
3D CNNs with Adaptive Temporal Feature Resolutions

Mohsen Fayyaz1,∗, Emad Bahrami1,∗,

Ali Diba2, Mehdi Noroozi3, Ehsan Adeli4, Luc Van Gool2,5, Juergen Gall1

1University of Bonn, 2KU Leuven, 3Bosch Center for Artificial Intelligence,
4Standford University, 5ETH Zürich

{lastname}@iai.uni-bonn.de, emadbahramirad@gmail.com,

{firstname.lastname}@kuleuven.be, mehdi.noroozi@de.bosch.de, eadeli@stanford.edu

Abstract

While state-of-the-art 3D Convolutional Neural Net-

works (CNN) achieve very good results on action recogni-

tion datasets, they are computationally very expensive and

require many GFLOPs. While the GFLOPs of a 3D CNN

can be decreased by reducing the temporal feature reso-

lution within the network, there is no setting that is opti-

mal for all input clips. In this work, we therefore introduce

a differentiable Similarity Guided Sampling (SGS) module,

which can be plugged into any existing 3D CNN architec-

ture. SGS empowers 3D CNNs by learning the similarity

of temporal features and grouping similar features together.

As a result, the temporal feature resolution is not anymore

static but it varies for each input video clip. By integrat-

ing SGS as an additional layer within current 3D CNNs, we

can convert them into much more efficient 3D CNNs with

adaptive temporal feature resolutions (ATFR). Our evalu-

ations show that the proposed module improves the state-

of-the-art by reducing the computational cost (GFLOPs)

by half while preserving or even improving the accuracy.

We evaluate our module by adding it to multiple state-of-

the-art 3D CNNs on various datasets such as Kinetics-

600, Kinetics-400, mini-Kinetics, Something-Something V2,

UCF101, and HMDB51.

1. Introduction

In recent years, there has been a tremendous progress

for video processing in the light of new and complex deep

learning architectures, which are based on variants of 3D

Convolutional Neural Networks (CNNs) [24, 9, 7, 4, 6, 12,

8]. They are trained for a specific number of input frames,

⋆Mohsen Fayyaz and Emad Bahrami equally contributed to this work.

Emad Bahrami contributed to this project while he was a visiting re-

searcher at the Computer Vision Group of the University of Bonn.

typically between 16 to 64 frames. For classifying a longer

video, they slide over the video and the outputs are then ag-

gregated. These networks, however, are often very expen-

sive to train and heavy to deploy for inference task. In order

to reduce the inference time, [15, 20] proposed to process

not all parts of a video with the same 3D CNN. While [15]

trains a second network that decides for each chunk of in-

put frames if it should be processed by the more expensive

3D CNN, [20] uses a fix scheme where a subset of the in-

put chunks are processed by an expensive 3D CNN and the

other chunks by a less expensive 3D CNN. The latter then

uses an RNN to fuse the outputs of the different 3D CNNs.

Although both approaches effectively reduce the GFLOPS

during inference, they increase the training time since two

instead of one network need to be trained. Furthermore,

they do not reduce the computational cost of the 3D CNNs

themselves.

In this work, we propose an approach that makes 3D

CNNs more efficient for training and inference. Our pro-

posal is based on the observation that the computational cost

of a 3D CNN depends on the temporal resolution it operates

on at each stage of the network. While the temporal reso-

lution can be different at different stages, the schemes that

define how the temporal resolution is reduced is hard-coded

and thus the same for all videos. However, it is impossible

to define a scheme that is optimal for all videos. If the tem-

poral resolution is too much reduced, the network is forced

to discard important information for some videos. This re-

sults in a decrease of the action recognition accuracy per-

formance. Vice versa, a high temporal resolution results in

highly redundant feature maps and increases the computa-

tional time, which makes the 3D CNN highly inefficient for

most videos. In this work, we therefore address the question

of how a 3D CNN can dynamically adapt its computational

resources in a way such that not more resources than neces-

sary are used for each input chunk.

In order to address this question, we propose to ex-

ploit the redundancy within temporal features such that 3D

14731

Figure 1: The difficulty of recognizing actions varies largely across videos. For videos with slow motion (top), the temporal

features that are processed within a 3D CNN can be highly redundant. However, there are also very challenging videos where

all features are required to understand the content (bottom). While previous 3D CNNs use fix down-sampling schemes that

are independent of the input video, we propose a similarity guided sampler that groups and aggregates redundant information

of temporal features into B′ ≤ T feature maps. The core aspect is that this process adapts the internal temporal resolution

to the input video such that B′ is small if the input features are redundant (top) and large (bottom) if most of the features are

required.

CNNs process and select the most valuable and informative

temporal features for the action classification task. In con-

trast to previous works, we propose to dynamically adapt

the temporal feature resolution within the network to the

input frames such that on one hand important informa-

tion is not discarded and on the other hand no computa-

tional resources are wasted for processing redundant infor-

mation. To this end, we propose a Similarity Guided Sam-

pling (SGS) mechanism that measures the similarity of tem-

poral feature maps, groups similar feature maps together,

and aggregates the grouped feature maps into a single out-

put feature map. The similarity guided sampling is designed

such that it is differentiable and number of output feature

maps varies depending on the redundancy of the temporal

input feature maps as shown in Fig. 1. By integrating the

similarity guided sampling as an additional module within

any 3D CNN, we convert the 3D CNN with fixed temporal

feature resolutions into a much more efficient dynamic 3D

CNN with adaptive temporal feature resolutions (ATFR).

