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Abstract

Shadow removal is still a challenging task due to its inher-

ent background-dependent1 and spatial-variant properties,

leading to unknown and diverse shadow patterns. Even

powerful deep neural networks could hardly recover trace-

less shadow-removed background. This paper proposes a

new solution for this task by formulating it as an exposure

fusion problem to address the challenges. Intuitively, we

first estimate multiple over-exposure images w.r.t. the input

image to let the shadow regions in these images have the

same color with shadow-free areas in the input image. Then,

we fuse the original input with the over-exposure images

to generate the final shadow-free counterpart. Neverthe-

less, the spatial-variant property of the shadow requires

the fusion to be sufficiently ‘smart’, that is, it should auto-

matically select proper over-exposure pixels from different

images to make the final output natural. To address this chal-

lenge, we propose the shadow-aware FusionNet that takes

the shadow image as input to generate fusion weight maps

across all the over-exposure images. Moreover, we propose

the boundary-aware RefineNet to eliminate the remaining

shadow trace further. We conduct extensive experiments on

the ISTD, ISTD+, and SRD datasets to validate our method’s

effectiveness and show better performance in shadow re-

gions and comparable performance in non-shadow regions

over the state-of-the-art methods. We release the code

in https://github.com/tsingqguo/exposure-

fusion-shadow-removal.

1. Introduction

Shadows are present in most natural images where the

light source is blocked. Spatial-variant color and illu-

mination distortion presented in the shadow region can

*Lan Fu and Changqing Zhou are co-first authors and contribute equally.
†Corresponding author: Qing Guo (tsingqguo@ieee.org)
1Background means the shadow-covered context in this paper.

Figure 1: A: Illustration of the proposed auto-exposure fusion for shadow

removal. B: Visualization results of our shadow removal results with the

state-of-the-art methods. a) and b) are the shadow removal results of SP+M-

Net [17] and DSC [14], respectively.

hinder the performance of other computer vision tasks

[3, 16, 24, 29, 36], such as object detection and tracking,

object recognition, semantic segmentation, etc.

Previous shadow removal works either model this task

based on physical shadow models for paired shadow and

shadow-free images [17] or model it as an image-to-image

translation problem based on the generative adversarial net-

works (GAN) for unpaired shadow and shadow-free images

[15]. However, the learned shadow removal transforma-

tions by GAN-based methods, e.g., MaskShadowGAN [15],

tend to generate artifacts and image blur. They also suffer

from data distribution requirements, where they expect the

unpaired shadow and shadow-free image sets to share sta-
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tistical similarity [20], which is hard to be satisfied when

data acquisition is unstable. On the other hand, the publicly

available large-scale datasets of paired shadow and shadow-

free images, such as SRD [27], ISTD [32], and ISTD+ [17],

allow shadow removal tasks to learn a physically plausible

transformation in a supervised way. In this paper, we focus

on paired training data to perform the shadow removal task.

Shadow casting decreases the image quality with color

and illumination degradation, over-exposure of the shadow

image is an effective way to enhance the image quality. Intu-

itively, fusing the over-exposed one and the original shadow

image could obtain the desired shadow-free image. Recent

shadow decomposition works [17, 18], based on physical

shadow models, mainly learn to relight the shadow image

to a lit version and then fuse them together to acquire the

desired shadow-free image via a shadow matte. However,

since shadow casting degrades the color and illumination

across the spatial region in a background-dependent and

spatial-variant manner (i.e., the contiguous shadow cast on

the background image may cause the shadow region to ap-

pear differently based on how the original shadow-free back-

ground region looks like, as well as where the shadow is cast

spatially on the background image), we argue that multiple

over-exposure fusion allows much higher level of flexibility

and can provide a better solution to compensate the shadow

region to have the same color and illumination with its non-

shadow area, and better recovers the underlying content of

the shadow region.

Shadow removal is still a challenging task for powerful

state-of-the-art deep neural networks (DNN). Unknown and

diverse shadow patterns pose two challenges to existing

DNN based solutions: ❶ Shadow removal is a background-

dependent task, which requires DNN to not only recover

the illumination and color consistency with the shadow free

area but also to preserve the content underlying the shadow.

