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Abstract

Weakly supervised video anomaly detection (WS-VAD) is

to distinguish anomalies from normal events based on dis-

criminative representations. Most existing works are lim-

ited in insufficient video representations. In this work, we

develop a multiple instance self-training framework (MIST)

to efficiently refine task-specific discriminative representa-

tions with only video-level annotations. In particular, MIST

is composed of 1) a multiple instance pseudo label gener-

ator, which adapts a sparse continuous sampling strategy

to produce more reliable clip-level pseudo labels, and 2)

a self-guided attention boosted feature encoder that aims

to automatically focus on anomalous regions in frames

while extracting task-specific representations. Moreover,

we adopt a self-training scheme to optimize both compo-

nents and finally obtain a task-specific feature encoder. Ex-

tensive experiments on two public datasets demonstrate the

efficacy of our method, and our method performs compara-

bly to or even better than existing supervised and weakly su-

pervised methods, specifically obtaining a frame-level AUC

94.83% on ShanghaiTech.

1. Introduction

Video anomaly detection (VAD) aims to temporally or

spatially localize anomalous events in videos [33]. As in-

creasingly more surveillance cameras are deployed, VAD is

playing an increasingly important role in intelligent surveil-

lance systems to reduce the manual work of live monitoring.

Although VAD has been researched for years, develop-

ing a model to detect anomalies in videos remains challeng-

ing, as it requires the model to understand the inherent dif-

ferences between normal and abnormal events, especially

anomalous events that are rare and vary substantially. Pre-

vious works treat VAD as an unsupervised learning task
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Figure 1: Our proposed MIST first assign clip-level pseudo

labels Ŷ a = {ŷai } to anomaly videos with the help of a

pseudo label generator G. Then, MIST leverages informa-

tion from all videos to refine a self-guided attention boosted

feature encoder ESGA.

[29, 14, 7, 15, 13, 5, 32] , which encodes the usual pat-

tern with only normal training samples, and then detects the

distinctive encoded patterns as anomalies. Here, we aim

to address the weakly supervised video anomaly detection

(WS-VAD) problem [20, 31, 28, 34, 24] because obtaining

video-level labels is more realistic and can produce more re-

liable results than unsupervised methods. More specifically,

existing methods in WS-VAD can be categorized into two

classes, i.e. encoder-agnostic and encoder-based methods.

The encoder-agnostic methods [20, 28, 24] utilize task-

agnostic features of videos extracted from a vanilla feature

encoder denoted as E (e.g. C3D [21] or I3D [2]) to esti-

mate anomaly scores. The encoder-based methods [34, 31]
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train both the feature encoder and classifier simultaneously.

The state-of-the-art encoder-based method is Zhong et al.

[31], which formulates WS-VAD as a label noise learn-

ing problem and learns from the noisy labels filtered by a

label noise cleaner network. However, label noise results

from assigning video-level labels to each clip. Even though

the cleaner network corrects some of the noisy labels in

the time-consuming iterative optimization, the refinement

of representations progresses slowly as these models are

mistaught by seriously noisy pseudo labels at the beginning.

We find that the existing methods have not considered

training a task-specific feature encoder efficiently, which of-

fers discriminative representations for events under surveil-

lance cameras. To overcome this problem for WS-VAD,

we develop a two-stage self-training procedure (Figure 1)

that aims to train a task-specific feature encoder with only

video-level weak labels. In particular, we propose a Multi-

ple Instance Self-Training framework (MIST) that consists

of a multiple instance pseudo label generator and a self-

guided attention boosted feature encoder ESGA. 1) MIL-

pseudo label generator. The MIL framework is well ver-

ified in weakly supervised learning. MIL-based methods

can generate pseudo labels more accurately than those sim-

ply assigning video-level labels to each clip [31]. Moreover,

we adopt a sparse continuous sampling strategy that can

force the network to pay more attention to context around

the most anomalous part. 2) Self-guided attention boosted

feature encoder. Anomalous events in surveillance videos

may occur in any place and with any size [11], while in

commonly used action recognition videos, the action usu-

ally appears with large motion [3, 4]. Therefore, we utilize

the proposed self-guided attention module in our proposed

feature encoder to emphasize the anomalous regions with-

out any external annotation [11] but clip-level annotations

of normal videos and clip-level pseudo labels of anomalous

videos. For our WS-VAD modelling, we introduce a deep

MIL ranking loss to effectively train the multiple instance

pseudo label generator. In particular, for deep MIL rank-

ing loss, we adopt a sparse-continuous sampling strategy to

focus more on the context around the anomalous instance.