Note that this approach is complementary to [15, 20] and

the two static 3D CNNs used in these works can be replaced

by adaptive 3D CNNs. However, even with just a single 3D

CNN with adaptive temporal feature resolutions, we already

achieve a higher accuracy and lower GFLOPs performance

compared to [15, 20].

We demonstrate the efficiency of 3D CNNs with adap-

tive temporal feature resolutions by integrating the simi-

larity guided sampler into the current state-of-the-art 3D

CNNs such as R(2+1)D [25], I3D [3], and X3D [8]. It

drastically decreases the GFLOPs by about half in aver-

age while the accuracy remains nearly the same or gain

improvements. In summary, the similarity guided sampler

is capable of significantly scaling down the computational

cost of off-the-shelf 3D CNNs and therefore plays a crucial

role for real-world video-based applications.

2. Related Work

The computer vision community has made huge progress

in several challenging vision tasks by using CNNs. In re-

cent years, there has been a tremendous progress for video

processing in the light of new and complex deep learning

architectures, which are based on variants of 3D CNNs

[24, 9, 7, 4, 6, 12, 8]. Tran et al. [24] and Carreira et

al. [3] proposed 3D versions of VGG and Inception archi-

tectures for large-scale action recognition benchmarks like

Sports-1M [13] and Kinetics [14]. These methods could

achieve superior performance even without using optical-

flow or any other pre-extracted motion information. This

is due to the capability of 3D kernels to extract tempo-

ral relations between sequential frames. Recently, meth-

ods like HATNet [5], STC [4], and DynamoNet [6] focus

on exploiting spatial-temporal correlations in a more effi-

cient way or on learning more accurate motion representa-

tions for videos. These works based on 3D CNNs, how-

ever, require huge computational resources since they pro-

cess sequences of frames with an immense number of 3D

convolution layers. There has been therefore a good effort

to propose more efficient architectures based on 2D and 3D

CNNs [18, 17, 25, 31, 34]. For instance, Lin et al. [18]

introduced a temporal shift module (TSM) to enhance 2D-

4732

ResNet CNNs for video classification. The model even runs

on edge devices. In [25, 31] 2D and 3D convolutional layers

are combined in different ways. SlowFast [9] has explored

the resolution trade-offs across temporal, spatial, and chan-

nel access. It decreases the computation cost by employing

a light pathway with a high temporal resolution for temporal

information modeling and a heavy low temporal resolution

pathway for spatial information modeling. In relation to

this work, [8] investigates whether the light or heavy model

is required and presents X3D as a family of efficient video

networks.

In order to reduce the inference time of existing net-

works, [29, 30, 15, 20] proposed to process not all parts

of a video with the same CNN model. This line of research

is built upon the idea of big-little architecture design. In

the context of 2D CNNs, [29, 30] process salient frames by

expensive models and use light models to process the other

frames. In contrast, [15, 20] do not process single frames

but process short chunks of frames with 3D CNNs. [15]

trains a second lighter network that decides for each chunk

of input frames if it should be processed by the more ex-

pensive 3D CNN. [20] uses a fix scheme where a subset of

the input chunks are processed by an expensive 3D CNN

and the other chunks by a less expensive 3D CNN. It then

uses an RNN to fuse the outputs of the different 3D CNNs.

Although such approaches effectively reduce the GFLOPS

during inference, they increase the training time since two

instead of one network need to be trained. Furthermore,

they do not reduce the computational cost of the 3D CNNs

themselves.

There are various efforts on temporal action detection or

finding action segments in untrimmed videos like [1, 23, 33,

28]. These works focus on localizing actions but not on im-

proving the computational efficiency for action recognition.

While these works are not related, they can benefit from

our approach by integrating the proposed similarity guided

sampling module into their CNNs for temporal action local-

ization.

3. Adaptive Temporal Feature Resolutions

Current state-of-the-art 3D CNNs operate at a static tem-

poral resolution at all levels of the network. Due to the

redundancy of neighbouring frames, traditional 3D CNN

methods often down-sample the temporal resolution inside

the network. This helps the model to operate at a lower tem-

poral resolution and hence reduces the computation cost.

The down-sampling, however, is static which has disadvan-

tages in two ways. First, a fixed down-sampling rate can

discard important information, in particular for videos with

very fast motion as it is for instance the case for ice hockey

games. Second, a fixed down-sampling rate might still in-

clude many redundant temporal features that do not con-

tribute to the classification accuracy as it is for instance the

Figure 2: To learn the similarity of the feature maps, we

map each temporal feature map It using fs(I) into an L-

dimensional similarity space. After the mapping, Z ∈
R

T×L contains all of the feature maps represented as vec-

tors in the similarity space. Afterwards, we group similar

vectors by creating B similarity bins. Using the similarity

bins, sampler aggregates the similar feature maps of each

bin into the output feature map Ob.

case for a video showing a stretching exercise. We therefore

propose a module that dynamically adapts the temporal fea-

ture resolution within the network to the input video such

that on one hand important information is not discarded and

on the other hand no computational resources are wasted for

processing redundant information.