The spatial-variant property of shadow area requires that

the fusion should be ‘smart’ enough to adaptively select the

desired over-exposure pixels from various images to obtain

the final shadow-free version. ❷ It is hard to obtain traceless

background due to inconsistent shadow patterns along the

boundary and inside the shadow region.

In this paper, we propose a novel method, named auto-

exposure fusion network, for single image shadow removal,

as shown in Fig. 1(A). We first utilize exposure estimation

to learn multiple over-exposure images by compensating

the shadow region with different exposure levels. Then we

propose the shadow-aware FusionNet in Sec. 3.3 to produce

fusion weight maps across all the over-exposure images for

addressing the first challenge. It can ‘smartly’ select which

over-exposed pixel is the best one to recover the position-

specific background. The proposed method fuses the input

image and its over-exposure versions in a pixel-wise way.

Further, we propose a boundary-aware RefineNet in Sec. 3.4,

to remove the remaining shadow trace for refining the re-

moval result obtained in the previous step. Figure 1(B) shows

that the proposed method can obtain traceless background

image than the state-of-the-art methods SP+M-Net [17] and

DSC [14]. The contributions of this paper are:

• To the best of our knowledge, this paper is the first work

to study the shadow removal problem from the perspective

of auto-exposure fusion.

• To accurately remove the shadow, we propose a new

learning-based shadow-aware FusionNet followed by a

boundary-aware RefineNet to accurately estimate, smartly

fuse, and meticulously refine multiple over-exposure maps.

• The comprehensive experimental results on the public

ISTD, ISTD+, and SRD datasets show that the proposed

method achieved better performance in shadow regions

and comparable performance in non-shadow regions over

the state-of-the-art methods.

2. Related Work

Shadow removal. Traditional shadow removal methods

employ prior information, e.g., gradient [9], illumination

[35, 30, 33], and region [13, 31], for removing shadows. Re-

cent deep learning based shadow removal methods boost the

removal performance because of the available large-scale

datasets of paired and unpaired shadow and shadow free

images [17, 5, 15]. The Deshadow-Net [27] extracted multi-

context features, involving global localization, appearance,

and semantics, to predict a shadow matte layer for remov-

ing shadow in an end-to-end manner. Wang et al. proposed

ST-CGAN [32] for joint shadow detection and removal by

employing a stacked conditional GAN framework. The DSC

[37] additionally utilized direction-aware context to improve

shadow detection and removal. Le et al. [17] proposed to

remove shadows from the perspective of shadow decompo-

sition. On the other hand, the GAN based methods, e.g.,

MaskShadowGAN [15], made it possible to perform shadow

removal on unpaired shadow and shadow free images by

viewing it as an image-to-image translation problem. How-

ever, these methods suffered from artifacts and image blur.

They also required the unpaired shadow and shadow free

image sets to have similar statistical distribution.

We model the shadow removal problem from a novel

direction, i.e., an auto-exposure fusion problem on paired

shadow and shadow free images. Multiple over-exposure

shadow images are generated to compensate the color and

illumination degradation in the shadow region, then they are

‘smartly’ fused together to obtain the shadow free image.

Exposure fusion. Common imaging sensors’ capture

range is generally limited, a picture will often turn out to be

under/over exposed in real world scene. Multi-exposure im-

age fusion (MEF) can help to refine the image quality by fus-

ing multi-exposure images into one. MEF algorithms aim to

compute the fusion weight map for each image and fuse the
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Figure 2: Illustration of the proposed framework for shadow removal with shadow-aware FusionNet and boundary-aware RefineNet.

input sequence with a weighted sum operation. Traditional

MEF methods [8, 23] generally performed fusion locally

or pixel wisely with hand-crafted features. Goshtasby et al.

[8] proposed a patch-wise MEF by fusing uniform blocks

with the best-exposed information chosen from each image.

Mertens et al. [23] utilized perceptual factors, such as con-

trast and saturation, to construct an efficient pixel-wise MEF.

Li et al. [19] proposed a guided filter based fusion approach,

taking advantage of spatial consistency, with a two-scale

decomposition. Ma et al. [21] performed image fusion by

optimizing a structural similarity index (MEF-SSIM) with a

novel gradient descent-based method. Recent deep learning

based techniques have improved the fusion performance due

to high representation abilities. DeepFuse network [26] per-

formed multi-exposure fusion in an unsupervised manner by

employing a loss function without reference image quality.