To obtain a task-specific feature encoder with smaller

domain-gap, we introduce an efficient two-stage self-

training scheme to optimize the proposed framework. We

use the features extracted from the original feature encoder

to produce its corresponding clip-level pseudo labels for

anomalous videos by the generator G. Then, we adopt these

pseudo labels and their corresponding abnormal videos as

well as normal videos to refine our improved feature en-

coder ESGA (as demonstrated in Figure 1). Therefore, we

can acquire a task-specific feature encoder that provides dis-

criminative representations for surveillance videos.

The extensive experiments based on two different feature

encoders, i.e. C3D [21] and I3D [2] show that our frame-

work MIST is able to produce a task-specific feature en-

coder. We also compare the proposed framework with

other encoder-agnostic methods on two large datasets i.e.

, UCF-Crime [20] and ShanghaiTech[15]. In addition, we

run ablation studies to evaluate our proposed sparse contin-

uous sampling strategy and self-guided attention module.

We also illustrate some visualized results to provide a more

intuitive understanding of our approach. Our experiments

demonstrate the effectiveness and efficiency of MIST.

2. Related Works

Weakly supervised video anomaly detection. VAD aims

to detect anomaly events in a given video and has been re-

searched for years[9, 29, 14, 7, 15, 13, 12, 32, 31, 5, 24].

Unsupervised learning methods [9, 29, 7, 30, 15, 13, 32, 5]

encode the usual pattern with only normal training sam-

ples and then detect the distinctive encoded patterns as

anomalies. Weakly supervised learning methods [20, 31,

28, 34, 24] with video-level labels are more applicable to

distinguish abnormal events and normal events. Existing

weakly supervised VAD methods can be categorized into

two classes, i.e. , encoder-agnostic methods and encoder-

based methods. 1) Encoder-agnostic methods train only the

classifier. Sultani et al. [20] proposed a deep MIL ranking

framework to detect anomalies; Zhang et al. [28] further in-

troduced inner-bag score gap regularization; Wan et al. [24]

introduced dynamic MIL loss and center-guided regulariza-

tion. 2) Encoder-based methods train both a feature en-

coder and a classifier. Zhu et al. [34] proposed an attention

based MIL model combined with a optical flow based auto-

encoder to encode motion-aware features. Zhong et al. [31]

took weakly supervised VAD as a label noise learning task

and proposed GCNs to filter label noise for iterative model

training, but the iterative optimization was inefficient and

progressed slowly. Some works focus on detecting anoma-

lies in an offline manner [23, 25] or a coarse-grained man-

ner [20, 28, 34, 23, 25], which do not meet the real-time

monitoring requirements for real-world applications.

Here, our work is also an encoder-based method and

work in an online fine-grained manner, but we use the

learned pseudo labels to optimize our feature encoder

ESGA rather than using video-level labels as pseudo la-

bels directly. Moreover, we design a two-stage self-training

scheme to efficiently optimize our feature encoder and

pseudo label generator instead of iterative optimization[31].

Multiple Instance Learning. MIL is a popular method for

weakly supervised learning. In video-related tasks, MIL

takes a video as a bag and clips in the video as instances

[20, 17, 8]. With a specific feature/score aggregation func-

tion, video-level labels can be used to indirectly supervise

instance-level learning. The aggregation functions vary, e.g.

max pooling[20, 28, 34] and attention pooling[17, 8]. In
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Figure 2: Illustration of our proposed MIST framework. MIST includes a multiple instance pseudo label generator G and

self-guided attention boosted feature encoder ESGA followed by a weighted-classification head Hc. We first train a G and

then generate pseudo labels for ESGA fine-tuning.

this paper, we adopt a sparse continuous sampling strategy

in our multiple instance pseudo label generator to force the

network to pay more attention to context around the most

anomalous part.