Fig. 1 illustrates a 3D CNN with adaptive temporal fea-

ture resolutions (ATFR). The core aspect of ATFR is to fuse

redundant information from a temporal sequence of features

and extract only the most relevant information in order to

reduce the computational cost for processing a video. An

important aspect is that this approach is not static, i.e., the

amount of information that is extracted varies for each video

as illustrated in Fig. 1. In order to achieve this, we propose

a novel Similarity Guided Sampling (SGS) mechanism that

will be described in Sec. 4.

In principle, any 3D CNN can be converted into a CNN

with adaptive temporal feature resolutions by using our SGS

module. Since the module is designed to control the tempo-

ral resolution within the network for each video, it should be

added to the early stages of a network in order to get the best

reduction of computational cost. For R(2+1)D [25], for ex-

ample, we recommend to add SGS after the second ResNet

block. This means that the temporal resolution is constant

for all videos before SGS, but it dynamically changes after

SGS. We discuss different 3D CNNs with SGS in Sec. 5.1.

4. Similarity Guided Sampling

The SGS is a differentiable module to sample spatially

similar feature maps over the temporal dimension and ag-

gregate them into one feature map. Since the number of

output feature maps is usually lower than the input feature

maps, i.e., B′ < T , redundant information is removed as il-

4733

lustrated in Figure 2. The important aspect is that B′ is not

constant, but it varies for each video. In this way, we do not

remove any information if there is no redundancy among

the input feature maps.

This means that we need to a) learn the similarity of fea-

ture maps, b) group similar feature maps, and c) aggregate

the grouped feature maps. Furthermore, all these operations

need to be differentiable. We denote an input feature map

for frame t by It ∈ R
C×H×W , where C, H , and W denote

the number of channels, height, and width, respectively. To

learn the similarity of the feature maps, we map each fea-

ture map It into an L-dimensional similarity space. This

mapping fs(It) is described in Sec. 4.1. After the map-

ping, Z ∈ R
T×L contains all feature maps in the similarity

space, which are then grouped and aggregated into B′ fea-

ture maps. The grouping of Zt is described in Sec. 4.2 and

the aggregation of the grouped features in Sec. 4.3.

4.1. Similarity Space

The similarity space is a L dimensional vector space

where each temporal input feature map is represented by a

vector Zt. The mapping is performed by the similarity net-

work fs(I) that consists of a global average pooling layer

and two convolutional layers. The pooling is applied over

the spatial dimension of the feature map while keeping the

temporal dimension. Afterward two 1D convolutional lay-

ers are applied with kernel sizes of 1 and output channel

sizes C and L, respectively.

4.2. Similarity Bins

To group similar feature maps It, we use the magnitude

of each vector Zt, i.e.,

∆t = ||Zt|| (1)

and we consider two feature maps It and It′ similar if the

value of ∆t and ∆t′ lie inside a similarity bin. To make the

grouping very efficient and differentiable, we propose a bin-

ning approach with B similarity bins. We set B = T such

that no information is discarded if there is no redundancy

between the feature maps of all frames. For most videos, a

subset of bins remain empty and will be discarded such that

the remaining bins, B′, will be less than B as it is described

in Sec. 4.3.

We first estimate the half of the width of each similarity

bin γ, by computing the maximum magnitude ∆max and

dividing it by the number of the desired bins B:

∆max = max(∆1, . . . ,∆T), γ =
∆max

2B
. (2)

Having the width of the similarity bins, the center of each

bin βb is estimated as follows:

βb = (2b− 1)γ ∀b ∈ (1, . . . , B). (3)

4.3. Differentiable Bins Sampling

The grouping and aggregation of all feature maps It
based on the bins B will be done jointly by sampling tem-

poral feature maps which belong to the same similarity bin

and add them together. We denote the aggregated feature

maps for each bin b by Ob ∈ R
C×H×W . To make the pro-

cess differentiable, we use generic differentiable sampling

kernels Ψ(., βb) that are defined such that a sampler only

samples from the input temporal feature map It if ∆t lies

in the similarity bin b. This can be written as:

Ob =
T
∑

t=1

ItΨ(∆t, βb). (4)

Theoretically, any differentiable sampling kernel that has

defined gradients or sub-gradients with respect to ∆t can

be used. In our experiments, we evaluate two sampling ker-

nels. The first kernel is based on the Kronecker-Delta func-

tion δ:

Ob =
1

∑T
t=1

δ
(⌊

|∆t−βb|
γ

⌋)

T
∑

t=1

Itδ

(⌊

|∆t − βb|

γ

⌋)

.

(5)

The kernel averages the feature maps that end in the same

bin. As second kernel, we use a linear sampling kernel:

Ob =

T
∑

t=1

It max

(

0, 1−
|∆t − βb|

γ

)

. (6)

The kernel gives a higher weight to feature maps that are

closer to βb and less weights to feature maps that are at the

boundary of a bin. While we evaluate both kernels, we use

the linear kernel by default.