MEF-Net [22], proposed by Ma et al., optimized the percep-

tually calibrated MEF-SSIM to predict and refine the fusion

weight maps. In addition to these standard MEF methods for

image enhancement, recent works also discussed the effects

of MEF to the image classification [6, 2] from the angle of

adversarial attack [12] by estimating the adversarial fusion

weights with kernel prediction [10, 11].

In this paper, we utilize exposure fusion for the shadow

removing task. Over-exposure is an effective way to enhance

the image quality of shadow area. We employ pixel-wise

fusion for a sequence of over-exposure images and shadow

image to obtain the desired shadow-free image.

3. Methodology

In this section, we propose to formulate the shadow re-

moval as an exposure fusion problem to recover traceless

background in the shadow image. We introduce the whole

framework in Sec. 3.1 and reveal the challenges. In Sec. 3.2,

we explain how we generate the multi-exposure images for

fusion. Then, our two main contributions, i.e., shadow-

aware FusionNet in Sec. 3.3 and boundary-aware RefineNet

in Sec. 3.4, help to address the challenges and achieve much

better deshadowed images.

3.1. Exposure Fusion for Shadow Removal

We recast the shadow removal task as an exposure fusion

problem and it can be formulated as

Î = φ(Is), (1)

where φ(·) denotes a transfer function that can map the

shadow image I
s to the corresponding shadow free image Î.

A well-exposure image, i.e., shadow free image, could be

obtained by exposure fusion of brackets of multi-exposure

images to improve the image quality of shadow image. The

purpose of employing image over exposure is to compensate

the shadow region to have the same color and illumination

as the non-shadow region. In this paper, we formulate the

shadow region as an under exposed area of the shadow image.

Then the problem left is to recover this area to its counterpart

version which has the consistent color and illumination with

the unshadowed area. Then, we can reformulate Eq. (1) to

Î = φ(Is, Io
i ), i ∈ {1, 2, . . . , N}, (2)

where I
o
i corresponds to the i-th over-exposure image of

shadow image I
s. An intuitive way to solve it is to esti-

mate an over-exposure version of the shadow image and then

fuse them together to directly infer the desired shadow-free

one. Nevertheless, shadow region is background-dependent

and presents spatial-variant property, i.e., the color and illu-

mination distortion across shadow region is variant, single

over-exposure could not adaptively reflect the degradation

in spatial space.

Therefore, we propose an auto-exposure fusion network

for fusing shadow image with sequence of over exposed

shadow images aiming to obtain the shadow free one. The

whole framework of shadow removal is shown in Fig. 2. In

Sec. 3.2, we employ a deep learning network to generate

a sequence of over exposed shadow images. Then we pro-

pose the shadow-aware FusionNet in Sec. 3.3 to ‘smartly’

fuse brackets of exposed images by generating fusion weight

maps across each pixel of the input image to adaptively

recover the color and illumination. However, due to the ex-

isting partial shadowed region, it is hard to obtain traceless

10573



Figure 3: Illustration of the proposed shadow-aware FusionNet.

background due to the inconsistent shadow patterns along

the boundary and inside the shadow area. Further, we pro-

pose a boundary-aware RefineNet in Sec. 3.4, to remove the

residual shadow trace with the help of boundary mask.

3.2. Overexposure Sequence Generation

We generate multiple exposure images through channel-

wise weighting of the shadow image I
s as following:

I
o
i = αiI

s + βi, i ∈ {1, 2, . . . , N}, (3)

where αi ∈ R
3×1 controls the exposure degree of the i-th

over-exposure image and βi ∈ R
3×1 decides the potential

intensity shifting. To realize the goal of shadow removal, we

should estimate {αi} and {βi} to make the shadow regions

in the generated over-exposure images have the same color

with the shadow-free regions in I
s. To this end, we aim to

train a DNN to estimate the exposure parameters adaptively

by taking the shadow image and shadow mask I
m as input.