Self-training. Self-training has been widely investigated in

semi-supervised learning [1, 10, 6, 27, 22, 35]. Self-training

methods increase labeled data via pseudo label generation

on unlabeled data to leverage the information on both la-

beled and unlabeled data. Recent deep self-training involves

representation learning of the feature encoder and classi-

fier refinement, mostly adopted in semi-supervised learn-

ing [10] and domain adaptation [36, 35]. In unsupervised

VAD, Pang et al. [18] introduced a self-training framework

deployed on the testing video directly, assuming the exis-

tence of an anomaly in the given video.

Here, we propose a multiple instance self-training frame-

work that assigns clip-level pseudo labels to all clips in ab-

normal videos via a multiple instance pseudo label genera-

tor. Then, we leverage information from all videos to fine-

tune a self-guided attention boosted feature encoder.

3. Approach

VAD depends on discriminative representations that

clearly represent the events in a scene, while action recog-

nition datasets pretrained feature encoders are not perfect

for surveillance videos because of the existence of a do-

main gap [11, 3, 4]. To address this problem, we introduce

a self-training strategy to refine the proposed improved fea-

ture encoder ESGA. An illustration of our method shown in

Figure 2 is detailed in the following.

3.1. Overview

Given a video V = {vi}
N
i=1 with N clips, the annotated

video-level label Y ∈ {1, 0} indicates whether an anoma-

lous event exists in this video. We take a video V as a bag

Algorithm 1 Multiple instance self-training framework

Input: Clip-level labeled normal videos V n
= {vni }

N
i=1 and cor-

responding clip-level labels Y n, video-level labeled abnormal

videos V a
= {vai }

N
i=1, pretrained vanilla feature encoder E.

Output: Self-guided attention boosted feature encoder ESGA,

multiple instance pseudo label generator G, clip-level pseudo

labels Ŷ a for V a

Stage I. Pseudo Labels Generation.

1: Extract features of V
a and V

n from E as {fai }
N
i=1 and

{fni }
N
i=1.

2: Training G with {fai }
N
i=1 and {fni }

N
i=1 and their corresponding

video-level labels according to Eq. 7.

3: Predict clip-level pseudo labels for each clip of V a via trained

G as Ŷ a.

Stage II. Feature Encoder Fine-tuning.

4: Combine E with self-guided attention module as ESGA, then

fine-tune ESGA with supervision of Y n ∪ Ŷ
a.

and clips vi in the video as instances. Specifically, a neg-

ative bag (i.e. Y = 0) marked as Bn = {vni }
N
i=1 has no

anomalous instance, while a positive bag (i.e. Y = 1) de-

noted as Ba = {vai }
N
i=1 has at least one.

In this work, given a pair of bags (i.e. a positive bag Ba

and a negative bag Bn), we first pre-extract the features

(i.e. {fai }
N
i=1 and {fni }

N
i=1 for Ba and Bn, respectively)

for each clip in the video V = {vi}
N
i=1 using a pretrained

vanilla feature encoder, C3D or I3D, forming bags of fea-

tures B
a

and B
n

. We then feed the pseudo label genera-

tor the extracted features to estimate the anomaly scores of

the clips (i.e. {sai }
N
i=1, {sni }

N
i=1). Then, we produce pseudo

labels Ŷ a = {ŷai }
N
i=1 for anomalous video by perform-

ing smoothing and normalization on estimated scores to su-

pervise the learning of the proposed self-guided attention

boosted feature encoder, forming as two-stage self-training

scheme [10, 36, 35].
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Figure 3: The workflow of our multiple instance pseudo

label generator. Each bag contains L sub-bags, and each

sub-bag is composed of T continuous clips.

As shown in Figure 2, our proposed feature encoder

ESGA, adapted from vanilla feature encoder E (e.g. , I3D

or C3D) by adding our proposed self-guided attention mod-

ule, can be optimized with the estimated pseudo labels to

eliminate the domain gap and produce task-specific repre-

sentations. Actually, our proposed approach can be viewed

as a two-stage method (see Algorithm 1): 1) we first gener-

ate clip-level pseudo labels for anomalous videos that have

only video-level labels via the pseudo label generator, while

the parameters of the pseudo label generator are updated by

means of the deep MIL ranking loss. 2) After obtaining the

clip-level pseudo labels of anomalous videos, our feature

encoder ESGA can be trained on both normal and anoma-

lous video data. Thus, we form a self-training scheme to

optimize both the feature encoder ESGA and pseudo label

generator G. The illustration shown in Figure 2 provides an

overview of our proposed method.