After the sampling, some bins remain empty, i.e.,

Ob = 0. We drop the empty bins and denote by B′ the bins

that remain. Note that B′ varies for each video as illustrated

in Fig. 1. In our experiments we show that the similarity

guided sampling can reduce the GFLOPS of a 3D CNN by

over 47% in average, making 3D CNNs suitable for appli-

cations where they are computationally expensive.

4.4. Backpropagation

Using differentiable kernels for sampling, gradients can

be backpropagated through both O and ∆, where ∆ is the

magnitude of the similarity vectors Z which are the outputs

of fs(.). Therefore, we can backpropagate through fs(.).
For the linear kernel (6), which we use if not otherwise spec-

ified, the gradient with respect to It is given by

∂Ob

∂It
= max

(

0, 1−
|∆t − βb|

γ

)

(7)

4734

and the gradient with respect to ∆t is given by

∂Ob

∂∆t

= It











0 |βb −∆t| ≥ γ
1

γ
βb − γ < ∆t ≤ βb

− 1

γ
βb < ∆t < βb + γ

. (8)

Note that for computing the sub-gradients (8) only the ker-

nel support region for each output bin needs to be consid-

ered. The sampling mechanism can therefore be efficiently

implemented on GPUs.

5. Experiments

We evaluate our proposed method on the action recog-

nition benchmarks Mini-Kinetics [32], Kinetics-400 [14],

Kinetics-600 [2], Something-Something-V2 [11], UCF-101

[22], and HMDB-51 [16]. For these datasets, we use the

standard training/testing splits and protocols provided by

the datasets. For more details and the UCF-101 and HMDB-

51 results please refer to the supplementary material.

5.1. Implementation Details

3D CNNs with ATFR. The similarity guided sampling

(SGS) is a differentiable module that can be easily im-

plemented in current deep learning frameworks. We have

implemented our SGS module as a new layer in PyTorch

which can be easily added to any 3D CNN architecture. To

better evaluate the SGS, we have added it to various back-

bones, such as R(2+1)D [25], I3D [3], X3D [8], and a modi-

fied 3DResNet. We place our SGS layer on the second stage

of the backbone models. Please refer to the supplementary

material for more details. For all of the X3D based models,

we follow the training, testing, and measurement setting in

[8] unless mentioned otherwise. Additional details and code

are available online.1

Training. Our models on Mini-Kinetics, Kinetics-400,

and Kinetics-600 are trained from scratch using randomly

initialized weights without any pre-training. However,

we fine-tune on Something-Something-V2, UCF-101, and

HMDB-51 with models pre-trained on Kinetics-400. We

trained our models using SGD with momentum 0.9 and a

weight decay of 0.0001 following the setting in [9]. For

Kinetics and Mini-Kinetics, we use a half-period cosine

schedule [19] with a linear warm-up strategy [10] to adapt

the learning rate over 196 epochs of training. During train-

ing, we randomly sample 32 frames from a video with in-

put stride 2. For spatial transformations, we first scale the

shorter side of each frame with a random integer from the

interval between 256 and 320 [26, 9, 21] then we apply a

random cropping with size 224 × 224 to each frame. Fur-

thermore, each frame is horizontally flipped with probabil-

ity of 0.5.

1https://SimilarityGuidedSampling.github.io

Figure 3: Histogram of active bins for 3DResNet-50 +

ATFR on the Mini-Kinetics validation set. The y-axis corre-

sponds to the number of clips and the x-axis to the number

of active bins B′.

Testing. We follow [26, 9] and uniformly sample 10

clips from each video for inference. The shorter side of

each clip is resized to 256 and we extract 3 random crops of

size 256 × 256 from each clip. For the final prediction, we

average the softmax scores of all clips.

Measurements. We report top-1 and top-5 accuracy. To

measure the computational efficiency of our models, we re-

port the complexity of the models in GFLOPS based on a

single input video sequence of 32 frames and spatial size

224 × 224 for validation and 256 × 256 for testing. As

shown in Fig. 3, 3D CNNs with ATFR adapt the tempo-

ral feature resolutions and the GFLOPs vary for different

clips. For ATFR models, we therefore report the average

GFLOPs.

5.2. Ablation Experiments

We first analyze different setups for our SGS module.

Then, we analyze the efficiency and effect of using our SGS

module in different 3D CNN models. If not otherwise spec-

ified, we use 3DResNet-18 as 3D CNNs backbones and re-

port the results on the Mini-Kinetics validation set.

5.2.1 Different Similarity Measurements

As mentioned in Sec. 4.2, we use the magnitude of the em-

bedding vectors as the similarity measurement to create the

similarity bins. The embedding vectors are represented in

an L dimensional space. Instead of magnitudes, we can use

other measures such as directions of the vectors. To better

study this, we convert the Cartesian coordinates of the vec-

tors to spherical coordinates. In an L dimensional space,

a vector is represented by 1 radial coordinate and L − 1
angular coordinates. To use the spherical coordinates of

the vectors for creating the similarity bins, we use multi-

dimensional bins and sampling kernels. For more details,

please refer to the supplementary material.