Nevertheless, estimating all of the N exposure parameters

directly via a DNN could let the training difficult. Instead,

we adopt a two-stage way: first, we train a DNN to estimate

the median exposure degree, i.e., αN

2

and βN

2

(αN

2

, βN

2

) = ϕ(Is, Im), (4)

where ϕ(·) denotes the DNN for exposure parameter estima-

tion. Second, we generate all exposure images by performing

a simple interpolation on αN

2

and βN

2

with the assumption

that the over-exposure sequence’s images have similar color

with minor difference

[αi, βi] = γi[αN

2

, βN

2

], i ∈ 1, 2, . . . , N, (5)

where {γi} denotes the interpolation coefficients. Then, the

key problem becomes how to train ϕ(·), which is a deep

regression problem. The input data of exposure estimation

is the shadow image and corresponding shadow mask. The

ground truth of αN

2

βN

2

is calculated by performing the least

squares method [1] on the shadow mask covered regions of

shadow image and its shadow-free counterpart. We optimize

the exposure estimation by minimizing the mean squared er-

ror (MSE) between the estimated parameters and its ground

truth. Note that, exposure parameters are estimated inde-

pendently between color channels to adaptively adjust color

distortion caused by shadow as well as camera sensor. We

provide more details in the Sec. 3.5.

3.3. Shadowaware FusionNet

In this section, we design the FusionNet to fuse the gen-

erated over-exposure images {Io
i} and produce the shadow-

free image Î. Intuitively, we can fuse {Io
i} by assigning each

pixel a weight across different exposure degree

Î[p] =
N∑

i=0

Wi[p]I
o
i [p], (6)

where I
o
0 = I

s, and Wi has the same size with I
o
i . Actually,

such process means that each pixel of the final shadow-

free image is the linear combination of N over-exposure

images at the same pixel position and is fused independently.

However, the fusion strategy ignores the local smoothness,

leading to less natural or even noisy fusion results. Then, we

further extend Eq. (6) by

Î[p] =

N∑

i=0

(Ki ⊛ I
o
i )[p] =

N∑

i=0

∑

q∈N (p)

k
p
i [p− q]Io

i [q], (7)

where ⊛ denotes the pixel-wise convolution, i.e., each pixel

is filtered by a kernel that is not shared by other pixels.

Specifically, the p-th pixel of Io
i (e.g., Io

i [p]) and its neigh-

boring pixels (i.e., {Io
i [q]|q ∈ N (p)}) are linearly combined

by an exclusive kernel (i.e., k
p
i the p-th kernel in Ki) as the

combination weights and k
p
i [p − q] denotes [p − q]-th ele-

ments of k
p
i . N (p) is the neighboring pixels of p. Compared
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with Eq. (6), Eq. (7) considers the neighboring pixels’ color

and could avoid potential noisy results with better removal

effect. We denote K = {Ki} as pixel-wise fusion kernels.

Then, the key of generating the true shadow-free image

is to estimate the fusion kernels accurately. Motivated by

above process, we propose to estimate the fusion weight

maps by training a CNN that takes the shadow image with

shadow mask for guidance

K = FusionNet(Im, Io), (8)

where I
m is the shadow mask. The FusionNet is required to

understand the shadow images and predict kernels that can

spatially adapt to different shadow-covered contexts, thus

can select suitable pixels from the multiple over-exposure

images for shadow removal.

The pipeline of the shadow-aware FusionNet is shown in

Fig. 3. FusionNet achieves shadow free recovery by ‘smartly’

selecting position-specific over-exposure pixels. The input

data includes brackets of multiple exposure images, i.e., the

shadow image I
s, corresponding shadow mask I

m, and over-

exposure images {Io
i}. FusionNet generates fusion weight

maps, across all over-exposure images, to ‘smartly’ fuse the

proper pixels from over-exposure versions with the shadow

ones to the shadow free counterpart. Shadow mask I
m acts as

a fusion guidance for FusionNet to let it assign low weights

to non-shadow region and focus mostly on the shadow region,

which is shown by the fusion weight maps in Fig. 3.