To better distinguish anomalous clips from normal ones,

we introduce a self-guided attention module in the feature

encoder, i.e. , ESGA, to capture the anomalous regions in

videos to help the feature encoder produce more discrimi-

native representations (see Section 3.3). Moreover, we in-

troduce a sparse continuous sampling strategy in the pseudo

label generator to enforce the network to pay more atten-

tion to the context around the most anomalous part (see

Section 3.2). Finally, we introduce the deep MIL ranking

loss to optimize the learning of the pseudo label generator,

and we use cross entropy loss to train our proposed feature

encoder ESGA supervised by pseudo labels of anomalous

videos and clip-level annotations of normal videos.

3.2. Pseudo Label Generation via Multiple Instance
Learning

In contrast to [31], which simply assigns video-level la-

bels to each clip and then trains the vanilla feature encoder

at the very beginning, we introduce a MLP-based struc-

ture as the pseudo label generator trained under the MIL

paradigm to generate pseudo labels, which are utilized in

the refinement process of our feature encoder ESGA.

Even though recent MIL-based methods [20, 28] have

made considerable progress, the process of slicing a video

into fixed segments in an coarse-grained manner regardless

of its duration is prone to bury abnormal patterns as nor-

mal frames that usually constitute the majority, even in ab-

normal videos [24]. However, by sampling with a smaller

temporal scale in a fine-grained manner, the network may

overemphasize on the most intense part of an anomaly but

ignore the context around it. In reality, anomalous events

often last for a while. With the assumption of minimum du-

ration of anomalies, the MIL network is forced to pay more

attention to the context around the most anomalous part.

Moreover, to adapt to the variation in duration of

untrimmed videos and class imbalance in amount, we in-

troduce a sparse continuous sampling strategy: given the

features for each clip extracted by a vanilla feature encoder

E from a video {fi}
N
i=1, we uniformly sample L subsets

from these video clips, and each subset contains T con-

secutive clips, forming L sub-bags B = {fl,t}
L,T
l=1,t=1

, as

shown in Figure 3. Remarkably, T , a hyperparameter to be

tuned, also plays as the assumption of minimum duration

of anomalies, as discussed in the previous paragraph. Here,

we combine the MIL model with our continuous sampling

strategy, as shown in Figure 3. We feed extracted features

into our pseudo label generator to produce corresponding

anomalous scores {sl,t}
L,T
l=1,t=1

. Next, we perform average

pooling of the predicted instance-level scores sl,t of each

sub-bag score as Sl below, which can be utilized in Eq. 7.

Sl =
1

T

T
∑

t=1

sl,t. (1)

After training, the trained multiple instance pseudo la-

bel generator predicts clip-level scores for all abnormal

videos marked as Sa = {sai }
N
i=1. By performing temporal

smoothing with a moving average filter to relieve the jitter

of anomaly scores with kernel size of k,

s̃ai =
1

2k

i+k
∑

j=i−k

saj , (2)

and min-max normalization,

ŷai =
(

s̃ai −min S̃a
)

/(max S̃a −min S̃a)), i ∈ [1, N ],

(3)

we refine the anomaly scores into Ŷ = {ŷai }
N
i=1. Specifi-

cally, ŷai is in [0, 1] and acts as a soft pseudo label. Then, the

pseudo labeled data {V a, Ŷ a} are combined with clip-level

labeled data {V n, Y n} as {V, Y } to fine-tune the proposed

feature encoder ESGA.

3.3. Self­Guided Attention in Feature Encoder

In contrast to vanilla feature encoder E, which provides

only task-agnostic representations for the down-stream task,

14012
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we propose a self-guided attention boosted feature encoder

ESGA adapted from E, which optimizes attention map gen-

eration via pseudo labels supervision to enhance the learn-

ing of task-specific representations.