We report the results in Table 1. As can be seen, using

the magnitudes of the vectors results in a better accuracy

compared to angular coordinates or spherical coordinates.

4735

Similarity Magnitude Angular Spherical

top1 69.6 68.5 68.7

top5 88.8 87.8 88.1

Table 1: Impact of the similarity measure for 3DResNet-18

+ ATFR on Mini-Kinetics with linear sampling kernel. We

show top-1 and top-5 classification accuracy (%).

Kernel Linear Kronecker

top1 69.6 68.9

top5 88.8 88.6

Table 2: Impact of the sampling kernel.

We believe that due to the similarity of the neighbouring

video frames using only magnitudes of the vectors for the

similarity measurement is enough and angular or spherical

coordinates add too much of complexity to the model. In

all of the experiments, the number of bins B is equal to 32.

For the angular coordinates, we divide the angles into 4 and

8 bins (4× 8). For the spherical coordinates, we divide the

radial coordinate into 2 and the angular coordinates into 4
and 4 bins (2× 4× 4).

5.2.2 Different Sampling Kernels

As mentioned in Sec. 4.3, we can use different differen-

tiable sampling kernels (4). We evaluate two different sam-

pling kernels, namely the Kronecker-Delta sampling kernel

(5) and the linear sampling kernel (6). As can be seen in Ta-

ble 2, the linear kernel performs better than the Kronecker-

Delta kernel. The slight superiority of the linear kernel is

due to the higher weighting of the temporal feature maps

that are closer to the center of the bins. We use the linear

kernel for the rest of the paper.

5.2.3 Embedding Dimension

As mentioned in Sec. 4.1, we map the temporal feature

maps into an L-dimensional similarity space. In Table 3,

we quantify the effect of L. The accuracy increases as L
increases until L = 8. For L = 16 the dimensionality is too

large and the similarity space tends to overfit. The model

with L = 1 is a special case since it can be considered as

a direct prediction of ∆t (1) without mapping the temporal

features into a similarity space Zt. The results show that

using a one dimensional embedding space results in a lower

accuracy, which demonstrates the benefit of the similarity

space.

5.2.4 Different Input Frame-rates

It is an interesting question to ask how a 3D CNN with

ATFR performs when the number of input frames or the

stride changes for inference. To answer this question, we

L 1 4 8 16

top1 67.3 68.4 69.6 64.7

top5 87.7 88.1 88.8 86.1

Table 3: Impact of the dimensionality L of the similarity

space.

model input frames GFLOPs

top1 top5

stride

1 2 1 2

SlowFast-8x8-ResNet18
32 30.9 67.5 69.7 87.1 89.1

64 61.8 (2.0) 72.1 74.6 89.9 91.9

R(2+1)D
32 46.5 67.4 69.3 86.2 87.5

64 93.1 (2.0) 70.8 73.7 88.8 91.5

R(2+1)D+ATFR
32 32.3 67.4 69.3 86.4 87.6

64 54.9 (1.7) 71.4 73.8 88.6 90.7

3DResNet-18+ATFR
32 14.0 67.3 69.6 87.2 89.0

64 21.1 (1.5) 72.1 74.8 89.8 91.4

Table 4: Impact of the stride and number of input frames

during inference. All models are trained with 32 frames

and stride 2.

train two 3D CNNs with ATFR and two without ATFR us-

ing 32 input frames and a sampling stride of 2, which cor-

responds to a temporal receptive field of 64 frames. For in-

ference, we then change the number of frames to 64 and/or

the stride to 1.

As it can be seen in Table 4, increasing the input frames

from 32 to 64 improves the accuracy of all models. This im-

provement in accuracy is due to the increase in the temporal

receptive field over the input frames while keeping the tem-

poral input resolution. However, the computation cost of

the models without ATFR increases as expected by factor

2. If ATFR is used, the increase is only by 1.7 and 1.5 for

R(2+1)D+ATFR and 3DResNet-18+ATFR. By comparing

R(2+1)D with R(2+1)D+ATFR, we see how ATFR drasti-

cally reduces the GFLOPS from 46.5 to 32.3 for 32 frames

and from 93.1 to 54.9 for 64 frames. This shows that more

frames also increase the redundancy and ATFR efficiently

discards this redundancy. Furthermore, it demonstrates that

ATFR is robust to changes of the frame-rate and number of

input frames.

It is also interesting to compare the results for 32 frames

with stride 2 to the results for 64 frames with stride 1. In

both cases, the temporal receptive field is 64. We can see

the efficiency of our method in adapting the temporal res-

olution compared to the traditional static frame-rate sam-

pling methods, i.e., 3DResNet-18+ATFR operates on aver-

age with 21.1 GFLOPs for 64 input frames compared to

SlowFast with GFLOPs of 30.9 (32) and 61.8 (64), and

R(2+1)D with GFLOPs of 46.5 (32) and 93.1 (64).

5.2.5 Adaptive Temporal Feature Resolutions

As shown in Fig. 3, the temporal feature resolutions vary for

different clips. In order to analyze how the temporal fea-

ture resolution relates to the content of a video, we report

4736

Lowest Temporal Resolution Highest Temporal Resolution

presenting weather forecast passing American football (in game)

stretching leg swimming breast stroke

playing didgeridoo playing ice hockey

playing clarinet pushing cart

golf putting gymnastics tumbling

Table 5: The 5 action classes with lowest and highest

required adaptive temporal resolution for 3DResNet-50 +

ATFR on Mini-Kinetics.