We employ L1 distance to optimize our shadow-aware

FusionNet. The loss function Lpix(Î, Î
∗) is the pixel-wise

L1 distance between the ground truth shadow free image Î
∗

and the shadow removed image Î

Lpix(Î, Î
∗) = ‖Î∗ − Î‖1. (9)

3.4. Boundaryaware RefineNet

Partially shadowed (penumbra) pixels exist along the

shadow boundary. Inconsistent shadow patterns along the

shadow boundary and inside the shadow region are still

a challenge to state-of-the-art solutions to obtain traceless

background. To solve this issue, we propose a boundary-

aware RefineNet to eliminate the remaining shadow trace,

which is shown in Fig. 4. It acts as a refinement of the shadow

removal result obtained from FusionNet. Specifically, we

model the boundary-aware RefineNet as

F = RefineNet(Is, Im, Imb, Î), (10)

where I
mb is a penumbra mask, as shown in Fig. 4. Similar

to Eq. (7), F is also pixel-wise refine kernels that integrate

the context of pixel’s k × k neighborhood region with that

pixel to remove remaining trace. Then the refined shadow

free image becomes

Î
r[p] = (F⊛ Î)[p] =

∑

q∈N (p)

f
p[p− q]Î[q] (11)

Figure 4: Illustration of the proposed boundary-aware RefineNet.

where f
p ∈ R

k×k is the exclusive kernel for performing

convolution between the k × k neighboring pixels of the

pixel p (i.e., N (p)) and the kernel weights in f
p.

RefineNet’s input data includes: the shadow image I
s,

shadow mask I
m, penumbra mask I

mb, and initial shadow

removal result Î. Penumbra mask acts as a guidance for

RefineNet to keep color and illumination consistency of the

shadow removed, shadow boundary, and the non-shadow

regions. Penumbra mask I
mb is extracted by computing the

difference between dilated shadow mask I
md and eroded

shadow mask I
me for the penumbra region. We dilate/erode

the shadow mask by 7 pixels to generate I
md and I

me. The

goal of RefineNet is to output a refined shadow removal

image without trace.

The pixel-wise L1 distance Lpix(Î
r, Î∗), between the

ground-truth shadow-free image Î
∗ and the refined version

of shadow removed image Î
r, is utilized to optimize the

boundary-aware RefineNet. In addition, inspired by Pois-

son image editing [25], we propose a boundary-aware loss

Lbd(Î
r, Îs, Î∗, Im) to seamlessly remove the shadow. It is

defined as

Lbd(Î
r, Îs, Î∗, Im) = MSE(∇Î

r,∇Î
s) ∗ (1− I

m)

+MSE(∇Î
r,∇Î

∗) ∗ Im
(12)

where ∇ denotes the Laplacian gradient operator. It aims to

minimize the gradient domain along the shadow boundary.

It keeps the same gradient domain of non-shadow region

between predicted shadow-free image Î
r and shadow image

Î
s. At the same time, it reduces the difference of gradient

domain between predicted shadow-free image Îr and ground-

truth one Î∗ in the shadow region. The total loss of RefineNet

is a weighted sum of Lpix(Î
r, Î∗) and Lbd(Î

r, Îs, Î∗, Im), as

shown in Fig. 4. We set λ to 0.1 in the experiment.

3.5. Implementation Details

The proposed pipeline is implemented in PyTorch. The

details of network setting and training are:

1) Exposure estimation is trained together with FusionNet.

Its goal is to estimate the median-exposure version of the

input shadow image. We employ ResNeXt [34] as backbone

10575



Table 1: Shadow removal results of our networks compared to state-of-the-

art shadow removal methods on the ISTD [32] dataset.

Method \ RMSE Shadow Non-Shadow All

Input Image 32.12 7.19 10.97

Guo et al. [13] 18.95 7.46 9.30

Gong et al. [35] 14.98 7.29 8.53

MaskShadow-GAN [15] 12.67 6.68 7.41

ST-CGAN [32] 10.33 6.93 7.47

DSC [14] 9.76 6.14 6.67

DHAN [4] 8.14 6.04 6.37

Ours 7.77 5.56 5.92

to do the estimation. We set the number of over-exposure

images N to 5 by linearly interpolating the estimated expo-

sure parameters with scaling factors between [0.95, 1.05].

For FusionNet, we employ a DNN with U-Net256 [28] as

backbone.

2) Then boundary-aware RefineNet is to improve the

shadow removal result with the same backbone as Fusion-

Net. We train the RefineNet with exposure estimation and

FusionNet together but freezing the latter two. Both Fusion-

Net and RefineNet take the shadow mask as input, and we

describe the setting of the datasets in Sec. 4.1.