As Figure 4 shows, the self-guided attention module

(SGA) takes feature maps Mb−4 and Mb−5 as input, which

are produced by the 4th and 5th blocks of vanilla feature en-

coder E, respectively. SGA includes three encoding units,

namely F1, F2 and F3, which are all constructed by convo-

lutional layers. Mb−4 is encoded as M∗
b−4

and then applied

to attention map A generation, denoted as

A = F1(F2(Mb−4)). (4)

Finally, we obtain MA via the attention mechanism below:

MA = Mb−5 +A ◦Mb−5, (5)

where ◦ is element-wise multiplication, and MA is ap-

plied for final anomaly scores prediction via weighted-

classification head Hc, a fully connected layer.

To assist the learning of the attention map, we intro-

duce a guided-classification head Hg that uses the pseudo

labels as supervision. In Hg , F3 transforms M∗
b−4

into

M. Specifically, M∗
b−4

and M hav 2K channels as K
multiple detectors for each class, i.e. , normal and abnor-

mal, to enhance the guided supervision [26]. Then, we de-

ploy spatiotemporal average pooling, K channel-wise av-

erage pooling on M and Softmax activation to obtain the

guided anomaly scores for each class.

Remarkably, there are two classification heads in ESGA,

i.e. , weighted-classification head Hc and guided classifica-

tion head Hg , which are both supervised by pseudo labels

via L1 and L2, respectively. That is, we optimize ESGA

with the pseudo labels (see Section 3.2). Therefore, the

feature encoder ESGA can update its parameters on video

anomaly datasets and eliminate the domain gap from the

pretrained parameters.

3.4. Optimization Process

- Deep MIL Ranking Loss: Considering that the positive

bag contains at least one anomalous clip, we assume that the

clip from a positive bag with the highest anomalous score

is the most likely to be an anomaly [8].To adapt our sparse

continuous sampling in 3.2, we treat a sub-bag as an in-

stance and acquire a reliable relative comparison between

the mostly likely anomalous sub-bag and the most likely

normal sub-bag:

max
1≤l≤L

Sn
l < max

1≤l≤L
Sa
l (6)

Specifically, to avoid too many false positive instances in

positive bags, we introduce a sparse constraint on positive

bags, which instantiates Eq. 6 as a deep MIL ranking loss

with sparse regularization:

LMIL =

(

ǫ− max
1≤l≤L

Sa
l + max

1≤l≤L
Sn
l

)

+

+
λ

L

L
∑

l=1

Sa
l .

(7)

where (·)+ means max(0, ·), and the first term in Eq. 7 en-

sures that max1≤l≤L Sa
l is larger than max1≤l≤L Sn

l with a

margin of ǫ. ǫ is a hyperparameter that is equal to 1 in this

work. The last term in Eq. 7 is the sparse regularization in-

dicating that only a few sub-bags may contain the anomaly,

while λ is another hyperparameter used to balance the rank-

ing loss with sparsity regularization.

- Classification Loss: After obtaining the pseudo labels for

an abnormal video in Eq. 3, we obtain the training pair

{V a, Ŷ a} that is further combined with {V n, Y n} to train

our feature encoder ESGA. For this purpose, we apply the

cross entropy loss function to the two classification heads

(Hc and Hg) in ESGA, i.e. L1 and L2 in Figure 4.

Finally, we train a task-specific feature encoder ESGA

with the combination of L1 and L2. In the inference stage,

we use ESGA to predict clip-level scores for videos via

weighted-classification head Hc.

4. Experiments

4.1. Datasets and Metrics

We conduct experiments on two large datasets, i.e. ,

UCF-Crime [20] and ShanghaiTech [15], with two feature

encoders, i.e. C3D [21] or I3D [2].

UCF-Crime is a large-scale dataset of real-world surveil-

lance videos, including 13 types of anomalous events with

1900 long untrimmed videos, where 1610 videos are train-

ing videos and the others are test videos. Liu et al. [11]

14013
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Figure 5: Comparisons with the state-of-the-art encoder-

based method Zhong et al. [31] on ShanghaiTech.

manually annotated bounding boxes of anomalous regions

in one image per 16 frames for each abnormal video, and

we use their annotation of test videos only to evaluate our

model’s capacity to identify anomalous regions.

ShanghaiTech is a dataset of 437 campus surveillance

videos. It has 130 abnormal events in 13 scenes, but all ab-

normal videos are in the test set, as the dataset is proposed

for unsupervised learning. To adapt to the weakly super-

vised setting, Zhong et al. [31] re-organized the videos into

238 training videos and 199 testing videos.