Stage No SGS First Conv Res2 Res3

top1 77.9 77.8 78.0 78.0

GFLOPs 1.9 0.9 1.1 1.3

Table 6: Evaluating the result of adding our SGS layer to

different stages of a X3D-S network on Mini-Kinetics.

in Table 5 the 5 action classes with lowest adaptive tempo-

ral feature resolution (<12) and highest adaptive temporal

feature resolution (>20). As in Fig. 3, the results are for

the 3DResNet-50+ATFR on the Mini-Kinetics validation

set. As it can be seen, the actions with less movements like

‘presenting weather forecast’ result in a low temporal reso-

lution while actions with fast (camera) motions like ‘pass-

ing American football (in game)’ result in a high temporal

resolution.

5.2.6 SGS Placement

To evaluate the effect of the location of our SGS module

within a 3D CNN, we add it to different stages of X3D-S [8]

and train it on Mini-Kinetics. As it can be seen in Table 6,

adding SGS to the first stage of X3D-S drastically reduces

the GFLOPs by 52.6% (2.1×) while getting slightly lower

accuracy. On the other hand, adding SGS after the 2nd stage

results in a 42.1% reduction of GFLOPs and slightly higher

accuracy. The same accuracy and growth in GFLOPs occurs

when SGS is added after the 3rd stage.

5.3. Mini­Kinetics

Mini-Kinetics is a smaller dataset compared to the full

Kinetics-400 dataset [14] and consists of 200 categories.

Since some videos on YouTube are not accessible, the train-

ing and validation set contain 144,132 and 9182 video clips,

respectively. Table 7 shows the results on Mini-Kinetics.

We add the SGS module to four 3d CNNs R(2+1)D [25],

I3D [3], X3D [8], and 3DResNet. In all cases, ATFR dras-

tically reduces the GFLOPS while the accuracy remains

nearly the same. For X3D, the accuracy even increases

marginally.

5.4. Kinetics­400

We also evaluate ATFR with state-of-the-art 3D CNNs

on Kinetics-400 [14], which contains ∼240k training and

model backbone GFLOPs top1 top5

Fast-S3D [32] - 43.5 78.0 -

SlowFast 8x8 ResNet18 40.4 77.5 93.3

SlowFast 8x8 ResNet50 65.7 79.3 94.2

R(2+1)D ResNet50 101.8 78.7 93.4

R(2+1)D+ATFR ResNet50 67.3 78.2 92.9

I3D ResNet50 148.4 79.3 94.4

I3D+ATFR ResNet50 105.2 78.8 93.6

X3D-S - 1.9 77.9 93.4

X3D-S+ATFR - 1.1 78.0 93.5

3DResNet ResNet50 40.8 79.2 94.6

3DResNet+ATFR ResNet50 23.4 79.3 94.6

Table 7: Comparison with state-of-the-art methods on Mini-

Kinetics. The accuracy for Fast-S3D [32] is reported with

64 frames.

∼20k validation videos of 400 human action categories. Ta-

ble 8 shows the comparison with the state-of-the-art. We

add the SGS module to the state-of-the-art 3D CNNs Slow-

Fast [9] and three versions of X3D [8].

As it can be seen, our SGS module drastically decreases

the GFLOPs of all 3D CNNs. In contrast to Mini-Kinetics,

it even improves the accuracy for all 3D CNNs. We will

see that this is the case for all large datasets. For X3D-

XL [8], we observe a ∼45% reduction in GFLOPs and

0.2% improvement in accuracy. We can see that X3D-

XL+ATFRβ requires similar GFLOPs compared to X3D-

Lβ [8] while providing a higher accuracy by 1.8%. We

can also see that X3D-XL+ATFRα requires drastically less

GFLOPs compared to X3D-Lβ[8] while getting a higher

accuracy by 1.1%. In comparison to the computational

heavy SlowFast16×8,R101+NL [9], X3D-XL+ATFRβ gets

higher top-5 and comparable top-1 accuracy while having

8.9× less GFLOPs.

Comparing the 3D CNNs with ATFR to SCSampler [15]

and FASTER [20], which require to train two networks, our

approach with a single adaptive 3D CNN achieves a higher

accuracy and lower GFLOPs. Note that our approach is

complementary to [15, 20] and the two static 3D CNNs used

in these works can be replaced by adaptive 3D CNNs. Nev-

ertheless, our approach outperforms these works already

with a single 3D CNN. Fig. 4 shows the accuracy/GFLOPs

trade-off for a few 3D CNNs with and without ATFR.