In our experiments, same training parameters setting are

employed for these three parts. The input image is resized

to 256×256. The minibatch size is 8 and the initial learning

rate is set to 0.0001. We use Adam optimizer for all the

networks. We trained 400 epochs for each network.

4. Experiments

4.1. Datasets and evaluation measurement

Datasets. We train and evaluate the proposed method on

three public datasets: ISTD [32], adjusted ISTD (ISTD+)

[17], and SRD [27] datasets. They all have paired shadow

and shadow-free images. Dataset ISTD and its adjusted

version also have shadow masks. We introduce these three

datasets as following:

1) The training set of ISTD dataset has 1,330 triplets of

shadow, shadow free, and shadow mask images. The testing

split consists of 540 triplets. The ISTD+ dataset has the same

number of triplets with ISTD except that it adjusts the color

inconsistency, between the shadow and shadow free image,

with image processing algorithm [17]. The color mismatch

results from the data acquisition setup. We use ground-truth

shadow masks for training stage, while for inference, we

compute the shadow masks by operating Otsu’s algorithm

to the difference between shadow and shadow free images,

similar to MaskShadow-GAN [15]. We additionally refine

these masks by a median filter to remove noises.

2) SRD dataset consists of 408 pairs of shadow and

shadow free images without the ground-truth shadow mask.

Here we simply use an adaptive threshold detection method,

same as the one used in ISTD dataset, to extract the shadow

Table 2: Shadow removal results of our networks compared to state-of-the-

art shadow removal methods on the ISTD+ [17] dataset.

Method \ RMSE Shadow Non-Shadow All

Input Image 40.2 2.6 8.5

Guo et al. [13] 22.0 3.1 6.1

Gong et al. [7] 13.3 - -

ST-CGAN [32] 13.4 7.7 8.7

DeshadowNet [27] 15.9 6.0 7.6

MaskShadow-GAN [15] 12.4 4.0 5.3

Param+M+D-Net [18] 9.7 3.0 4.0

SP+M-Net [17] 7.9 3.1 3.9

Ours 6.5 3.8 4.2

mask from the difference between shadow free and shadow

images. The extracted shadow masks are used both for train-

ing and testing. We utilize the public shadow masks provided

by DHAN [4] for evaluation.

Evaluation measures. We utilize the root mean square

error (RMSE) in LAB color space between the shadow re-

moval result and the ground-truth shadow free image to

evaluate the shadow removal performance, following pre-

vious works [32, 13, 27, 17, 4]. We directly compare our

auto-exposure fusion framework with several state-of-the-art

methods on the ISTD, ISTD+, and SRD datasets in quantita-

tive and qualitative ways.

4.2. Shadow removal evaluation on ISTD dataset

We first report the shadow removal results of our method

on ISTD dataset [32], as shown in Table 1. We compare the

proposed method with the state-of-the-art algorithms: Guo

et al. [13], Gong et al. [7], ST-CGAN [32], MaskShadow-

GAN [15], DSC [14], and DHAN [4]. Different from other

methods, MaskShadow-GAN utilizes unpaired shadow and

shadow free images for training. The first row shows the

RMSE values of the input shadow image and corresponding

shadow free image without shadow removal operation. It

shows that the proposed method obtains the best shadow re-

moval performance in both shadow and non-shadow regions,

leading to the lowest RMSE in the whole image. Specifically,

the proposed method outperforms DSC [14] by 20.3% and

11.2% RMSE decreasing in shadow region and the whole im-

age, respectively. The proposed method also outperforms the

method DHAN [4] by reducing the RMSE from 8.14 to 7.77

in the shadow region. Training with unpaired data doesn’t

perform as well as training with paired version. Specifically,

the proposed method outperforms MaskShadow-GAN by

38.6% and 20.1% RMSE decreasing in the shadow region

and the whole area, respectively.

We also report the shadow removal performance of our

proposed method on the adjusted ISTD (ISTD+) [17] dataset.

As shown in Table 2, we compare the proposed method

with state-of-the-art algorithms: Guo et al. [13], Gong et

al. [7], ST-CGAN [32], DeshadowNet [27], MaskShadow-

GAN [15], Param+M+D-Net [18], and SP+M-Net [17]. It
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Table 3: Shadow removal results of our networks compared to state-of-the-

art shadow removal methods on the SRD [27] dataset.