Evaluation Metrics. Following previous works [13, 11,

20, 24], we compute the area under the curve (AUC) of

the frame-level receiver operating characteristics (ROC) as

the main metric, where a larger AUC implies higher distin-

guishing ability. We also follow [20, 24] to evaluate robut-

ness by the false alarm rate (FAR) of anomaly videos.

4.2. Implementation Details

The multiple instance pseudo label generator, is a 3-layer

MLP, where the number of units is 512, 32 and 1, respec-

tively, regularized by dropout with probability of 0.6 be-

tween each layer. ReLU and Sigmoid functions are de-

ployed after the first and last layer, respectively. Here, We

adopt hyperparameters L = 32, T = 3, and λ = 0.01
and train the generator with the Adagrad optimizer with a

learning rate of 0.01. While fine-tuning, we adopt the Adam

optimizer with a learning rate of 1e− 4 and a weight decay

of 0.0005 and train 300 epochs. More details about imple-

mentation are reported in Supplementary Material.

4.3. Comparisons with Related Methods

In Table 1, we present the AUC, FAR to compare our

MIST with related state-of-the-art online methods in terms

of accuracy and robustness. We can find that MIST outper-

forms or performs similarly to all other methods in terms

of all evaluation metrics from Table 1, which confirms the

efficacy of MIST. Specifically, the results of Zhong et al.

[31], marked with ∗, are re-tested from the official released

models1 without deploying 10-crop2 for fair comparison,

1https://github.com/jx-zhong-for-academic-purpose/GCN-Anomaly-

Detection.
210-crop is a test-time augmentation of cropping images into the center,

four corners and their mirrored counterparts.

Method Supervised Grained Encoder AUC (%) FAR (%)

Hasan et al. [7] Un Coarse AE
RGB 50.6 27.2

Lu et al. [14] Un Coarse Dictionary 65.51 3.1

SVM Weak Coarse C3D
RGB 50 -

Sultani et al. [20] Weak Coarse C3D
RGB 75.4 1.9

Zhang et al. [28] Weak Coarse C3D
RGB 78.7 -

Zhu et al. [34] Weak Coarse AE
Flow 79.0 -

Zhong et al. [31] Weak Fine C3D
RGB

80.67
∗(81.08) 3.3

∗(2.2)

Liu et al. [11] Full(T) Fine C3D
RGB 70.1 -

Liu et al. [11] Full(S+T) Fine NLN
RGB 82.0 -

MIST Weak Fine C3D
RGB 81.40 2.19

MIST Weak Fine I3D
RGB 82.30 0.13

Table 1: Quantitative comparisons with existing online

methods on UCF-Crime under different levels of supervi-

sion and fineness of prediction. The results in (·) are tested

with 10-crop, while those marked by ∗ are tested without.

Method Feature Encoder Grained AUC (%) FAR (%)

Sultani et al. [20] C3DRGB Coarse 86.30 0.15

Zhang et al. [28] C3DRGB Coarse 82.50 0.10

Zhong et al. [31] C3DRGB Fine 76.44 -

AR-Net [24] C3DRGB Fine 85.01∗ 0.57∗

AR-Net [24] I3DRGB Fine 85.38 0.27

AR-Net [24] I3DRGB+Flow Fine 91.24 0.10

MIST C3DRGB Fine 93.13 1.71

MIST I3DRGB Fine 94.83 0.05

Table 2: Quantitative comparisons with existing methods

on ShanghaiTech. The results with ∗ are re-implemented.

while the results in brackets are reported on [31] using 10-

crop augmentation. However, 10-crop augmentation may

improve the performance but requires 10 times the compu-

tation. Notably, the result of our MIST still slightly over-

takes that of Zhong et al. [31] using 10-crop augmenta-

tion (81.08% vs. 81.40% in terms of AUC and 2.2% vs.

2.19% for FAR). Moreover, our method outperforms the su-

pervised method of Liu et al. [11], which trains C3DRGB

with external temporal annotations and NLNRGB with ex-

ternal spatiotemporal annotations. These results verify that

our proposed MIST is more effective than previous works.