5.5. Kinetics­600

We also evaluate our approach on the Kinetics-600

dataset [2]. As shown in Table 9, ATFR shows a similar

performance as on Kinetics-400. Our SGS module drasti-

cally decreases the GFLOPs of all 3D CNNs while improv-

ing their accuracy. For X3D-XL[8], we observe a ∼47.1%

reduction of GFLOPs and a slight improvement in accu-

racy. The best model X3D-XL+ATFR achieves state-of-

the-art accuracy. Note that the average GFLOPs of X3D-

4737

SlowFast4x16-R50+ATFR

X3D-XL+ATFR

SlowFast4x16-R50

X3D-XL

Figure 4: Accuracy vs. GFLOPs for the Kinetics-400 vali-

dation set.

model GFLOPs top1 top5 Param

I3D∗[3] 108× N/A 71.1 90.3 12.0M

I3D+SCSampler∗[15] 108×10+N/A 75.1 N/A N/A

Two-Stream I3D∗[3] 216×N/A 75.7 92.0 25.0M

Two-Stream S3D-G∗[32] 143×N/A 77.2 - 23.1M

TSM R50∗[18] 65×10 74.4 N/A 24.3M

HATNET[5] N/A 77.2 N/A N/A

STC[4] N/A 68.7 88.5 N/A

Two-Stream I3D[3] 216×N/A 75.7 92.0 25.0M

R(2+1)D[25] 152×115 72.0 90.0 63.6M

Two-Stream R(2+1)D[25] 304×115 73.9 90.9 127.2M

FASTER32[20] 67.7×8 75.3 N/A N/A

SlowFast8×8,R101+NL[9] 116×30 78.7 93.5 59.9M

SlowFast16×8,R101+NL[9] 234×30 79.8 93.9 59.9M

X3D-Lα[8] 18.3×10 76.8 92.5 6.1M

X3D-Lβ[8] 24.8×30 77.5 92.9 6.1M

SlowFast4×16,R50[9] 36.1×30 75.6 92.1 34.40M

SlowFast4×16,R50+ATFR 20.8× 30 (↓ 42%) 75.8 92.4 34.40M

X3D-Sα[8] 1.9×10 72.9 90.5 3.79M

X3D-S+ATFRα 1.0 × 10 (↓ 47%) 73.5 91.2 3.79M

X3D-XLα[8] 35.8×10 78.4 93.6 11.09M

X3D-XL+ATFRα 20× 10 (↓ 44%) 78.6 93.9 11.09M

X3D-XLβ[8] 48.4×30 79.1 93.9 11.09M

X3D-XL+ATFRβ 26.3× 30 (↓ 45%) 79.3 94.1 11.09M

Table 8: Comparison to the state-of-the-art on Kinetics-

400. X3D XL+AFTRβ achieves the STA top5

while requiring 8.8× less GFLOPs compared to STA

SlowFast16×8,R101+NL. Following [8], we apply two

testing strategies: α samples uniformly 10 clips; β takes

additionally 3 spatial crops for each sampled clip. For both

setups, spatial scaling and cropping settings are as in [8]. ∗

denotes models pretrained on ImageNet.

XL+ATFR are even lower on Kinetics-600 compared to

Kinetics-400. This shows that the additional videos of

Kinetics-600 are less challenging in terms of motion, which

is also reflected by the higher classification accuracy. Com-

pared to SlowFast16×8, R101+NL [9], it requires about 9×
less GFLOPs.

5.6. Something­Something­V2

We finally provide results for the Something-Something

V2 dataset [11]. It contains 169K training and 25K valida-

model pretrain GFLOPs top1 top5

Oct-I3D+NL[3] ImageNet 25.6×30 76.0 N/A

HATNET[5] HVU N/A 81.6 N/A

HATNET[5] - N/A 80.2 N/A

I3D[3] - 108× N/A 71.9 90.1

SlowFast16×8,R101+NL[9] - 234×30 81.8 95.1

SlowFast4×16,R50[9] - 36.1×30 78.8 94.0

X3D-M[8] - 6.2×30 78.8 94.5

X3D-M+ATFR - 3.3 × 30 (↓ 46%) 79.0 94.9

X3D-XL[8] - 48.4×30 81.9 95.5

X3D-XL+ATFR - 25.6× 30 (↓ 47%) 82.1 95.6

Table 9: Comparison to the state-of-the-art on Kinetics-600.

model pretrain GFLOPs top1 top5

SlowFast-R50 [27] Kinetics400 132.8 61.7 87.8

SlowFast-R50+ATFR Kinetics400 87.8 (↓ 33%) 61.8 87.9

Table 10: Results for the Something-Something-V2 dataset.

tion videos of 174 action classes that require more temporal

modeling compared to Kinetics. Following [27], we use a

R50-SlowFast model pre-trained on Kinetics-400 with 64

frames for the fast pathway, speed ratio of α = 4, and chan-

nel ratio β = 1/8. Similar to Kinetics, the SGS module

reduces the GFLOPs by 33.9% while keeping the accuracy

almost the same. For more implementation details please

refer to the supplementary material.

6. Conclusion

Designing computationally efficient deep 3D convolu-

tional neural networks for understanding videos is a chal-

lenging task. In this work, we proposed a novel trainable

module called Similarity Guided Sampling (SGS) to in-

crease the efficiency of 3D CNNs for action recognition.