Method \ RMSE Shadow Non-Shadow All

Input Image 40.28 4.76 14.11

Guo et al. [13] 29.89 6.47 12.60

DeshadowNet [27] 11.78 4.84 6.64

DSC [14] 10.89 4.99 6.23

DHAN [4] 8.94 4.80 5.67

Ours 8.56 5.75 6.51

turns out that the proposed method achieves the best shadow

removal performance in the shadow region, outperforming

SP+M-Net by 17.7% lower RMSE. It outperforms the De-

shadowNet and ST-CGAN trained with paired shadow and

shadow-free images, decreasing the RMSE by 59.1% and

51.4%, respectively. Compared to methods training with

unpaired data, training with paired images still acquire better

results. The proposed method outperforms Param+M+D-Net

by about 32.9%, trained with unpaired shadow and shadow

free patches. The proposed method achieves the comparable

performance in the non-shadow and whole image region.

Figure 5 shows the visualization results of shadow re-

moval from our methods and other state-of-the-art methods

on the ISTD dataset. We can see that our result could re-

cover traceless background in the shadow region. We can

clearly see that traditional method, Guo et al. [13], suffers

from severe artifacts and could not recover shadowed pix-

els successfully due to limited feature representation ability.

ST-CGAN could improve the performance by training large-

scale data, while it tends to generate blurry images, random

artifacts, and incorrect colors, e.g., the fourth row shadow

removed image. MaskShadowGAN and Param+M+D-Net

also suffer from producing blurry images. Random artifacts

along the shadow boundary can be easily spotted in the result

of Param+M+D-Net, and it relights the boundary rather than

removing it. Even though DSC and SP+M-Net could remove

most of the shadow, their results still have trace along the

shadow boundary, which does not exist in our result.

4.3. Shadow removal evaluation on SRD dataset

In this section, we show our shadow removal results on

SRD dataset [27] in Table 3. We evaluate our result with

the public masks provided by DHAN [4]. The proposed

method obtains the best shadow removal results with the

lowest RMSE in the shadow region. It reduces the RMSE

from 8.94 to 8.56, compared to DHAN.

As shown in Table 3, the non-shadow region’s RMSE val-

ues of different methods are very close (mean: 5.4, standard

deviation: 0.6), which are similar to those of the Table 2 for

ISTD+ dataset (mean: 4.4, standard deviation: 1.7). How-

ever, the standard deviations of the RMSE values in shadow

region are significantly larger. This means that different

methods including ours all perform well and very close on

the non-shadow region, and the main difficulty of this prob-

Table 4: Ablation study of shadow removal on the ISTD+ [17] dataset.

Method \ RMSE Shadow Non-Shadow All

Input Image 40.2 2.6 8.5

Fusion-N1 7.1 3.9 4.4

Fusion-N3 7.2 3.9 4.5

Fusion-N5 6.9 4.0 4.4

Fusion+RefineNet 6.6 3.8 4.3

Fusion+RefineNet+Lbd 6.5 3.8 4.2

lem comes from the shadow region. For the shadow region,

our method obviously obtains the best performance.

4.4. Ablation study

We conduct ablation studies on ISTD+ dataset to eval-

uate the contribution of each step of our proposed method.

For the effectiveness of per-pixel kernel fusion, i.e., Eq. (7)

over Eq. (6), we perform Fusion-N1 which fuses pairs of

over-exposure and shadow images with the per-pixel kernel

that considers 3× 3 neighboring pixels and with pixel-wise

fusion. It turns out that fusing image pair with neighboring

information can boost the performance from 7.6 to 7.1 for

RMSE in the shadow region, because neighboring region

provides important spatial context information to represent

the structure. We set 3× 3 neighborhood for FusionNet.

Then, we conduct experiments to verify the effective-

ness of multiple over-exposure by controlling the number

of over-exposure images. In our implementation, we set the

number N to 1, 3, and 5. The shadow removal models are

denoted as Fusion-N1, Fusion-N3, and Fusion-N5, respec-

tively. N is set to 5 for the remaining experiments. We test

the effectiveness of boundary-aware RefineNet and loss Lbd

by models Fusion+RefineNet and Fusion+RefineNet+Lbd,

respectively. The results are summarized in Table 4.