For the ShanghaiTech dataset results in Table 2, our

MIST far outperforms other RGB-based methods [20, 28,

31, 24], which validates the capacity of MIST. Remarkably,

MIST also surpasses the multi-model method of AR-Net

[24] (I3DRGB+Flow) on AUC by more than 4% to 94.83%
and gains a much lower FAR of 0.05%.

We detail the comparison with the state-of-the-art

encoder-based method [31] on ShanghaiTech in Figure

5. The multiple instance pseudo label generator performs

much better than Zhong et al. [31], which indicates the

drawback of utilizing video-level labels as clip-level labels.

Even though Zhong et al. [31] optimizes for three iterations,

it falls far behind our MIST with 16.69% AUC on C3D,

which solidly verifies the efficiency and efficacy of MIST.

Moreover, our MIST is much faster in the inference stage,

as Zhong et al. [31] applies 10-crop augmentation.
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Encoder-Agnostic

Methods

AUC (%)

UCF-Crime ShanghaiTech

pretrained fine-tuned pretrained fine-tuned

Sultani et al. [20] 78.43 81.42 86.92 92.63

Zhang et al. [28] 78.11 81.58 88.87 92.50

AR-Net [24] 78.96 82.62 85.38 92.27

Our MIL generator 79.37 81.55 89.15 92.24

Table 3: Quantitative comparisons between the features

from the pretrained vanilla feature encoder and those from

MIST on UCF-Crime and ShanghaiTech datasets by adopt-

ing encoder-agnostic methods.

Pretrained MIST

Fi
gh
tin

g0
03

R
ob
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13
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Figure 6: Feature space visualization of pretrained vanilla

feature encoder I3D and the MIST fine-tuned encoder via

t-SNE [16] on UCF-Crime testing videos. The red dots de-

note anomalous regions while the blue ones are normal.

4.4. Task­Specific Feature Encoder

To verify that our feature encoder can produce task-

specific representations that facilitate the other encoder-

agnostic methods, we also conduct related experiments with

I3D as presented in Table 3. It is noticeable that all re-

sults of encoder-agnostic methods are boosted after using

our MIST fine-tuned features, showing a reduction in the

domain gap. For example, AR-Net [24] increases from

85.38% to 92.27% on the UCF-Crime dataset and achieves

an improvement of 6.89% on the ShanghaiTech dataset.

Therefore, our MIST can produce a more powerful task-

specific feature encoder that can be utilized in other ap-

proaches. We visualize the feature space of the pretrained

I3D vanilla feature encoder and the MIST-fine-tuned en-

coder via t-SNE[16] in Figure 6, which also indicates the

refinement of feature representations.

4.5. Ablation Study

At first, we introduce another evaluation metric, i.e.

score gap, which is the gap between the average scores

of abnormal clips and normal clips. Larger score gap

Dataset Feature
AUC (%) ∆AUC

(%)Uniform Sparse Continuous

UCF-Crime
C3DRGB 74.29 75.51 +1.22

I3DRGB 78.72 79.37 +0.65

ShanghaiTech
C3DRGB 83.68 86.61 +2.93

I3DRGB 83.10 89.15 +6.05

Table 4: Performance comparisons of sparse continuous

sampling and uniform sampling for MIL generator training.

indicates the network is more capable of distinguishing

anomalies from normal events [13]. We conduct abla-

tion studies on UCF-Crime to analyze the impact of gen-

erated pseudo labels (PLs), the self-guided attention mod-

ule (SGA), and classifier head Hg in SGA of proposed fea-

ture encoder ESGA in Table 5. Compared with the base-

line and MISTw/o PLs, our MIST achievees a significant im-

provement when the generated pseudo labels are utilized. In

particular, we observe 8.17% improvement in AUC and an

approximately 17% score gap, which shows the efficacy of

our multiple instance pseudo label generator with the sparse

continuous sampling strategy. Pseudo labels also plays an

important role. Compared with MIST, the performance of

MISTw/o PLs drops seriously, even worse than the baseline

for the low-quality supervision that influences the attention

map A generation from SGA.

Moreover, SGA enhances the feature encoder on empha-

sizing the informative regions and distinguishing abnormal

events from normal ones. Compared with MISTw/oSGA,

MIST increases by 2% in AUC and 5% in the score gap.

