 97.24

Table 5. Comparative results of our method against the state of the

art on CASIA NIR-VIS 2.0 dataset [30].

Method
TAR@FAR’s of Rank@

0.001 0.01 0.1 1

CosFace [43] 68.49 98.96 99.92 99.82

ArcFace [7] 69.53 99.0 99.96 99.86

URFace [37] 69.77 99.54 99.96 99.90

MFR [18] 74.54 99.96 100 99.92

Ours 76.62 99.96 100 99.92

Table 6. Comparative results of our method against the state of the

art on Multi-PIE dataset [17].

Method
TAR@FAR’s of

0.001 0.01 0.1

w/o lcls 64.24 76.58 89.96

w/o ltrp 64.65 77.95 91.02

w/o lcdt 63.75 75.90 89.84

Ours (full) 65.20 78.80 91.87

Table 7. Ablation study of the effects of different loss components

of our proposal.

Near infrared vs. visible light face recognition. Next,

we considered an experiment using the CASIA NIR-VIS 2.0

face database [30]. Here, the gallery face images are cap-

tured under visible light while the probe ones are under near

infrared light. Table 5 shows that our method consistently

outperforms the competitors.

Cross pose face recognition. Finally, we considered an

experiment using the Multi-PIE cross pose dataset [17, 35].

Similar to the previous experiment, our method outperforms

the competitors as shown in Table 6.

4.3. Ablation Analysis

In this section, we conduct further experiments to show

the impact of important components of Algorithm 1 on ver-

ification accuracy. For this analysis, we made use of the

Caucasian subset of the RFW dataset as the unseen domain

and the rest of the data from all other domains as the source

domains.

We first investigate how final recognition accuracy num-

bers vary, when different loss components are excluded from

our algorithm. Different components here are identity clas-

sification, triplet and cross-domain triplet losses, denoted

by lcls, ltrp and lcdt, respectively. The results of this exper-

iment are shown in Table 7. As the table indicates, every

component of our overall loss, contributes importantly to

Figure 3. Ablation study over the hyper-parameter λ. This indicates

the effect of meta-test loss which has our Cross-Domain Triplet

loss. We empirically observed that a value close to 0.7 gives the

best results.

the final performance, as excluding either of them leads to a

consistent performance drop. Further comparing across the

different loss terms, we observe that our proposed CDT loss

plays a more important role here, since the performances

significantly drop without this loss component. For instance,

FAR@0.1 drops by more than 2% without lcdt.

Furthermore, one hyper-parameter in our approach is the

contribution ratio of meta-train and meta-test losses, i.e.,

Ls and Lt. This is determined by hyper-parameter λ in

Algorithm 1. In Fig 3, we show the effect of varying λ on

the FAR@0.001 measure, when the Caucasian subset of the

RFW dataset is considered the target domain. We observe

that a value close to 0.7 gives the best results.

5. Conclusions

We have introduced a cross-domain metric learning loss,

which is dubbed Cross-Domain Triplet (CDT) loss, that lever-

ages the information jointly contained in two observed do-

mains to provide better alignment of the domains. In essence,

it first, takes into account similarity metrics of one data dis-

tribution, and then in a similar fashion to the triplet loss,

uses the metrics to enforce compact feature clusters of iden-

tities that belong to another domain. Intuitively, CDT loss

discriminatively correlates explicit metrics obtained from

one domain with triplet samples from another domain in

a unified loss function to be minimized within a network,

which leads to better alignment of the training domains. We

have also incorporated the loss in a meta-learning pipeline,

to further enforce the network parameters to learn general-

ized features under domain shift. Extensive experiments on

various face recognition benchmarks have shown the superi-

ority of our method in handling variations, ethnicity being

the most important one. In the future, we will investigate

how a universal form of covariance matrix (such as the one

used in [5]) could be utilized in our framework.
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