To estimate the effectiveness of multiple over-exposure

to the shadow-aware FusionNet, we report the performance

in shadow, non-shadow, and whole image regions with the

metric RMSE. When N is 5, the shadow removal result

in the shadow region reaches lower RMSE 6.9, compared

to when N = 1. We set N to 5 for later ablation experi-

ments. With the introducing of boundary-aware RefineNet,

Fusion+RefineNet improves the shadow removal perfor-

mance by about 0.3 RMSE decreasing. It verifies that penum-

bra region is a challenge for shadow removal task to get

traceless background. The RMSE in non-shadow region also

decreased, compared to Fusion-N5. Further, Lbd loss opti-

mized the shadow removal model Fusion+RefineNet+Lbd

better to reach the lowest RMSE 6.5, 3.8, and 4.2 in the

shadow, non-shadow and the whole image regions.

To explain the small margin of shadow removal perfor-

mance gain of Fusion-N5 over Fusion-N1, we calculate the

ground truth exposure for the p-th pixel in the shadow region

by dividing the shadow-free pixel with its shadow counter-

part for each testing example. Then, we count the average

10577



Figure 5: Illustration of the visualization results of shadow removal on dataset ISTD [32]. a) to g) are the results from comparison methods: Guo et al. [13],

ST-CGAN [32], MaskShadow-GAN [15], Param+M+D-Net [18], DSC [14], SP+M-Net [17], and DHAN [4], respectively.

Table 5: Comparison of traceless background results in penumbra region

on ISTD+ [17] dataset.

Method \ RMSE Penumbra

SP+M-Net [17] 7.06

Ours 5.96

and the standard deviation (std. dev.) of GT exposures of

all pixels in the shadow region for each example and show

their relationship to the example’s RMSE of the 3 variants

in Fig. 6. We see that: 1) For the most examples, Fusion-N5

and Fusion-N3 have lower RMSE than Fusion-N1&N3 and

Fusion-N1, respectively. 2) Most examples’ GT exposures

have small variations (i.e., small std. dev.) across spatial

coordinates, leading to similar RMSE on the three methods.

3) When the GT exposures’ variation become larger, the

advantages of Fusion-N3&5 become more obvious.

We also compare our method with the state-of-the-art

method SP+M-Net [17] about measuring the shadow re-

moval result without residual trace. We evaluate the RMSE

metric in the penumbra region by considering the penumbra

mask I
mb as mentioned in Sec. 3.4. As shown in Table 5, our

method performs better, decreasing RMSE by 15.5%. Visu-

alizations are shown in Fig. 5(f) and ours. The SP+M-Net

does not perform well to remove the residual trace.

5 10 15 20 25(a) Average of pixels’ GT exposures in Shadow Region 
5.05.56.06.57.0

RMSE

Fusion-N1Fusion-N3Fusion-N5 0 5 10 15 20 25 30 35 40(b) Std. Dev. of pixels’ GT exposures in Shadow Region
5.05.56.06.57.0

RMSE

Fusion-N1Fusion-N3Fusion-N5
Figure 6: RMSE vs. average (i.e., (a)) and std. dev. (i.e., (b)) of pixels’ GT

exposures in shadow region for each testing example.

5. Conclusion

In this paper, we have proposed a novel and robust over-

exposure fusion method for performing shadow removal

task. Multiple over-exposure, relighting each pixel with dif-

ferent exposures, could compensate each pixel individually

to tackle position specified color and illumination degrada-

tion. It benefits the shadow removal task by recovering the

natural image from the spatial variant color and illumination

degradation. Shadow-aware FusionNet smartly fuses brack-

ets of over-exposure shadow images with shadow image by

an adaptive per-pixel kernel weight map. It helps to fully

recover the background content preserving the color and illu-

mination details. The proposed boundary-aware RefineNet

further eliminates the remaining trace caused by the penum-

bra area along the shadow boundary. With the boundary loss

added, by optimizing to preserve the non-shadow region and

recover the ground-truth shadow-free area of the shadow

image, our work can obtain traceless background with the

state-of-the-art shadow removal performance on the ISTD,

ISTD+, and SRD datasets. In future, we plan to solve the

challenging video shadow removal problem.
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