Specifically, the guided-classification branch in SGA plays

an important role in guiding the attention map generation,

and there is a drop of more than 2% if such a branch is re-

moved.

Ablation studies are also conducted on a sparse contin-

uous sampling strategy on UCF-Crime and ShanghaiTech

with C3DRGB and I3DRGB features. As shown in Ta-

ble 4, when sampling the same number of clips for a bag

and selecting the same number of top clips to represent the

bag, our sparse continuous sampling strategy pays more at-

tention to the context and does better than uniform sam-

pling. Especially in ShanghaiTech, sparse continuous sam-

pling gains 2.93% and 6.05% on two kinds of features.

4.6. Visual Results

To further evaluate the performance of our model, we

visualize the temporal predictions of the models. As pre-

sented in Figure 7, our model exactly localizes the anoma-

lous events and predicts anomaly scores very close to zero

on normal videos, showing the effectiveness and robustness

of our model. We collect some failed samples in the right

row of Figure 7. In addition, our model predicts the high-

est score at the end of Arrest001, where a man walks across

the scene with his arm pointing forward as if brandishing a

14015



Shooting008 Arrest001Normal877Vandalism028 Burglary079

Figure 7: Visualization of the testing results on UCF-Crime (better viewed in color). The red blocks in the graphs are temporal

ground truths of anomalous events. The orange circle shows the wrongly labeled ground truth, the blue circle indicates the

wrongly predicted clip, and the red cricle indicates the correctly predicted clip.

Method AUC (%) Score Gap (%)

Baseline 74.13 0.375

MISTw/o PLs 73.33 0.443

MISTw/o Hg 81.97 15.37

MISTw/o SGA 80.28 12.74

MIST 82.30 17.71

Table 5: Ablation Studies on UCF-Crime with I3DRGB .

Baseline is the original I3D trained with video-level la-

bels [31]. MIST is our whole model. MISTw/o PLs is

trained without pseudo labels but with video-level labels.

MISTw/o Hg is MIST trained without Hg . MISTw/o SGA is

trained without the self-guided attention module).

Assault010Vandalism015

Origin 
Frames

MIST
w/o 

SGA

MIST
w/o 𝑯𝒈

MIST

Figure 8: Visualization results of anomaly activation maps

(better viewed in color).

gun. As the videos in UCF-Crime are low-resolution, it is

difficult to judge such a confusing action without any other

context information. Furthermore, the bottom-right part of

Figure 7 shows another failed case; i.e. , our model suc-

cessfully localizes the major part of the anomalous burglary

event and raises an alarm when the thieves are rushing out

of the house, which should be treated as an anomaly but is

wrongly labeled as a normal event in the ground truth. We

also visualize the spatial activation map via Grad-CAM on

MA [19] for spatial explanation. As Figure 8 shows, our

model is able to sensitively focus on informative regions

that help decide whether the scene is anomalous . This

verifies that our self-guided attention module can boost the

feature encoder to focus on anomalous regions. Addition-

ally, compared with the activation maps generated from the

MIST without guided-classification head Hg and the MIST

without the SGA module, the results of MIST are concen-

trated on the anomalous regions, which shows the rational-

ity and effectiveness of our self-guided attention module.

4.7. Discussions

The key of our MIST is to design a two stage self-

training strategy to train a task-specific feature encoder for

video anomaly detection. Each component of our frame-

work can be replaced by any other advanced module, e.g. ,

replacing C3D with I3D, or a stronger pseudo label gener-

ator to take the place of the multiple instance pseudo label

generator. Additionally, the scheme of our framework can

be adapted to other tasks, such as weakly supervised video

action localization and video highlight detection.

5. Conclusions

In this work, we propose a multiple instance self-training

framework (MIST) to fine-tune a task-specific feature en-

coder efficiently. We adopt a sparse continuous sampling

strategy in the multiple instance pseudo label generator to

produce more reliable pseudo labels. With the estimated

pseudo labels, our proposed feature encoder learns to fo-

cus on the most probable anomalous regions in frames fa-

cilitated by the proposed self-guided attention module. Fi-

nally, after a two-stage self-training process, we train a task-

feature encoder with discriminative representations that can

also boost other existing methods. Remarkably, our MIST

makes significant improvements on two public datasets.
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