The new SGS module selects the most informative and dis-

tinctive temporal features within a network such that as

much temporal features as needed but not more than nec-

essary are used for each input clip. By integrating SGS

as an additional layer within current 3D CNNs, which use

static temporal feature resolutions, we can convert them

into much more efficient 3D CNNs with adaptive tempo-

ral feature resolutions (ATFR). We evaluated our approach

on six action recognition datasets and integrated SGS into

five different state-of-the-art 3D CNNs. The results demon-

strate that SGS drastically decreases the computation cost

(GFLOPS) between 33% and 53% without compromising

accuracy. For large datasets, the accuracy even increases

and the 3D CNNs with ATFR are not only very efficient,

but they also achieve state-of-the-art results.

Acknowledgement The work has been financially sup-

ported by the ERC Starting Grant ARCA (677650).

4738

References

[1] Humam Alwassel, Fabian Caba Heilbron, and Bernard

Ghanem. Action search: Spotting actions in videos and its

application to temporal action localization. In Proceedings

of the European Conference on Computer Vision (ECCV),

2018. 3

[2] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe

Hillier, and Andrew Zisserman. A short note about kinetics-

600. arXiv, 2018. 5, 7

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

2017. 2, 5, 7, 8

[4] Ali Diba, Mohsen Fayyaz, Vivek Sharma, M Mahdi Arzani,

Rahman Yousefzadeh, Juergen Gall, and Luc Van Gool.

Spatio-temporal channel correlation networks for action

classification. In ECCV, 2018. 1, 2, 8

[5] Ali Diba, Mohsen Fayyaz, Vivek Sharma, Manohar Paluri,

Jürgen Gall, Rainer Stiefelhagen, and Luc Van Gool. Large

scale holistic video understanding. In ECCV, 2020. 2, 8

[6] Ali Diba, Vivek Sharma, Luc Van Gool, and Rainer Stiefel-

hagen. Dynamonet: Dynamic action and motion network. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 6192–6201, 2019. 1, 2

[7] Ali Diba, Vivek Sharma, and Luc Van Gool. Deep temporal

linear encoding networks. In CVPR, 2017. 1, 2

[8] Christoph Feichtenhofer. X3d: Expanding architectures for

efficient video recognition. In CVPR, 2020. 1, 2, 3, 5, 7, 8

[9] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition.

ICCV, 2019. 1, 2, 3, 5, 7, 8

[10] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large minibatch

sgd: Training imagenet in 1 hour. ArXiv, 2017. 5

[11] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-

ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,

Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz

Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax,

and Roland Memisevic. The ”something something” video

database for learning and evaluating visual common sense.

In ICCV, 2017. 5, 8

[12] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can

spatiotemporal 3d cnns retrace the history of 2d cnns and

imagenet. In CVPR, 2018. 1, 2

[13] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In CVPR,

2014. 2

[14] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. arXiv preprint arXiv:1705.06950,

2017. 2, 5, 7

[15] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler:

Sampling salient clips from video for efficient action recog-

nition. In ICCV, 2019. 1, 2, 3, 7, 8

[16] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,

Tomaso Poggio, and Thomas Serre. Hmdb: a large video

database for human motion recognition. In ICCV, 2011. 5

[17] Myunggi Lee, Seungeui Lee, Sungjoon Son, Gyutae Park,

and Nojun Kwak. Motion feature network: Fixed motion

filter for action recognition. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 387–

403, 2018. 2

[18] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift

module for efficient video understanding. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 7083–7093, 2019. 2, 8

[19] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. In ICLR, 2017. 5

[20] Anshul Shah, Shlok Mishra, Ankan Bansal, Jun-Cheng

Chen, Rama Chellappa, and Abhinav Shrivastava. Faster re-

current networks for efficient video classification. In AAAI,

2020. 1, 2, 3, 7, 8

[21] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015. 5

[22] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

Ucf101: A dataset of 101 human actions classes from videos

in the wild. arXiv preprint arXiv:1212.0402, 2012. 5

[23] Yu-Chuan Su and Kristen Grauman. Leaving some stones

unturned: dynamic feature prioritization for activity detec-

tion in streaming video. In European Conference on Com-

puter Vision, 2016. 3

[24] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In ICCV, 2015. 1, 2

[25] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In CVPR, 2018. 2, 3, 5,

7, 8

[26] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018. 5

[27] Chao-Yuan Wu, Ross Girshick, Kaiming He, Christoph Fe-

ichtenhofer, and Philipp Krahenbuhl. A multigrid method

for efficiently training video models. In CVPR, 2020. 8

[28] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and

Shilei Wen. Multi-agent reinforcement learning based frame

sampling for effective untrimmed video recognition. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, 2019. 3

[29] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S

Davis. Liteeval: A coarse-to-fine framework for resource

efficient video recognition. In NeurIPS, 2019. 3

[30] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,

and Larry S Davis. Adaframe: Adaptive frame selection for

fast video recognition. In CVPR, 2019. 3

[31] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning

for video understanding. In ECCV, 2018. 2, 3

[32] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning:

Speed-accuracy trade-offs in video classification. In ECCV,

2018. 5, 7, 8

4739

[33] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-

Fei. End-to-end learning of action detection from frame

glimpses in videos. In Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016. 3

[34] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas

Brox. Eco: Efficient convolutional network for online video

understanding. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 695–712, 2018. 2

4740

